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1 Sequences of functions

Definition 1.1. Let {f,} be a sequence of functions on a set E. We say that {f,} converges
pointwise to a function f on F if the sequences f,,(z) — f(z) for every x € E. We write f, — f
pointwise on F.

Definition 1.2. Let {f,} be a sequence of functions on a set E. We say that {f,} converges
uniformly to a function f on FE if given € > 0, there exists ng € N such that d(f,(z), f(x)) <€
for all z € E, n > ng. We write f, — f uniformly on E.

Lemma 1.1. Let % be a collection of functions on a set E, and let f be a function on E with
the following property: given € > 0, there exists g € 4 such that |g(x) — f(z)| < € for allz € E.
Then, f is the uniform limit of functions in 9.

Proof. For all n € N, let g, € 4 be the function such that |g,(x) — f(z)| < 1/n for all z € E.
Then, g, — f uniformly on E. To prove this, let € > 0. Using the Archimedean property of the
reals, pick ng € N such that nge > 1. Thus, for all x € F and n > ng, we have

11
gn(2) = f(2)] < ~ < — <. ]

n no

Theorem 1.2 (Cauchy criterion). Let {f,} be a sequence of real valued functions on a set E.
This sequence of functions converges uniformly on E if and only if given € > 0, there exists
ng € N such that

’fn(a;) - fm(m)’ <€

forallx € E, m,n > ng.

Proof. First, suppose that the sequence of real valued functions {f,} converges uniformly on
E, with f,, — f uniformly. Given ¢ > 0, we choose ng € N such that for all x € E and n > ny,

[fala) = F@)| < 5.

Now, for all x € F and m,n > ng, we have

(@) = fin (@) = [(fu(2) = [(2)) = (fin(2) = f(2))]
< |falz) = f@)| + | fn(x) = f ()]

€
2
€.



Thus, {f,} is a Cauchy sequence.
Next, suppose that {f,} is a Cauchy sequence. Given € > 0, choose ng € N such that for all
x € E and m,n > ng, we have

(@) = fm(@)] < 5.

Now for each point z € E, the Cauchy criterion for convergence of a sequence of real numbers
guarantees that lim, o fn(x) exists. Thus, we can define the function f on E such that
f(z) = limy, 00 fn(x), hence f,, — f pointwise. Fix zg € E, and pick n € N such that for all
m > ng, we have | f,,(zo) — f(x0)|] < €/2. Choose m = max(ng,ny), whence for all n > ng, we
have

|fn(@o) = f(@0)| = [(fu(@0) = fm(@0)) + (fm(z0) — f(20))]
|fn(x0) - fm($0)| + |fm(x0) - f($0)|

€ €

2713
€.

VAN VA

Note that z¢ was arbitrary, with ng chosen independently of z¢. Thus, {f,,} converges uniformly
on FE. O

Theorem 1.3. Let {f,} be a sequence of real valued functions on a set E, and let f be a real
valued function on X such that f, — [ pointwise. For alln € N, set

My, = sup [f(z) — f(2)]
zeE

Then, f, — f uniformly on E if and only if M, — 0.

Proof. First, suppose that M,, — 0. This means that given ¢ > 0, we can find ng € N such that
for all n > ng, we have

M, = sup |fn(z) — f(z)| <e
neX

This directly gives
[ful(z) = f(2)] < sup |fu(z) — f(z)| <e€

zeX
for all x € E and n > ng, hence f,, — f uniformly on E.
Next, suppose that f,, — f uniformly on FE. Let € > 0 and pick ng € N such that for all
x € E and n > ng, we have |f,(z) — f(z)| < €¢/2. Taking supremums gives

M, =sup|fu(e) = f(&)] < <,
zel

hence M,, — 0. ]

Theorem 1.4. Let {f,} be a sequence of real valued bounded, functions on a set E, and let f
be a function on E such that f, — f uniformly. Then, f is bounded on E.

