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Thermal physics deals with the topic of temperature. Temperature is a statistical property
– thus, it makes no sense to talk of the temperature of one, two, or even a handful of particles.
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1 Kinetic Theory of Gases

1.1 The molecular picture of matter

Imagine looking into a container filled with steam, and magnifying by a factor of 1010. A cubic
metre might contain around 20 molecules, all of which are in constant motion, colliding with
the walls and each other. Suppose that one of the walls is a piston. The molecules which collide
with the piston and impart a force on it; in order to fix the piston in place, a counter force must
be applied.
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Definition 1.1 (Pressure). The force per unit area applied by a gas on the walls of its
container is called the pressure of the gas.

Now provide the system with heat. We know that the temperature of the gas must increase –
what this means is that the speeds of the molecules increase, on average.

Definition 1.2 (Temperature). The temperature of a gas is a measure of the average
kinetic energy of the constituent particles.

Instead, consider an adiabatic container, which stops all flow of heat into and out of the gas.
By compressing the gas with the piston, we observe that the temperature of the gas also rises.

Now, take away heat from the system. The temperature drops and the molecules tend to
be close to each other. This is because of the dipolar attractive forces between the molecules
(which varies as the inverse cube of the distance of the dipoles, and is hence comparatively
short range). On the other hand, they cannot get too close, since once the electron clouds of
the molecules start to overlap, a repulsive force is introduced. At a certain point, we reach a
condensed form of matter: liquid water.

Liquid water is very much incompressible, yet the molecules freely move and slide around,
without any periodic arrangement. The molecules at the surface are attracted by like molecules
inside; this cohesive force keeps the liquid condensed. This tendency of a liquid to minimize its
surface area is related to the phenomenon of surface tension. Some molecules on the surface
are energetic enough to escape this cohesive attraction and leave the liquid – this is called
evaporation. Heating a liquid simply increases the average kinetic energy of the molecules, thus
increasing the rate of evaporation. When these energetic molecules leave the liquid, the average
kinetic energy of the liquid drops, hence it cools down. This is the phenomenon of latent heat.

When this happens in a closed container, the process of evaporation cannot go on indefinitely,
since the air has a limited capacity for holding moisture. Condensation is the process where
these airborne molecules return to the liquid. At a certain point, the rates of evaporation and
condensation become equal, and we obtain a saturated vapour.

Return to the liquid, and take away even more heat. Now, the motion of the molecules
decrease to a point where they occupy fixed positions. They are still in motion, but their
movement is restricted around their mean position. This is the crystal state. The lower the
temperature, the smaller the oscillations and vibrations.

1.2 Basic assumptions

1. Gases are made up of a large number of molecules, and all molecules of one gas are
identical.

2. Molecules of a gas are always moving. The number of molecules per unit volume remains
constant, i.e. the density remains constant.

3. Molecules behave as elastic spheres during collisions. Kinetic energy and momenta are
conserved, and the collision time is negligible compared to the free path time.

4. No force acts on any molecule, except during collisions. Intermolecular forces are only
short ranged. Between collisions, the molecules continue moving with uniform velocity in
a straight line.

5. The entire gas is isotropic; for all molecules, all directions are the same.

Remark. The collisions between molecules can be modelled as the elastic collision of hard
spheres. The repulsive forces between molecules, governed by the Lennard-Jones potential,
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varies as 1/r12, which is very short range and very powerful. In comparison, gravity is a long
range force since it varies as 1/r2.

1.3 Ideal gases

For an ideal gas, we make a few more assumptions. The gas molecules have negligible size, so
are essentially point masses. Also, there are no forces on the molecules except during collisions,
so they have no potential.

No real gases are ideal. We may look at the limit where the temperature T is very high and
the density (or n) is very low. Here, the kinetic energy far exceeds any potential energies, and
the mean free path becomes very high.

We look at some absurdities of this model.

1. How do point masses collide?
2. If two gases of different temperatures are mixed, how do they exchange heat?
3. Without intermolecular forces, are there any phase changes?
4. How do we explain properties such as viscosity and thermal conductivity?

1.4 Pressure

Suppose that a volume dV , located at (r, θ, φ), contains n dV particles. If we consider a small
flat, horizontal area ∆S, we can calculate the number of molecules moving towards ∆S, as

dN =
n cos θ∆S

4πr2
dV.

