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Abstract

In this experiment, we demonstrate the quantum nature of atoms by performing the
Franck-Hertz experiment using argon gas. Specifically, we show that electron bombardment
can be used to excite atoms and the energy transferred during such interactions is quantized.
Furthermore, the quantum of this energy transfer agrees with spectroscopic measurements
of energy levels of argon.

1 Theory
The Franck-Hertz experiment was set up to confirm certain predictions of the Bohr atomic model
as well as previous spectroscopic results. It was found that atoms (of a particular element) emit
and absorb radiation only at particular, discrete frequencies. This corresponds to discrete
spectroscopic ‘lines’ in the emission and absorption spectra of an atom. Using the relation
∆E = hν, is is possible to create a ladder of corresponding discrete ‘energy levels’ En, whereby
any energy transfer is possible only if it corresponds to some En−Em. In the Bohr model, energy
transfers are explained in terms of the movements of electrons between orbits/shells around the
nucleus. These electrons are restricted to discrete radii/angular momenta, which lead to these
dicrete energy levels. An electron moving from a higher to a lower energy level is accompanied
by the release of the said difference in energy (typically as electromagnetic radiation), and vice
versa.

In this experiment, we verify these conclusions by considering a different sort of energy
transfer, via inelastic collisions (scattering) with a beam of electrons. Suppose an electron is
accelerated across a potential difference U , thus acquiring a momentum p. A vapour, say of
argon, is kept in its path and the electron is collected by a plate on the other side. If this electron
does not have sufficient kinetic energy to excite an argon atom, it can merely undergo elastic
collisions with no energy transfer and is eventually collected on the other side – with increasing
applied potential, the collected current naturally increases. This is until the potential is sufficient
to excite the argon atoms, i.e. is equal to the difference between two energy levels, say ∆E. Now,
the electrons undergo inelastic collisions, consequentially losing some momentum. If they are left
with a momentum p′ at the end, we may conclude that (p2−p′2)/2m = ∆E. This means that at
this threshold potential where p′ ≈ 0, i.e. p2/2m ≈ ∆E, the electrons are in effect immobilized by
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the argon vapour and do not make it to the collecting plate with sufficient energy, so the current
drops sharply. This can be made more pronounced by imposing a negative potential in front of
the collecting plate, so that only those electrons with a sufficiently high final momentum p′ are
collected. Further increase in potential means that the current rises again, since the electrons
have enough remaining momentum p′ even after one inelastic collision to make it to the other
side, yet not enough to undergo a second inelastic collision. This is until the imparted kinetic
energy p2/2m ≥ 2∆E, whereby the electrons can undergo two inelastic collisions, creating a
second sharp drop in current. In this way, whenever p2/2m ≈ n∆E, we observe a sharp drop
in the collected current before a subsequent rise. The potential difference between such drops
is thus the excitation energy ∆E. If the vapour is observed using a spectroscope, it can be seen
that it emits light at a frequency precisely satisfying ∆E = hν. The wavelength associated with
such light is hc/∆E.

Recall that in the Bohr model, the energy levels of the orbits are given by

En = − z2

n2
RE .

Thus, in the case of argon (z = 18), the excitation corresponds to a transition from n = 1 → 2.
Hence, ∆E = −3 × 182RE/4 = 243RE . We also use the relations for the energy, velocity and
radius

En = −1

2
mv2n, mvnrn = n~.

Since the vapour used is kept at a very low pressure, the cathode current density may be
described by the Richardson equation,

j ∝ T 2e−φ/kbT ,

where φ is the work function of the metal cathode and T is the thermodynamic temperature.
The space charge received by the anode is described by the Child-Langmuir Law,

j =
I

A
=

√
2e

me

(
2ε0
3d

)2

V 3/2,

where A is the anode surface area, d is the cathode-anode spacing, and V is the anode voltage.
Thus, when the electrons have the correct energy to undergo inelastic collisions, the anode
current doesn’t drop completely to zero. Instead, a proportion of electrons do indeed make it
through without suffering collisions – we thus expect the minima currents to follow the Child-
Langmuir Law. Note that this law assumes ballistic motion with no scattering; this may not
be the case at the minima, since electrons may also suffer elastic collisions and make it to the
anode.

2 Experimental setup
A Franck-Hertz apparatus is set up, which is simply a tetrode filled with argon vapour. The
discharge tube and plates are set up as in Fig. 1. Electrons are produced by a heated cathode
K and are accelerated between two grids G1 and G2 by a potential difference V across G2K.
A negative potential is also applied across G2A so as to prevent electrons below a threshold
energy from passing. The current collected at the anode A is recorded as a function of V .

3 Experimental data and analysis

3.1 Processing and plotting

All data has been gathered into an Excel spreadsheet, read using pandas and processed using
numpy. The locations of the minima were recorded using the coordinate tool from pyplot. The
code used has been listed below.
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Figure 1: A circuit diagram of the Franck-Hertz experiment.