Proof. Using the uniform convergence of {f,}, choose ny € N such that
[f(z) = f(z)] <1
for all x € E and n > ng. Specifically, this holds for n = ng so for all z € E, we have
Ful@) = 1< f(2) < fule) + 1.
However, f,, is bounded so there exists M > 0 such that |f,(x)| < M for all z € E, hence
-M-1<f(x)<M+1
or |[f(x)]< M+ 1foral z e FE. O



Theorem 1.5 (Uniform limit theorem). Let {f,} be a sequence of continuous functions on
a metric space X, and let f be a function on X such that f, — f uniformly. Then, f is
continuous on X.

Proof. Fix xy € X, and let € > 0. Use the uniform convergence of {f,} to pick ng € N such
that for all z € X and n > ng,

fal@) = F@)| < .

Note that the above also holds specifically at x = xg. Use the continuity of each f, to choose
d > 0 such that for all z € X satisfying |z — zo| < J, we have

[fal@o) = ful@)] < 3.
Set n = ng, whence for all x € X satisfying |z — zo| < §, we have
[ (x0) = f(2)] = [(f(x0) = fn(20)) + (fulw0) — fu(2)) + (fu(z) — f(2))]
< |f(z0) = falmo)| + |fu(z0) = fu(®)] + | fu(z) — f(2)]
i

= €.

IN

Thus, f is continuous at xg. Since xzg was chosen arbitrarily, f is continuous on X. ]

Theorem 1.6 (Dini’s theorem). Let {f,} be a sequence of continuous real valued functions on
a compact metric space K such that fp, > fni1 for alln € N, and let f be a continuous function
on K such that f, — f pointwise. Then, f, — [ uniformly on K.

Proof. Let ¢ > 0. For each n € N, set g, = fn, — f and note that the each g, is continuous,
with ¢, > gn4+1 and g, — 0 pointwise on K. Since {g,} is a decreasing sequence, we must have
gn > 0 for all n € N. It is sufficient to show that g, — 0 uniformly on K, i.e. there exists ng € N
such that for all x € K and n > ng, we have g,(x) < e.
Define the sets
G = 9771[6700) ={z € K: gu(x) > €}.

Since each g, is continuous, the sets G, which are the pre-images of closed sets in R are closed.
Furthermore, GG, is the intersection of the closed set G,, and the compact set K, hence each G,,
is compact. Note that if x € G,,+1 for some n € N, then g,4+1(z) > ¢ = gn(x) > gnt1(x) > €
so x € Gp; this means that G,, © G4 for all n € N. Thus, if any G,,, happened to be empty,
then all subsequent G, >p, = 0 as well.

Suppose that all G,, are non-empty. Then the countable intersection of nested compact sets
G = N,eny Gn must also be non-empty. Pick o € G, and note that xg € Gy, for all n € N,
which means g,(xg) > € for all n € N. This contradicts the fact that g,(zo) — 0 pointwise.
Thus, there must be some G,, = 0}, hence G,>p, = 0. In other words, for all n > ng, there is
no x € K such that g, (z) > e. This completes the proof. O

Remark. Note that the continuity of f, the compactness of K, and the monotonicity of {f,}
are all essential.

(a) Conmsider f,: [0,1] — R, x — 2", and note that " > "+ on [0,1]. We have f,, — f
pointwise on the compact interval [0, 1], where

0, ifo<az<l,

:10,1] = R, —
f10.1] * {1, itz =1.

However, f is not continuous, and indeed f,, /4 f uniformly on [0, 1] by the contrapositive
of Theorem [L5l



Figure 1: The Bernstein polynomials of degree 7. The peaks at = k/7 have been marked.

(b) Consider f,: (0,1) = R, x — 2", with 2™ > z"*!. We have f,, — 0 pointwise on the open
interval (0,1). However, (0,1) is not compact, and indeed f,, # 0 uniformly on (0, 1).
Note that 0 < 27/ < 1 for all n € N, and f,(2~Y/") = 1/2. Thus, there is no ng € N
such that |f,,(z)| < 1/4 for all n > ny.