Over a time ∆t, we only consider the particles within the region r = 0 → c∆t above the xy
plane. Integrating, we have∫

dN =

∫ c∆t

0

∫ π/2

0

∫ 2π

0

n cos θ∆S

4πr2
r2 sin θ dφ dθ dr.

Simplifying, we have

N =
1

2
n∆S · c∆t ·

∫ π/2

0
cos θ sin θ dθ =

1

4
nc∆S∆t.

Thus, the number of molecules hitting the wall per unit area per unit time is given by nc/4.
What if we have different molecules with different velocities? We can use this expression to

conclude that if ni molecules have velocity ci, the average velocity is 〈c〉 =
∑
nici/n, n =

∑
ni,

so
N =

1

4
n〈c〉.

Now, each molecule can strike the walls of the container at some angle θ. For an elastic
collision, the change in its momentum is 2mc cos θ. Repeating the integration process, we write
the momentum imparted as∫

2mc cos θ · n cos θ∆S
4πr2

dV = mnc2∆S ·
∫ π/2

0
cos2 θ sin θ dθ.

Simplifying, we have
1

3
mnc2∆S∆t.

For a velocity distribution, we deal with the RMS velocity where c2rms = 〈c2i 〉 =
∑
nic

2
i /n. Thus

the pressure, which is the momentum imparted per unit area per unit time, is given by
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p =
1

3
ρc2rms.

Note that ρ = mn is the density of the gas. Now, with knowledge of Boyle’s Law and Charles’
Law, we are forced to conclude that the temperature T is linearly dependent on c2rms.

For a volume V of gas, we see that

pV =
1

3
mnV c2rms =

1

3
mNc2rms,

where N = nV is the total number of molecules. Now, the average kinetic energy of these N
molecules is

E =
∑ 1

2
mnic

2
i =

1

2
mNc2rms.

Combining these relations, we have
pV =

2

3
E.

Proposition 1.1 (Dalton’s law of partial pressure). If there are multiple ideal gases in a
container, then the total pressure of the mixture is the sum of partial pressures produced by
each gas.

p = p1 + · · ·+ pn =
∑ 1

3
ρi〈c2〉i.

Remark. This is a consequence of the assumption that the different gases do not interact
with one another in any way, so the pressures they apply on the walls of the container
simply add up. Similarly, the overall density is simply the sum ρ = ρ1 + . . . ρn.

Consider two gases at the same pressure. Thus, we have

n1ε1 = n2ε2,

where ε is the average kinetic energy of the gas. This is a measure of the temperature T of
the gas. Since the gas molecules collide, the temperature T must be common between the two
gases, so ε1 = ε2. This in turn means n1 = n2.

Proposition 1.2 (Avogadro’s law). Equal volumes of two ideal gases at the same pressure
and temperature will contain the same number of particles.

Proposition 1.3 (Boyle’s law). For isothermal expansion or contraction of a gas,

pV = constant.

For 1 mole of a gas, introduce the constant R such that

pV =
2

3
E = RT.

Putting E = NAε, we write
ε =

3

2
kBT.
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Here, kB = R/NA is the Boltzmann constant. NA is called Avogadro’s number, which is the
number of particles in 1 mole of a gas. We note that

NA ≈ 6.022× 1023, kB ≈ 1.38× 10−23 JK−1.

Combining all these ideas leads to the ideal gas law.

Proposition 1.4 (Ideal gas law). The ideal gas law gives a relation between the pressure
p, the volume V , the temperature T , and the number of moles n of an ideal gas.

pV = nRT.

Here, the constant of proportionality R is called the ideal gas constant, with value

R ≈ 8.314 Jmol−1K−1.

Observe that the average energy of a molecule is

ε =
1

2
mc2rms =

3

2
kBT.

This leads to

p =
1

3
mnc2rms = nkBT,

which shows that the pressure p of an ideal gas is a pure function of the intensive properties n
and T .

