K-bonacci Numbers
27 July, 2020
The Fibonacci sequence \( \{F_n\}_{n = 0}^\infty \) is a well known and widely studied sequence, defined by the recurrence relation $$ F_{n} \;=\; F_{n - 1} \;+\; F_{n - 2}. $$ For convenience, we set \( F_0 = 0 \), \( F_1 = 1 \). The terms of this sequence can be expressed by Binet's formula, $$ F_n \;=\; \frac{\varphi^n - \psi^n}{\varphi - \psi}, $$ where \( \varphi \) and \( \psi \) are the roots of the polynomial \( x^2 - x - 1 = 0\). Famously, \( \varphi \) is the Golden Ratio, \( (1 + \sqrt{5}) / 2 \). The Fibonacci sequence thus proceeds as follows. $$ 0,\; 1,\; 1,\; 2,\; 3,\; 5,\; 8,\; 13,\; 21,\; \dots $$ It can be shown that as \( n \to \infty\), the ratio of successive terms, \( F_{n + 1} / F_{n} \), converges to \( \varphi \), around \( 1.6180 \).
One way to generalize the Fibonacci sequence is to extend the recurrence relation, involving more previous terms. The Tribonacci sequence thus obeys $$ T_n \;=\; T_{n-1} \;+\; T_{n-2} \;+\; T_{n-3}, $$ where \( T_0 = T_1 = 0 \), \( T_2 = 1 \). This generates the sequence $$ 0,\; 0,\; 1,\; 1,\; 2,\; 4,\; 7,\; 13,\; 24,\; \dots $$ Amazingly, these too are given by the closed form expression $$ T_n \;=\; \frac{\alpha^n}{(\alpha - \beta)(\alpha - \gamma)} \;+\; \frac{\beta^n}{(\beta - \alpha)(\beta - \gamma)} \;+\; \frac{\gamma^n}{(\gamma - \alpha)(\gamma - \beta)}, $$ where \( \alpha \), \( \beta \) and \( \gamma \) are roots of the polynomial \( x^3 - x^2 - x - 1 = 0 \). The limiting ratio of successive terms, \( T_{n + 1}/T_n \), is the largest real root of the aforementioned polynomial. This happens to be the only real root greater than \(1\), around \( 1.8393 \).
We are thus motivated to define a generalized Fibonacci sequence, \( \{F^{(k)}_n\}_{n=0}^\infty \), as follows. $$ F^{(k)}_n \;=\; F^{(k)}_{n-1} \;+\; F^{(k)}_{n-2} \;+\; \dots \;+\; F^{(k)}_{n-k}, $$ where \( F^{(k)}_0 = F^{(k)}_1 = \dots = F^{(k)}_{k-2} = 0 \), \( F^{(k)}_{k-1} = 1 \). We may call such a sequence a k-step Fibonacci sequence, or a k-bonacci sequence. The polynomial \( x^k - x^{k-1} - \dots - 1 \) is of particular interest when investigating these sequences.
Lemma 1: The polynomial $$ p(x) \;=\; x^k \;-\; x^{k-1} \;-\; x^{k-2} \;-\; \cdots \;-\; x \;-\; 1, $$ where \(k \gt 1\) has only one positive real root greater than \(1\).
Applying Descartes' rule of signs shows that \(p(x)\) has exactly one positive real root. Also, \(p(1) \lt 0\) and \(p(2) \gt 0\), indicating that this root lies in the interval \((1, 2)\).
Lemma 2: If \(\alpha\) is the positive root of \(p(x)\) greater than \(1\), then $$ 2 - \frac{1}{2^{k-1}} \;\lt\; \alpha \;\lt\; 2 - \frac{1}{2^k}. $$
We examine the polynomial $$ q(x) \;=\; (x-1)\;p(x) \;=\; x^{k+1} \;-\; 2x^{k} \;+\; 1 \;=\; x^k(x \;-\; 2) \;+\; 1, $$ which shares the same roots as \(p(x)\) and the additional root \(1\). Note that $$ q(2 - \epsilon) \;=\; (2 - \epsilon)^k (-\epsilon) + 1 \;=\; 1 \;-\; 2^k\epsilon\left(1 - \epsilon/2^k\right)^k. $$ When \(|\epsilon| \lt 1\), we have \( (1 - \epsilon/2^k)^k \gt 1 - k\epsilon/2^k\) from Bernoulli's inequality. Thus, setting \(\epsilon = 1/2^{k-1}\), $$ q(2 - 1/2^{k-1}) \;\lt\; 1 \;-\; 2\left(1 - \frac{k}{2^{2k-1}}\right) \;=\; \frac{2k}{2^{2k-1}} - 1 \;\leq\; 0. $$ Also, \((1 - \epsilon/2^k)^k \lt 1\), so setting \(\epsilon = 1/2^k\), $$ q(2 - 1/2^k) \;\gt\; 1 - 2^k/2^k \;=\; 0. $$ This establishes the required bounds for \(\alpha\).