(¢) Consider the triangular spike functions

nx, if0<x<1/2n,
fn:[0,1] = R, r—=ql—nx, ifl/2n<x<1/n,
0, if 1/n <o <1

Note that f,, — 0 pointwise on the compact interval [0, 1], because given any zg € (0, 1],
we can choose sufficiently large ng € N such that ngzg > 1, hence f,(xg) = 0 for all
n > ng; if ¢y = 0, then f,,(0) = 0 for all n € N anyway. However, the sequence {f,} is not
monotonic, and indeed this convergence is not uniform on [0, 1]. Note that f,(1/2n) = 1/2
for all n € N, hence sup |f,,(x)] > 1/2 4 0.

2 The Weierstrass Approximation Theorem

Definition 2.1 (Bernstein polynomials). The Bernstein polynomial B (z) for integers 0 < k <
n is defined as

B¥(z) = (Z) k(1 — )"k,

Remark. Each polynomial B¥ on the interval [0, 1] peaks at = k/n. See Figure



Figure 2: The Bernstein polynomial expansion of order 20 (orange) of the curve f(z) =
e? cos(2mzx) (red) on [0,1]. Each term of the sum has been shown in blue. Note that only
the marked points at = k/20 have been sampled from f.

Definition 2.2 (Bernstein expansions). Let f be a real valued function on [0, 1]. The Bernstein
polynomial expansion of f is defined as

Bu(f,z) = kznjo (Z)xk(l — )k (i) .

Lemma 2.1. The following identities hold.

B,(1,z) =1, B, (z,z) = =z, Bn(z?, ) == +

Proof. The Binomial Theorem gives the expansion

(x4 y)" = Zn: (Z) oyt

k=0
Taking a partial derivative with respect to z and multiplying by x/n, we have

n

_ n o
n(x +y)" 1=Z<k>kxk tynk,

k=0

z(x+y)" ! = zn: <Z> akynk (S) .

k=0



Repeating the same procedure, we have

(x4 )"+ (n—Dz(z+y)" 2= zn: <Z> kah—lyn—k (k) ,

k=0 n
Loty + P ) = i: ")k (X 2
n n — k n) '

Finally, set y = 1 — & upon which all x + y terms become 1 and the right hand sides become
the Bernstein expansions of 1, z, and z2. This establishes the desired identities. O

Theorem 2.2. Let f be a real valued continuous function on the closed interval [0, 1], and let
e > 0. There exists a polynomial p such that |p(z) — f(z)| <0 on z € [0, 1].

Proof. We claim that a Bernstein polynomial expansion B, (f,z) of sufficiently high order sat-
isfies the given conditions. Let ¢ > 0. Now, the continuity of f on the compact interval
[0, 1] implies that it is uniformly continuous and bounded. Thus, there exists 6 > 0 such that
whenever |z — zg| < § for z,z¢ € [0, 1], we have

F() = Jao)| < 5.

Fix zo € [0,1]. Observe that M = sup,cpoq)|f(z)| is finite. Thus, in those cases where
|x — xo| > 6, use |z — xp|/d > 1 and the triangle inequality to write

2
|f(x) = f(xo)| < 2M <2M <x _5330)

Thus, for all z € [0, 1] we have

Write

The triangle inequality, followed by our estimate of | f(z) — f(xo)|, gives

< kZO (3)aa=ar s (%) - stao
< ;::o <Z>th(1 — )k o ("7/”_"50>2 4

) 2
2 E
= —B,((x —x0)",2) + =

| Bn(f,2) — f(20)]

—_

52 2
2M €
= [Bn(2?, ) — 220 By (z,2) + 28] + 3
2M | x 2 xz 2 €
== |:n+1; —n—2:mo+x0] +§.



The term in square brackets can be rearranged as

(x —x0)? + %(m —z?).

Use (x — 1/2)? > 0 to conclude that x — 22 < 1/4, and evaluate the expression at x = zg to

write
M €

| B (f,z0) — f(xo)| < 3n5? 4 5

Therefore, setting ng > M /252, we see that
| By (f520) — f(z0)| <€

Since xg € [0, 1] was arbitrary, this concludes the proof. O

Figure 3: The first 250 Bernstein expansions of e® cos(27wx) on [0, 1]. Note that convergence is
fairly slow.