1.5 Mean free path

We can relax the assumption that gas molecules are point masses, instead modelling them as
hard spheres. If we know the molar mass M and the density ρ of the gas, the volume occupied
per molecule is M/NAρ. In this way, we can approximate the ‘diameter’ of each molecule, say
σ. If the molecules are packed tetrahedrally, say in the liquid state, each molecule occupies a
volume σ3/

√
2. Thus, we write

M

NAρ
=

σ3√
2
, σ =

(√
2M

NAρ

)1/3

.

Definition 1.3. The mean distance travelled by a molecule between successive collisions
is called the mean free path.

Consider a gas with identical molecules, each with diameter σ. Suppose that a particular
molecule moves with relative speed v with respect to the other molecules. During each collision,
the centres of the molecules are separated by σ. As this molecule moves, it sweeps out a
cylindrical volume of influence, with area of cross section πσ2 – any other molecules lying
within this volume are vulnerable to collision. With respect to them, we see that within a time
∆t, this volume is given by πσ2v∆t. Multiplying by the number density n, we see that nπσ2v∆t
molecules lie within this volume. We set this to be the number of collisions experienced by our
molecule over the time ∆t. If our molecule has an actual speed of u, it must have travelled a
distance u∆t. This means that the average path length between collisions is given by
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λ =
u∆t

nπσ2v∆t
=

u/v

nπσ2
.

Now, if our particle of interest is moving significantly faster than all other surrounding molecules,
we may write u/v ≈ 1, so λ ≈ 1/nπσ2. Otherwise, set u = c, which is the common speed of
all gas molecules. If two such molecules move with the same speed but in different directions,
separated by an angle θ, their relative speed is given by

v = 2c sin
θ

2
.

To average this over θ, we first need to find the probability distribution for θ. Note that if we
direct the velocity of one of the molecules along the axis of a sphere, the other velocity can
pierce the sphere surface at any point with uniform probability; this is due to the isotropic
nature of the gas. Recall that a differential surface element on a sphere is given by

dS = R2 sin θ dθ dφ.

Thus, the annular ring at θ has area 2πR2 sin θ dθ. Dividing by the total surface area 4πR2, we
see that θ is distributed with the probability density function f(θ) = sin θ/2. Thus, the average
value of the relative speed v is given by

〈v〉 =
∫ π

0
2c sin

θ

2
· 1
2
sin θ dθ =

4

3
c.

This gives the mean free path expression

λ =
3

4nπσ2
.

This expression is contingent on the assumption that all molecules move with identical speed,
in an isotropic fashion. A more nuanced calculation using the Maxwell distribution gives the
expression

λ =
1√

2nπσ2
.

Note that this doesn’t show any explicit dependence on the temperature T . On the other hand,
short range interactions between molecules become more significant at low T , which increases
the effective diameter σ. Conversely, this attraction diminishes at higher T . We may write

σ2 = σ2∞

(
1 +

b

T

)
,

where σ∞ is the effective diameter as T → ∞, and b is a measure of the molecular attraction.
Thus,

λ ∝ 1

1 + b
T

,

which shows a marginal dependence on T .

Suppose that the probability that a molecule suffers no collisions over a distance x is given
by f(x). Now, the homogeneity and isotropy of the gas means that over a distance dx, the
probability of a collision will be some p dx, irregardless of the direction of dx – the proportionality
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is given by a constant p when we consider very small dx. Now, the molecule suffers no collisions
over a distance x+dx with probability f(x)(1−pdx). However, this is just f(x+dx), which we
expand as a Taylor series and take only the first order terms to obtain f(x) + f ′(x) dx. Thus,

f ′ = −pf,

which is solved by the exponential function e−px. Since we want f(0) = 1, i.e. no collisions
whatsoever over a distance 0, we set f(x) = e−px. Now, we see that the probability of collision
between x and x+ dx is f(x) p dx, so the mean free path is simply the expected value

λ =

∫ ∞

0
x e−px p dx =

1

p
.

Thus, the probability density function fλ of the free path is given as

fλ(x) =
1

λ
e−x/λ.

Note that this is an exponential distribution, with mean λ and variance λ2. Around 37% of free
paths are longer than λ; only 1% of paths are longer than 4.6λ.

1.6 Pressure, considering collisions

We recall that the number of molecules moving from a volume dV towards a surface ∆S was
given by

dN =
n cos θ∆S

4πr2
dV.