Lemma 3: Let \(\alpha = \alpha_k\) be the positive root of \(p(x)\). The remaining roots, \(\alpha_i\) of \(p(x)\) where \(i = 1, 2, \dots, k - 1\), all lie within the open unit disk centered at the origin, i.e. \(|\alpha_i| \lt 1\) for \(i \lt k\).
Let \(r \gt 1\) such that \(r\lt \alpha_k\). Then, on the circle \(|z| = r\), $$ |z^{k+1} + 1| \;\leq\; r^{k + 1} + 1 \;\lt\; 2r^k \;=\; |2z^k|. $$ Using Rouche's theorem, \(q(z)\) must have as many roots within the open disk \(|z| \lt r\) as \(2z^k\), i.e. \(k\) roots. Note that this holds for any \(r\) arbitrarily close to and greater than \(1\), so \(q(z)\) has \(k\) roots in the closed disk \(|z| \leq 1\). We know that one of these is \(z = 1\), and this is not a root of \(p(x)\). We now show that none of the remaining roots are such that \(|\alpha_i| = 1\). If \(q(z) = 0\) when \(|z| = 1\), then \(|z^{k+1} + 1| = |2z^{k}| = 2\), so the triangle inequality forces \(z^{k+1} = 1\). Thus, \(2z^k = z^{k+1} + 1 = 2\), so \(z^{k} = 1\) too. This forces \(z = 1\). Therefore, the remaining \(k-1\) roots of \(q(x)\) are all roots of \(p(x)\), such that \(|\alpha_i| \lt 1\) for \(i = 1, 2, \dots k-1\).
Lemma 4: If \(p(x) = 0\), then for integers \(n \geq k\), $$ \begin{align}x^n \;&=\; F^{(k)}_n x^{k-1} \;+\; \left(F^{(k)}_{n-1} + F^{(k)}_{n-2} + \dots + F^{(k)}_{n-k+1}\right)x^{k-2} \;+\; \left(F^{(k)}_{n-1} + F^{(k)}_{n-2} + \dots + F^{(k)}_{n-k+2}\right)x^{k-3} \;+\; \dots \\ &\quad\;+\; \left(F^{(k)}_{n-1} + F^{(k)}_{n-2}\right)x \;+\; F^{(k)}_{n-1}. \end{align}$$ Specifically, the constant coefficient in the polynomial expansion of \(x^n\) is \(F^{(k)}_{n-1}\).
We show this by induction. For \(n = k\), only the \(F^{(k)}_{k-1} = F^{(k)}_k = 1\) terms survive, so \(x^k \;=\; x^{k-1} + x^{k-2} + \dots + 1\), which is clearly true from \(p(x) = 0\). Let the given formula hold for some \(n \geq k\). Then, $$ \begin{align} x^{n+1} \;&=\; x \cdot x^n \\ \;&=\; F^{(k)}_n x^{k} \;+\; \left(F^{(k)}_{n-1} + F^{(k)}_{n-2} + \dots + F^{(k)}_{n-k+1}\right)x^{k-1} \;+\; \left(F^{(k)}_{n-1} + F^{(k)}_{n-2} + \dots + F^{(k)}_{n-k+2}\right)x^{k-2} \;+\; \dots \\ &\quad\;+\; \left(F^{(k)}_{n-1} + F^{(k)}_{n-2}\right)x^2 \;+\; F^{(k)}_{n-1}x \end{align} $$ Expanding \(x^k = x^{k-1} + x^{k-2} + \dots + 1\), $$ \begin{align}x^{n+1} \;&=\; \left(F^{(k)}_n + F^{(k)}_{n-1} + F^{(k)}_{n-2} + \dots + F^{(k)}_{n-k+1}\right)x^{k-1} \;+\; \left(F^{(k)}_n + F^{(k)}_{n-1} + F^{(k)}_{n-2} + \dots + F^{(k)}_{n-k+2}\right)x^{k-2} \;+\; \dots \\ &\quad\;+\; \left(F^{(k)}_n + F^{(k)}_{n-1} + F^{(k)}_{n-2}\right)x^2 \;+\; \left(F^{(k)}_n + F^{(k)}_{n-1}\right)x \;+\; F^{(k)}_{n}. \end{align}$$ The first coefficient collapses to \(F^{(k)}_{n + 1}\) by our recurrence rule. By induction on \(n\), this proves the required formula.