Corollary 2.2.1. Given any real valued continuous function f on [0,1], there exists a sequence
of polynomials {p,} such that p, — f uniformly on [0, 1].

Corollary 2.2.2. The same holds for any real valued continuous function on some closed in-
terval [a, b].



Proof. Consider the continuous bijection
¢: [0,1] — [a,b], z— (b—a)r+a.

For an arbitrary real valued continuous function f: [a,b] — R, note that the composition
g = f o is also continuous with domain [0, 1]. Given e > 0, we find a polynomial p such that

p(z) = flp()] = [p(x) — g(x)] <€

on [0, 1], which means that
p(e™ (2) — fz)| < e

1

on [a,b]. Now, p~1(x) = (x —a)/(b— a), hence po ¢! is also a polynomial, as desired. O

3 Metric spaces of continuous functions

Theorem 3.1. Let X be a metric space and let “€(X) denote the set of all real valued, contin-
uous, bounded functions on X. Define the distance function

d(f,g) = sup | f(x) — g(x)|

zeX
forall f,g € 6(X). Then, 6(X) is a metric space.

Proof. Let f,g,h € 6(X) be arbitrary. The non-negativity of d(f,g) is evident since it is
the supremum of non-negative quantities. Furthermore, f and g are bounded so d(f,g) =
sup |f — g| < sup|f| + sup|g| is finite. We clearly have d(f, f) = 0; conversely, if d(f,g) = 0,
then 0 < sup |f — g| = 0 forcing |f(z) — g(z)| = 0 on X, hence f = ¢g. Symmetry of d is evident
from the fact that |f(x) — g(x)| = |g(z) — f(z)| everywhere, hence d(f,g) = d(g, f). Finally,

the triangle inequality gives

[f(x) = h@)| < [f(@) — g(x)] + |g(x) — h(z)],
whence taking supremums immediately gives d(f,h) < d(f,g) + d(g, h). O
Theorem 3.2. The metric space 6(X) is complete.

Proof. We claim that every Cauchy sequences in 6 (X) converges in 6 (X)
Let {f,} be a Cauchy sequence in 6 (z). Given any € > 0 we can find ng € N such that for
all m,n > ng, d(fpn, fm) < €. Thus,

[fn(2) = fm(2)] < sup [fn(2) = fm(2)| = d(fn, fm) <€

for all z € X and m, n > ng, hence Theorem[1.2]says that f,, — f uniformly on X. Theorem|[L.3|
says that d(f,,f) — 0. Since each f, is bounded and continuous, Theorems and
guarantee that f is also bounded and continuous. Thus, f € 6 (X), hence the Cauchy sequence
{fn} converges in € (X). O

4 Algebras of functions

Definition 4.1. A family o of real valued functions on a set F is called an algebra if f+¢ € o,
fged,and cf € of for all f,g € o and c € R.

Definition 4.2. An algebra & is uniformly closed if given any sequence of functions {f,} in o
such that f,, — f uniformly, we have f € o.



Definition 4.3. The uniform closure % of an algebra «f is the set of all functions which are
limits of uniformly convergent sequences of functions in «.

Theorem 4.1. The uniform closure B of an algebra 4 of bounded functions on a set E is a
uniformly closed algebra.

Proof. Let f,g € %B. By construction, we can choose sequences {f,} and {g,} in ¢ such that
fn — f and g, — g uniformly. Since each f,, is bounded, we see that f is also bounded by
Theorem and the same applies for g. In order to prove that % is an algebra, we show that
fn+9n— f+9, fungn — fg, and cf, — cf uniformly for all ¢ € R.