In our prior calculations, we neglected the effects of collisions. We show that these considerations
do not in fact change the final result. Note that due to collisions, some of those molecules from
dV directed towards ∆S are deviated from their path and do not reach their destination.
Additionally, other molecules from outside dV can collide and reach ∆S.

Consider those molecules with speeds between c and c+ dc, say dnc many of them per unit
volume. These molecules have a mean free path of λc, so any one of these will suffer c∆t/λc
collisions over a times ∆t. Thus, within a volume dV , the number of collisions in which those
dnc molecules participate is given as

c∆t

λc
dnc dV.

Note that this must be the number of free paths which start over that time. From the isotropic
nature of the gas, the fraction of those free paths which start towards ∆S is given as

cos θ∆S

4πr2
.

Of these, the e−r/λc fraction of free paths are longer than r, and hence reach ∆S. Thus, the
number of molecules which start from dV and reach ∆S has the distribution

dNc =
cos θ∆S

4πr2
· c∆t
λc

· e−r/λc dnc dV.

Integrating this over all space, and over all possible speeds c = 0 → ∞, we obtain the familiar
result

N =
1

4
n〈c〉 ·∆S∆t,
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only this time, we must define the average speed as

〈c〉 = 1

n

∫ ∞

0
c dnc.

We redo the calculations for the pressure of the gas by noting that each molecule imparts a
momentum change of 2mc cos θ to the container walls. Integrating, we get back our expression
for pressure,

p =
1

3
mn〈c2〉,

where we redefine the root mean square speed c2rms = 〈c2〉 as

〈c2〉 = 1

n

∫ ∞

0
c2 dnc.

Thus, our earlier results remain unchanged, even when accounting for collisions between different
gas molecules.

1.7 Maxwell-Boltzmann distribution

The Maxwell-Boltzmann distribution gives the probability distribution of the velocities of ideal
gas molecules. As a result, this depends on the isotropy of the gas, which includes the indepen-
dence of the spatial components of velocity. This means that there is no correlation between
the orthogonal components of the velocity of a gas molecule.

Consider the velocity space of the molecules of an ideal gas. A gas molecule with velocity
c can be identified with coordinates (cx, cy, cz) in this velocity space. Note that each of these
components are independently distributed, i.e. the distribution of cx is a function only of cx, and
so on. Since all directions are equivalent, our choice of coordinate system being arbitrary, we
assign the same probability density function f to each of these components. Thus, the number
of molecules whose velocities are in the cuboid cx → cx + dcx, cy → cy + dcy, cz → cz + dcz is
described by the joint probability distribution

dNc = N f(cx)f(cy)f(cz) dcx dcy dcz = NF (c) dγ,

where dγ = c2 sin θ dc dθ dφ. The last step follows since the distribution must be independent
of our choice of coordinates, hence depend only on the speed c. For fixed c, we have fixed
c2 = c2x+ c

2
y + c

2
z and fixed F (c) = f(cx)f(cy)f(cz). Now, the equilibrium distributions are such

that entropy is maximized, which entails maximising the logarithm of F (c). In other words,
we must maximise g(~c) = lnF (c) given the constraint h(c) = c2 − c2x − c2y − c2z = 0. Using the
method of Lagrange multipliers, we set

∇g = λ∇h,

which gives the three equations
f ′(ci)

f(ci)
+ λci = 0.

These gives us exponential distributions of the form

f(ci) = ae−c2i /α
2
.

Thus, the joint distribution is given by the product

F (c) = a3e−(c2x+c2y+c2z)/α
2
= a3e−c2/α2

.
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We must now normalise the distributions. We demand∫ +∞

−∞
f(t) dt =

∫ +∞

−∞
ae−t2/α2

dt =
√
πaα = 1.

We deduce that a and α must be functions of T and m. Now, we can write

dn =
n

α3π3/2
e−c2/α2

dγ.

Integrating over θ and φ, we have

dnc =
4n

α3π1/2
c2e−c2/α2

dc

Now, we can calculate the moments

〈c〉 = 1

n

∫ ∞

0
c dnc =

2α√
π
, 〈c2〉 = 1

n

∫ ∞

0
c2 dnc =

3

2
α2.

The most probable velocity cmp is such that the derivative of the probability density vanishes.
We see that cmp = α. The ratio of these velocities is given by

cavg : crms : cmp =
2√
π

:

√
3

2
: 1.