#!/usr/bin/env python2
# -*- coding: utf -8 -*-

import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from scipy import optimize

data = pd.read_excel(’data.xlsx’)
voltage , current = list(data.columns)
voltages = data[voltage]
currents = data[current]

currents *= 1e-7

plt.plot(voltages , currents , label=’IV␣characteristic ’)
plt.xlabel("Voltage␣across␣$G_2K$␣(V)")
plt.ylabel("Plate␣current␣(A)")

# Fit minima currents
x = np.array ([36.5 , 48.0, 59.0, 71.0, 83.0])
y = np.array ([0.42 , 0.43, 0.56, 0.80, 1.20]) * 1e-7
coeff , cov = optimize.curve_fit(lambda x, n, a: a * x**n, x, y)
n, a = coeff
x = np.linspace(0, 90, 100)
plt.plot(x, a * x**n, ’--r’, label=’Fit␣of␣minima␣currents␣to␣$aV^n$’)
plt.legend ()
plt.show()

s_n , s_a = cov[0, 0]**0.5 , cov[1, 1]**0.5
print n, s_n
print a, s_a

The current vs applied voltage profile has been presented in Fig. 2.
We record the positions of the minima, with the corresponding potential differences in

Table 1.
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Figure 2: The captured electron beam current vs accelerating voltage profile shows periodic dips
at intervals of around 11-12 V. The minima currents have been fitted to the equation I = aV n.
We obtain n = 1.67± 0.32 and a ≈ 7× 10−11.

Table 1: Positions of minima in the current-voltage profile and the corresponding peak separa-
tions.

Position of peak (V) Difference (V) Current (10−7 A)
25.0 0.41

11.5
36.5 0.42

11.5
48.0 0.43

11.0
59.0 0.56

12.0
71.0 0.80

12.0
83.0 1.20

Mean 11.6

Thus, we see that ∆E ≈ 11.6 eV ≈ 1.86 × 10−18 J, where the excitation is between the
energy levels 1 and 2. We use this to calculate

RE =
∆E

243
, E1 = −z2RE = −324

243
∆E = −15.47 eV.
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This is the first ionization energy of argon. The literature value is −15.76 eV. We thus calculate
the velocity and radius of the elctron in the first orbit,

v1 =

√
2E1

m
= 2.33× 106 m/s, r1 =

~
mv1

= 4.96× 10−11 m ≈ 49.6 pm.

The literature value for the s shell radius is around 62.5 pm1 however, with the total radius of
the (non-bonded) argon atom being around 3r1 = 188 pm2.

3.2 Error Analysis

While recording the extrema positions, we estimate an uncertainty of δV ≈ 1 V. Thus, the erorr
in the difference is given by δU =

√
2δV ≈ 1.4 V. Since we have made 5 such measurements of

the difference, our error is cut down by a factor of
√
5. Thus, the uncertainty in our mean is

δE ≈ 0.6 V.
We can use the standard error propagation formulae to obtain

δE1 =
324

243
δ(∆E) = 0.8 eV.

The error from the standard literature value of −15.76 eV is 1.8%. Also,

δv =

∣∣∣∣ ∂v∂E
∣∣∣∣ δE =

1

2
E−1/2

√
2

m
δE, δv1 =

v1
2

δE1

E1
= 0.06× 106 m/s.

Furthermore,

δr =

∣∣∣∣∂rv
∣∣∣∣ δv =

~
mv2

δv, δr1 = r1
δv

v
= 1.3 pm.

The error from the literature value of 62.5 pm is incredibly high, around 20%. This strongly
indicates that the Bohr model is not suitable for such calculations involving multi-electron
systems, without severe corrections for the interactions between the electrons.

3.3 Reported Values

We report a minima separation of 11.6 ± 0.6 V. This agrees with measurements of spectral
lines of argon, specifically one at 104.8 nm, which corresponds to an energy of 11.83 V. Our
measurement differs from this by 3.6%.

The calculated first ionization of argon is −15.46 ± 0.8 eV, which also agrees with the
literature value of −15.76 eV. The calculated Bohr radius of the first shell 49.6 ± 1.3 pm is
wildly off the expected value of 62.5 pm.

4 Discussion
We note that the choice of argon instead of mercury has been made since it is fairly inert and
non-toxic.

We have seen that the Bohr model has been validated in terms of the discretisation of energy
levels, and the calculated excitation and ionization energies agree well with literature values. On
the other hand, the Bohr model does not hold up structurally, for example during calculations of
orbital radii. These require more sophisticated corrections, especially in multi-electron systems.
The Schrödinger equation may be invoked to obtain more accurate results.

It may also be noted that the minima currents loosely seem to follow the Child-Langmuir
Law, as seen in Fig. 2. The fit I ∝ V n yielded n = 1.67±0.32, which agrees with the 3/2 power
law. Note that the fit is very poor, especially at the lower potentials where the minima currents
seem constant.

1https://www.webelements.com/argon/atom_sizes.html
2https://www.rsc.org/periodic-table/element/18/argon
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4.1 Sources of error

Errors may be introduced by fluctuations of potentials across the plates or impurities in the
vapour used.

The discrepancy between the minima currents and the Child-Langmuir Law may be ex-
plained by the fact that the assumptions are not fully satisfied – electrons may indeed be
scattered and do not always follow ballistic motion. However, with increasing potential, the
tendency of these electrons to undergo such elastic collisions decreases, and thus the latter half
of the minima currents fit well with the 3/2 power law.

5 Conclusion
In conclusion, we have demonstrated that the energy transferred to atoms during inelastic
electron collisions is indeed quantized, in accordance with the quantization of emitted and
absorbed electromagnetic radiation as seen from spectroscopy. This validates Bohr’s model of
electron energy levels in atoms.
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