(a)

Let € > 0, and let ny,no € N such that for all x € F,

|[fnz) = f2)] <

, forall m > nq,

DN

lgn(z) — g(x)] < %, for all n > na.
Thus, for all x € E and n > max(ny,ng), we have
[(fn(@) = gn(@)) = (f(2) + 9(2))| < |fa(@) = f(@)] + |gn(2) — g()] <.
Let € > 0. Note that
|fn(@)gn (@) = f(2)g(@)] = | fo(@)gn(2) — fu(z)g(x) + fu(z)g(x) — f(x)g(2)]
< |fa(@)llgn(@) — g(@)| + | fu(2) — f(2)l]g

Thus, let ng € N be such that for all z € E and n > ng, we have |f,(z) — f(z)| < 1, hence
|fn(x)| <|f(x)|+ 1. Since f is bounded, this means that we can choose M; > 0 such that
|fn(z)| < M, for all x € E, n > ng. Similarly, pick My > 0 such that |g(x)| < M for all
x € E. Finally, pick ni,no € N such that for all x € F,

S
=

|[fnz) = f2)] <

ﬁ, for all n > nq,

€
lgn(x) — g(x)] < o, for all n > na.
It immediately follows that for all x € E and n > max(ng, n1,n2), we have

€ €

2M, + 2My

| fn(2)gn(x) — f2)g(x)| < M My = .

Remark. Without the requirement of boundedness, we see that x4+ 1/n — x uniformly on
R, but (z +1/n)? = 22 + 22/n + 1/n? — 22 only pointwise on R, not uniformly.

Let €e > 0 and ¢ € R. If ¢ = 0, we trivially have 0 — 0 uniformly for the constant zero
functions. Otherwise, pick ng € N such that for all z € E and n > ny,

|fula) = f(2)] < ﬂ

This immediately shows that for all x € E and n > ng,

lcfn(z) — cf ()] = ||| fu(z) — f(z)] <e



To prove that % is uniformly closed, we must show that it contains all its uniform limits.
Let {hy,}nen be a sequence in %8 such that hy, — h uniformly for some function on E. Now, for
each hy, € 9B, there exists a sequence {hy;}ien in & such that h,; — hy, uniformly.

Let € > 0, and pick ng € N such that for all z € E and n > ng, we have

|hn(z) — h(z)| < g

Next, for each such n > ng, pick 7,, € N such that for all x € E and ¢ > i, we have
€
(i, (2) = hn(2)] < 5.
Now, for all x € F and n > ng, observe that

[niy, () = W(@)] = [(hniy, (2) = hn () + (B (2) = h(2))]

< iy (@) = B ()] + B () = ()]
<373

I
o

Thus, the sequence {hn;, }nen in 9 converges uniformly to h, so h € 8. This proves that % is
uniformly closed. O

Theorem 4.2. Let & be an algebra of real valued, bounded functions on a set E and let % be
its uniform closure. If f,g € B, then the functions |f| € B, max(f,g) € 9B, min(f,g) € .

Proof. Let € > 0. Since f is bounded, there exists M > 0 such that |f(x)| < M for all z € E.
Using Theorem [2| and its corollaries, pick a polynomial p such that for all z € [—M, +M],

p(z) — |af] <e

Now, let ¢ = p o f, which is a polynomial of f. Since % is an algebra, it contains all natural
powers f™ € %, the scalar multiples cf™ € %, and the finite linear combinations »_ ¢, f™ hence
we have g € 9B Thus, for all x € E we have f(x) € [-M,+M], so

lg(z) = f(@)| = |p(f(2)) = [f(@)]| <e.

Since € > 0 was arbitrary and % is uniformly closed, we have shown that |f| € %.
To show that max(f,g) € % and min(f, g) € %, simply observe that

max(f,g) = %(f%—g) + %|f -4l

. 1 1
min(f, g) = 5(f +9) = 51/ —gl.
Note that these denote the pointwise maximum and minimum. ]

Definition 4.4. A family ¢ of functions on a set F is said to separate points on E if given
distinct points x1,x2 € E, there exists a function f € o such that f(z1) # f(x2).

Definition 4.5. A family & of functions on a set E is said to vanish at no point of F if given
x € E, there exists a function f € o such that f(z) # 0.

Theorem 4.3. Let o be an algebra of real valued functions on E which separates points on E
and vanishes at no point of E. Let x1,x9 € E be distinct, and let ¢1,co € R. Then there exists
a function f € A such that f(x1) = c1 and f(z2) = ca.