Recall that we have already calculated 〈c2〉 = 3kBT/m. Thus,

α =

√
2kBT

m
.

Proposition 1.5 (Maxwell-Boltzmann distribution). The velocity distribution of an ideal
gas is given by

dnc = 4πn

(
m

2πkBT

)3/2

c2 e−mc2/2kBT dc.

The distribution of kinetic energies ε can be obtained by using E = mc2/2 and ε = E/kBT , so

dnε =
2n√
π

√
ε e−ε dnε.

1.8 Degrees of freedom

Definition 1.4. The number of independent coordinates which completely describe the
state of a collection of particles is called the number of degrees of freedom of the collection.

Consider a point mass travelling in 3D space. Its position can be pinned down by 3 coordi-
nates, which means that it has 3 degrees of freedom. In an ideal gas with N particles, there is no
correlation between the motion of each particle. Thus, degrees of freedom of each particle add
up, giving 3N degrees of freedom of the gas. On the other hand, if the motion of the particles
is constrained, this reduces the degrees of freedom by the number of these constraints.

For example, consider a rigid body made of N ≥ 3 point masses, m1,m2, . . . ,mN . The first
mass has 3 degrees of freedom, the second has 2 and the third has 1. Once these are fixed, the
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positions of the remaining particles are forced, so the system has exactly 6 degrees of freedom.
Another way to see this is that the position of the rigid body is defined by the position of its
centre of mass and its orientation in space, which gives 3 + 3 degrees of freedom.

Another perspective is to look at the number of free variables in the kinetic energy of the
system. A point mass in 3D has 3 degrees of freedom because its kinetic energy is given by

T =
1

2
m(ẋ2 + ẏ2 + ż2).

For a rigid body, its kinetic energy is given by

T =
p2

2m
+

1

2
Iω2,

where the translational and rotational kinetic energies each contribute 3 degrees of freedom.
Consider a system with generalized coordinates q1, q2, . . . , qn. This system has n degrees of

freedom, including translational and rotational degrees. We can also write generalized velocities
q̇1, q̇2, . . . , q̇n. The generalized momenta can be defined as

pi =
∂E

∂q̇i
,

where E = T + V is the total energy of the system. Note that the potential V (qi) can only be
a function of the coordinates qi, while the kinetic energy T must be a homogeneous quadratic
function of pi. Maxwell showed that we can write the following distribution for the velocities,

F (q̇i) dq̇1 . . . dq̇n = ce−T/kBT dq̇1 . . . dq̇n.

Here, F (q̇i)dγ is the probability of finding the system in the velocity ranges q̇i → q̇i + dq̇i.
Boltzmann showed that we can generalize further with

F (qi, pi) dq1 dp1 . . . dqn dpn = ce−E/kBT dq1 dp1 . . . dqn dpn.

Here, we talk about position as well as momenta.

Proposition 1.6 (Equipartition of energy). If a system attains equilibrium at a temperature
T , then the total kinetic energy T gets equally distributed between the degrees of freedom,
with each degree of freedom getting kBT/2.

Recall that in general, the kinetic energy can be written as

T =
∑

cijpipj .

We can perform a suitable coordinate transformation to get rid of cross terms, thus obtaining
the co-momenta ξi. Now,

T =
∑

βiξ
2
i , E = E′ + βjξ

2
j .

Thus, the Boltzmann distribution can be written as∫
ce−(E′+βjξ

2
j )/kBT dγ′ = 1,

integrating over all possible qi and ξi. This gives us the normalisation factor c. The average
kinetic energy associated with qj , ξj is thus the expectation value

∫
βiξ

2
j · ce

−(E′+βjξ
2
j )/kBT dγ′ =

∫
βjξ

2
j e

−βjξ
2
j /kBT dξj∫

e−βjξ
2
j /kBT dξj

=
1

2
kBT.
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1.9 Transport phenomena

We make a distinction between random motion and mass motion. When a gas is at equilibrium,
quantities such as temperature, density, pressure, etc. are uniform over the entire volume.
However, a gas may not be in equilibrium, in which case there will be a tendency to restore
equilibrium by ‘movement’ of the quantities which are not uniform. If the temperature in a gas
is not uniform, we have transport of heat; if the density is not uniform, we have a bulk transport
of mass. These are diffusion phenomena; while the gas particles are always in random motion,
there is an overall ‘flow’ which is directed from a region of higher concentration (of heat, mass,
etc) to lower concentration.