Theorem 1: If \(\alpha_1, \alpha_2, \dots, \alpha_k\) are roots of \(p(x) = x^k - x^{k-1} - x^{k-2} - \dots - 1\), then $$ F^{(k)}_n \;=\; \sum_{i = 1}^k \left(\prod_{\substack{j = 1 \\ j\neq i}}^{k}\frac{1}{(\alpha_i - \alpha_j)}\right)\alpha_i^n.$$
For \(x^k = x^{k-1} + x^{k-2} + \dots + 1\), we expand \(x^{n+1} = g(x)\), where \(g(x)\) is a polynomial of degree \(k-1\). By Lemma 4, \(g(0) = F^{(k)}_n\). Also, \(g(\alpha_i) = \alpha_i^{n+1}\) for each of the \(k\) roots \(\alpha_i\) of \(p(x)\). This is enough to fully determine the coefficients of \(g(x)\), which we construct as follows. $$ g(x) \;=\; \sum_{i = 1}^k \left(\prod_{\substack{j = 1 \\ j\neq i}}^{k}\frac{(x - \alpha_j)}{(\alpha_i - \alpha_j)}\right)\alpha_i^{n+1} \;=\; \sum_{i = 1}^k h_i(x) \alpha_i^{n+1}.$$ Note that the polynomials \(h_i(x)\) are chosen such that \(h_i(\alpha_j) = \delta_{ij}\). When evaluating \(g(0)\), we note that the numerator of \(h_i(0)\) is simply \((-1)^{k-1}\prod_{j\neq i}\alpha_j\). Pulling out one \(\alpha_i\) from \(\alpha_i^{n+1}\), and using Vieta's formula to evaluate the product of roots \((-1)^{k-1}\prod_j \alpha_j = 1\), we obtain the desired formula.
Corollary: $$ F^{(k)}_n \;=\; \sum_{i = 1}^k \frac{\alpha_i - 1}{2 + (k + 1)(\alpha_i - 2)} \alpha_i^{n-k+1}.$$
We examine the numerator of \(h_i(x)\) as seen in Theorem 1. Let this be the polynomial \(f_i(x)\), so \(h_i(x) = f_i(x)/f_i(\alpha_i)\). Note that \(f_i(x)\) is a polynomial with roots \(\alpha_j\), \(j \neq i\). Thus, we evaluate the limit $$ \lim_{x \to \alpha_i} \frac{p(x)}{x - \alpha_i} \;=\; \lim_{x \to \alpha_i} \frac{x^{k+1} - 2x^k + 1}{(x-1)(x - \alpha_i)}. $$ Using L' Hopital's rule, we find that $$ f_i(\alpha_i) \;=\; \frac{(k + 1)\alpha_i^k - 2k\alpha_i^{k-1}}{\alpha_i - 1} \;=\; \frac{(k+1)(\alpha_i^{k} - 2\alpha_i^{k-1}) + 2\alpha_i^{k-1}}{\alpha_i - 1} \;=\; \frac{2 + (k + 1)(\alpha_i - 2)}{\alpha_i - 1} \alpha_i^{k-1}. $$ Substituting this into the formula from Theorem 1 gives the desired result.
Lemma 5: For large \(n\), we can make the approximation $$ F^{(k)}_n \;\sim\; \frac{\alpha_k - 1}{2 + (k + 1)(\alpha_k - 2)} \alpha_k^{n-k+1}.$$
Recall from Lemma 3 that \(\alpha_k\) is the only \(\alpha_i\) lying outside the unit circle centered at the origin. Thus, for large \(n\), the contributions of the \(\alpha_i^n\) terms in the formula from Theorem 1 vanish for \(i = 1, 2, \dots, k-1\), and are dominated by \(i = k\). Thus, those terms in the sum become negligeable, establishing the desired approximation.
Theorem 2: The limiting ratio of successive terms is given by the dominant root \(\alpha_k\). That is, $$ \lim_{n \to \infty} \frac{F^{(k)}_{n + 1}}{F^{(k)}_n} \;=\; \alpha_k. $$ This ratio is called the k-bonacci constant.
This follows directly from the approximation in Lemma 5, when taking limits using the formula from Theorem 1.
Acknowledgements
This article was motivated by a series of conversations with Sayan and Sohom in February, 2020.
References
  • Gregory P. Dresden, Zhaohui Du, A simplified Binet formula for k-generalized Fibonacci numbers, Journal of Integer Sequences, 17 (2014), 14.4.7
  • Gwang-Yeon Lee, Sang-Gu Lee, Jin-Soo Kim, Hang-Kyun Shin, On the k-generalized Fibonacci Matrix Qk, Linear Algebra and its Applications, 251 (1997), 73-88
  • Wolfram MathWorld, Fibonacci n-step number