10



Proof. Since ¢ vanishes at no point of E, choose f1, fo € ¢ such that fi(x1) # 0 and fa(z2) # 0.
Since ¢ separates points on E, pick the function g € o such that g(x1) # g(x2). Now, define
the functions hq1, ho on FE as

_ 9(x) —g(@2) fi(x) o) = 9@ —g(z1) fa(z)
(@) = )= ) T gm) Fala)

Observe that hi, he € o (use (g — g(z2))f1 = gf1 — g(x2)f1 € o and the analogous relation),
with hi(x1) = ho(x2) = 1 and hyi(z2) = ho(z1) = 0 (essentially, h;(x;) = 6;;). Finally, define
the function f on E as

f(x) = c1hi(x) + c2ha(z).

Clearly, f € o with fi(z1) = 21 and fa(z2) = ¢o as desired. O

Remark. This is essentially the process of Lagrange interpolation. In order to interpolate distinct
Z1,...,Tp With ¢q, ..., cp, use the above theorem to choose the functions h;; for distinct 7, j such
that h;j(x;) =1, hyj(xj) = 0 for each pair 7, j. Thus, the function

hi =[] i

i#]
satisfies h;(z;) = 1 and hj(xj»;) = 0. The desired interpolating function is thus

n

5 The Stone-Weierstrass Theorem

Theorem 5.1. Let o be an algebra of real continuous functions on a compact metric space
K. If d separates points on K and vanishes at no point of K, then the uniform closure of o
consists of all real valued, continuous functions on K.

Proof. Let % be the uniform closure of &f. Since o consists of real valued, continuous functions
on a compact interval, they are all uniformly continuous and bounded, with their uniform
limits being continuous as well. Thus, % is an algebra of real valued, uniformly continuous and
bounded functions. To show that % is precisely 6 (K), we fix f € 6(K) and show that f is the
uniform limit of functions from %. Since 9% is uniformly closed, this would imply f € %, thus
completing the proof.

Let € > 0, and let s,¢ € K. Using Theorem[4.3] find functions gy € % such that gg(s) = f(s)
and gs(t) = f(t). Fix s, and note that for each ¢t € K, the continuity of gs; means that there
exists an open set Ug C K such that

gst(x) > f(z) — e

for all x € Ug. Now, the collection of open sets {Us }er clearly covers the compact set K,
hence we can choose a finite sub-cover {Usy; }ier where T' C K is finite. Define the function g
on K as
= max gst.
Js o Jst

By finitely many applications of Theorem we have g; € 98. Furthermore, given z € K, we
can choose t € T such that x € Uy, hence gs(z) > got(x) > f(x) —e. Thus, for all z € K, we
have

gs(x) > f(x) —e.

11



gst,

Figure 4: The construction of gs. Here, we only required three points T' = {1, to, t3}.

We repeat this process again, this time to obtain an upper bound. For each s € K, the
continuity of g; means that there exists an open set Us; C K such that

gs(x) < f(x) + €

for all x € Us. Now, the collection of open sets {Us}scx covers the compact set K, hence we
choose a finite sub-cover {Us}scs where S C K is finite. Define the function g on K as

= min ¢s.
g seS 9s

Again, Theorem gives g € 9B, and given x € K, we can choose s € S such that z € Us,
hence g(z) < gs(z) < f(x) + e. Furthermore, every gs obeys gs(z) > f(x) — € everywhere;
since ¢ is the minimum of finitely many functions, given x € K we find s € S such that
g(x) = gs(x) > f(x) — e. This shows that for all x € K,

f(z) —e<g(z) < fz) +e

or |g(z) — f(z)] < e. Thus, f is the uniform limit of functions in %, proving that the uniform
closure of ¢ is the set 6 (K). O

12



Figure 5: The construction of g. Again, we only required three points S = {sq, s2, s3}.

Corollary 5.1.1. Let K be a compact subset of the Euclidean metric space R™, and let % be the
algebra of polynomials in n variables on K. Then, given any real valued, continuous function f
on K, there exists a sequence of polynomials {p,} C P such that p, — f uniformly on K.