1.9.1 Viscosity

Consider the presence of mass motion (with a certain flow velocity) in addition to thermal
motion. Also assume that the flow velocity increases uniformly in a direction perpendicular
to the motion. Let the flow velocity be u0 in the positive y direction. Then, at a volume dV
located at (r, θ, φ), we have a flow velocity

u0 + r cos θ
∂u

∂z
.

The term ∂u/∂z is the velocity gradient. We repeat the procedure of choosing a small area ∆S
on the xy plane to get the number of molecules colliding as

dN =
cos θ∆S

4πr2
· 〈c〉∆t

λ
· e−r/λ n dV.

We have already averaged over the speeds c. Now, if all these molecules retain their flow velocity
from dV after collision, there is a transfer of momentum from that z layer to the xy plane, given
by

m

(
u0 + r cos θ

∂u

∂z

)
dN.

There is a symmetric layer on the other side of the plane which transfers a momentum

m

(
u0 − r cos θ

∂u

∂z

)
dN

in the opposite direction. Thus, the net momentum transfer is

2mr cos θ
∂u

∂z
dN.

Integrating over the upper half volume, we get a momentum transfer of

∆p =
1

3
mn〈c〉λ∂u

∂z
∆S ∆t.

Recall that when a shear force is applied on a layer, we have

F = η
∂u

∂z
∆S,

where η is the coefficient of viscosity. Comparing this with ∆p/∆t, we get

η =
1

3
mn〈c〉λ =

m〈c〉
3
√
2πσ2

.

Combining the temperature dependencies of 〈c〉 and σ2, we have

η ∝
√
T

1 + b/T
, η = η0

√
T

T0
· 1 + b/T0
1 + b/T

.

As a first order approximation, η ∝
√
T for large T .
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1.9.2 Conductivity

We proceed exactly as before, except now we have a temperature gradient ∂T/∂z rather than
a velocity gradient. Let the heat capacity of a molecule be given by mcv – this replaces the
momentum. The heat carried per molecule is thus given as

mcv

(
T0 + r cos θ

∂T

∂z

)
dN.

Hence, applying symmetry again, the total heat transmitted through ∆S is given as

2mcv cos θ
∂T

∂z
dN.

Integrating again,
∆Q =

1

3
mncv〈c〉λ

∂T

∂z
∆S ∆t.

Thermal conductivity is defined as κ where
∆Q

∆t
= κ

∂T

∂z
∆S.

Comparing,
κ =

1

3
mn〈c〉λcv = ηcv.

In practice however, we observe κ/ηcv > 1, often as high as 2.5 for monoatomic gases, 1.9 for
diatomic and 1.75 for triatomic gases. This discrepancy arises because of the assumption that
all molecules move with speed 〈c〉, while in reality they follow a distribution. Faster molecules
will collide more often, and carry a larger kinetic energy, which biases the energy to a higher
value. Another factor is that λc has a dependence on c, as shown by Tait.

λc =
c2

α2
√
πnσ2ψ(c/α)

,

where ψ is a function of c.
One approach is to define ε = κ/ηcv, and show that ε = 5/2 for monoatomic gases using

a statistical mechanics argument taking into account intermolecular forces (Chapman and En-
skog). We can also split ε = εt + εr, where εt is the contribution purely from translational
degrees of freedom. This gives

κ = η(εtct + εrcr), ε =
εtct + εrcr
ct + cr

.

For monoatomic gases, cr = 0 and ε = 5/2. For polyatomic molecules, we have cr contributing
due to rotational and vibrational degrees of freedom. There are 3 translational degrees of
freedom per molecule; let the remaining be β (2 for diatomic, 3 for triatomic). Now,

ct =
1

Jm

d

dT

(
3

2
kBT

)
=

3kB
2Jm

.

Similarly,
cr =

βkB
2Jm

.

Setting εt = 5/2, εr = 1, we get
ε =

15 + 2β

6 + 2β
.