Proof. We need only check that & is an algebra of real continuous functions which separates
points on K and vanishes at no point of K, after which the result follows directly from the
above theorem.

Note that every polynomial function p € & is of the form

_ § . ot 02 i
p(x) - 61177,27,_,,1,”%‘1 1'2 .. .$nn.

i17i27-"7in

Each term in the finite sum is the product of projection maps (z1,...,z,) — x;, which are
continuous. Thus, the polynomial p is indeed real valued and continuous, with the coefficients
Ci, i, € R. It is evident that given a scalar ¢ € R, we have cp € 9 since the result is of the
same form. Given p,q € %, it is also evident that p+ ¢ € 2; term by term multiplication shows
that pg € % as well. Thus, 9 is an algebra.

To show that & vanishes nowhere on K, note that the constant polynomial p(z1,...,2z,) =
1# 0 on any K C R™ To show that & separates points on K, pick y,w € K where y # w.
Then y; # w; for at least one index j, so the polynomial p(x1,...,z,) = z; separates w and y.
Applying the Stone-Weierstrass Theorem completes the proof. O

Corollary 5.1.2. Let F be the algebra of functions on [0, 7] of the form

N
f(z)=ap+ Z an cos(nx) + by, sin(nz),

n=1

for real coefficients a;,b;. Then, given any real valued, continuous function f on [0,7], there
exists a sequence of functions {fn,} C F such that f, — f uniformly on [0, 7].

Proof. Like before, we need only check that & satisfies the requirements of the Stone-Weierstrass
Theorem.

It is clear that & is closed under sums and scalar multiples. To show that it is closed under
products, we supply the following identities.

sin(nz) sin(mn) = % [cos((n —m)z) — cos((n + m)x)],
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sin(nz) cos(mn) = % [sin((n 4+ m)x) + sin((n — m)x)],

1
cos(nx) cos(mn) = 3 [cos((n + m)z) 4 cos((n — m)x)].
Thus, % is indeed an algebra. Now, & contains the constant function x — 1, hence & vanishes
nowhere on [0, 7]. Furthermore, given distinct z1,x2 € [0, 7], we must have cos(x1) # cos(x2),
because the map z — cos(z) is strictly decreasing on [0, 7], and hence is injective. Thus, F
separates points on [0, 7]. O

Remark. Note that & does not separate the points 0 and 27, due to the periodicity of the cosine
and sine functions. In order to extend the domain to [0, 7], we may redefine ¥ to consist of
functions of the form

N
f(z) =ap+ Z an cos(nx/a) + by sin(nx/a).

n=1

Remark. Instead, consider the unit circle S' (which is compact under the usual Euclidean

topology on R?) as our domain. Let # be the algebra of functions of the form

N
f(e™) = ao+ Z an cos(nx) + by sin(nx).

n=1

Here, we use the usual identification of S' with the unit circle in C described by the set of
points satisfying |z| = 1. The closure of this algebra is the set of all real continuous functions
on S!, each of which can be identified with a unique real continuous, a-periodic function on R.

I:F - F, ff, f(e®) = f(az/2m).

Thus, given an arbitrary real valued, continuous function f on R with period o and € > 0, pick
g € F such that |§(z) — f(2)] < € on St. Thus, for all z € R, we have

l9(a) = f(2)] = |g(>™/%) = f(e27/)| < e.

Theorem 5.2. Let 9 be an algebra on a compact metric space K which satisfies the require-
ments of the Stone-Weierstrass Theorem. Then, given f € 6(K), there exists a monotonically
decreasing sequence of functions from 9 which converge uniformly to f on K.

Proof. For all n € N, define the functions f,, = f+2/3" and use the Stone-Weierstrass theorem
to select functions g, € « such that

90(2) — Fala)| < o

everywhere on K. As a result, each g, satisfies

1
- <gn <
f+3n g f+3n71

on K. This immediately gives g, > gn41 for all n € N. Furthermore, for all x € K, we have

1
lgn(x) — f(z)] < 1 0
which establishes g, — f uniformly on K by Theorem O
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