We wish to write this in terms of γ = cp/cv. Now, cp = cv + kB/Jm. This gives

κ

ηcv
= ε =

9γ − 5

4
.
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1.9.3 Diffusivity

Again, consider a density gradient ∂n/∂z. Now,

dN =
cos θ∆S

4πr2
· 〈c〉∆t

λ
· e−r/λ

(
n0 + r cos θ

∂n

∂z

)
dV,

above the xy plane. Repeating the procedure with the mirror half and integrating, we get the
flow of particles through our area ∆S as

∆N =
1

3
〈c〉λ∂n

∂z
∆S∆t.

From the definition of diffusivity,
∆N

∆t
= D

∂n

∂z
∆S.

Comparing,
D =

1

3
〈c〉λ =

η

ρ
.

1.9.4 Interdiffusivity

Instead of having just one gas with a density gradient, consider two gases with densities na and
nb, diffusing in the same container in opposite directions. Note that the mean free paths of the
gases are different, λa and λb. Using the fact that na + nb = n remains constant,

∂na
∂z

= −∂nb
∂z

=
∂n′

∂z
.

Consider an area ∆S perpendicular to the z axis. The number of molecules of each type of gas
passing through this area is given as

∆Na =
1

3
〈c〉aλa

∂na
∂z

∆S∆t, ∆Nb =
1

3
〈c〉bλb

∂na
∂z

∆S∆t.

The total is
∆N =

1

3
(〈c〉aλa − 〈c〉bλb)︸ ︷︷ ︸

D′

∂n′

∂z
∆S∆t.

Now if D′ 6= 0, then there is an overall flow of gas molecules in a particular direction. However,
we want the total density and pressure to remain the same everywhere. In order to stop this
from happening, there must be a mass motion of molecules in the opposite direction, say with
velocity v. The number of such molecules moving through ∆S is nv∆S∆t. Combining this
with ∆N and setting the net movement to zero,

v = −D
′

n

∂n′

∂z
.

The flow of the first type of molecules is thus nav∆S∆t+∆Na. We define the interdiffusivity
of one type of gas into the other as

Dab =
1

3

nb〈c〉aλa + na〈c〉bλb
na + nb

.

This proceeds at a rate
∆Nab

∆t
= Dab

∂n′

∂z
∆S.

This is called Meyer’s Law. Note that na and nb vary spatially, hence so does Dab. Also, when
na � nb, we recover the diffusivity of a single gas,

Dab →
1

3
〈c〉bλb.

In the special case where D′ = 0, we observe v = 0 and Dab = 〈c〉λ assuming identical 〈c〉
and λ. Now, Dab becomes spatially independent.
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1.10 Density variation with height

Consider a column of gas under the influence of gravity, and assume that the gravitational
acceleration is uniform throughout, directed downwards. A thin parcel of air of thickness dz at
a height z experiences forces from below and above. Balancing these,

p+ dp+ ρg dz = p,

where p + dp is the pressure above the parcel and p is the pressure below. Note that ρg dz is
the weight per unit area of our parcel. Rearranging,

dp = −ρg dz, dn

n
= − mg

kBT
dz.

This gives the formula
n = n0e

−mg∆z/kBT.

We have ignored variation of T and g with height. If known, these corrections can be incorpo-
rated into the formula.

1.11 Brownian motion

Consider a homogeneous, isotropic system with really small molecules. These molecules are in
constant random motion, due to collisions. They are thermalised, each with energy ≈ 3kBT/2.
At any moment, a given molecule is bombarded from all sides by different molecules. These
forces do not necessarily cancel, giving rise to a fluctuation force, thus driving motion. In
a typical system like liquid water, the molecules are far too small to directly observe this
motion. Instead, we place some test particles; not so small that their motion is invisible,
not so large that their motion cannot be affected by the fluctuation forces. Robert Brown
performed such experiments with pollen grains (on the order of 104 times larger than water
molecules), confirming that their motion is random and constant. Another example is that of
smoke particles in the atmosphere. One important property of Brownian particles is that their
motion is uncorrelated. This means that eddy currents, convection, streamline mass motion,
etc. are excluded. Any mechanical motion of the container has no effect. Naturally, the smaller
the particles, the greater is the motion; same for lower viscosities. Higher temperatures give a
greater average motion – the velocities during the mean path are increased. Thus, Brownian
particles can be treated as ideal gas particles in thermal equilibrium with the surrounding fluid
medium.

1.11.1 Perrin’s experiment

We return to the barometric law, this time for Brownian particles. This time, we must consider
the effect of buoyancy, since our particles are suspended in a liquid. Now, the particles (assumed
to be spherical) have apparent weight

4

3
πr3(ρ− ρl)g.

Thus, we obtain
n = n0e

−4πr3(ρ−ρl)gNA∆z/3RT .

This can be rearranged to get an expression for Avogadro’s number NA. Such an experiment
was carried out by Perrin. The radius of a Brownian particle can be obtained by Stokes’ Law.

6πrηvt =
4

3
πr3(ρ− ρl)g.
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1.11.2 Langevin method

The total force on a Brownian particle can be divided into two parts – the force due to bom-
bardment by other particles p and the viscous force Fv,

Fv = −6πrηv.

Hence, we write
mẍ = p− 2bẋ, 2b = 6πrη.

We wish to calculate the distance travelled by such a particle over some small time interval. If
the particle is displaced by some ∆x, we wish to find the root-mean-square of the component
∆x. Using only the x components of our differential equation and multiplying by x,

m

2

d2x2

dt2
−mẋ2 = mxẍ = xpx − 2bxẋ = xpx − b

dx2

dt
.

We are interested in 〈x2〉, so we take averages on both sides. Equipartition of energy will give
〈mẋ2〉 = kBT . Because of the random nature of px, we use symmetry to argue that 〈xpx〉 = 0.
This leaves

m

2

d2〈x2〉
dt2

+ b
d〈x2〉
dt

− kBT = 0.

This has the solution

d〈x2〉
dt

=
kBT

b
(1− e−2bt/m), 〈x2〉 = kBT

b

[
t+

m

2b
(e−2bt/m − 1)

]
.

Note that m/2b is very small for typical Brownian particles, so we can approximate

〈x2〉 = kBT

b
t =

RT

3πrηNA
t.

1.11.3 Diffusion equation

It can be shown that Brownian particles obey the diffusion equation,

∂n

∂t
= D

∂2n

∂x2
,

We can show that given initial conditions n(x, t = 0) = n0δ(x), i.e. the particles are initially
clustered at the origin, this has the solution

n(x, t) =
n0√
4πDt

e−x2/4Dt.

This means that n(x, t) follows a Gaussian distribution, with variance σ2 = 2Dt. Hence, we
recover

〈x2〉 = 2Dt.

1.12 Real gases

We use the Van der Waals equation(
p+

an2

V 2

)
(V − nb) = nRT.

In the context of real gases, we must consider phase transitions. Above a certain temperature, a
gas cannot be liquefied regardless of the pressure applied. This is called the critical temperature
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of the gas, and the corresponding pressure required to liquefy the gas is called the critical
pressure. This is essentially the peak of the condensation region in the p − V diagram of the
real gas. To identify this point, we demand

∂p

∂V
= 0,

∂2p

∂V 2
= 0.

Isolate
p =

nRT

V − nb
− an2

V 2

and solve for the critical point, whence

Tc =
8a

27bR
, pc =

a

27b2
, Vc = 3nb.

During a phase transition, there is a discontinuous jump in the density of the substance. This
difference is called an order parameter, and is used to identify the phase of the substance at
the transition temperature and pressure. This density difference vanishes at the critical point,
where we consider a single supercritical phase.

Now consider the potential energy of a real gas. An ideal gas was assumed to have no
intermolecular forces, hence no dependence of U upon either V or P . However, an isothermally
expanding real gas sees its potential energy increase. Thus,(

∂U

∂V

)
T

> 0,

(
∂U

∂p

)
T

< 0.

16 Updated on April 23, 2021


	Kinetic Theory of Gases
	The molecular picture of matter
	Basic assumptions
	Ideal gases
	Pressure
	Mean free path
	Pressure, considering collisions
	Maxwell-Boltzmann distribution
	Degrees of freedom
	Transport phenomena
	Viscosity
	Conductivity
	Diffusivity
	Interdiffusivity

	Density variation with height
	Brownian motion
	Perrin's experiment
	Langevin method
	Diffusion equation

	Real gases


