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Abstract

In this experiment, we explore the phenomenon of wave particle duality via electron
diffraction. We determine the wavelength of electrons, verify de Broglie’s equation, and use
this information to determine the lattice plane spacing of graphite.

1 Theory
Wave particle duality is a a central concept of quantum mechanics. Entities such as light were
long regarded as waves, since they exhibit phenomena such as interference and diffraction which
can only be explained by a wave nature, yet other phenomena such as the photoelectric effect
demand a quantization in terms of energy. Thus, light can also be described in terms of discrete
packets of energy, i.e. photons. In a similar manner, it was thought that all matter could be
described purely in terms of the particulate behaviour of their constituent fundamental particles,
such as protons and electrons. However, it was conjectured by Louis de Broglie that matter
also has additional wave properties, and this was confirmed by Davisson and Germer when they
showed that electrons exhibit the phenomenon of diffraction, using crystalline nickel structures.
The de Broglie wavelength λ of a particle is given by

λ =
h

p
,

where p is its momentum and h is Planck’s constant.

Laue equations Suppose this electron wave strikes a one dimensional crystalline lattice,
where all atoms are located at positions x = aâ. Here, â is the basis vector for the lattice.
This lattice acts like a diffraction grating. Let the incident and scattered wavevectors be kin

and kout.
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Figure 1: Scattering of a wave at a crystal plane.

The path difference between the incoming and outgoing waves is clearly δ = δ2 − δ1 =
â · kout − â · kin = â · ∆k. Here, ∆k is called the scattering vector. Note that the waves
constructively interfere when δ = nλ. Suppose that the incoming and outgoing waves are of
the form Ain cos(ωt− kin ·x) and Aout cos(ωt− kout ·x). Since the outgoing wave is essentially
an oscillation driven by the incoming one, their phases at the lattice point must match, so
kout · x = kin · x+ 2πn, for some integer n. This gives â ·∆k = 2πn.

In general, for a three dimensional lattice described by the points x = pâ1 + qâ2 + râ3 for
integral values of p, q, r, it can be shown that ∆k must satify the conditions

â1 ·∆k = 2πh, â2 ·∆k = 2πk, â3 ·∆k = 2πl.

These are called the Laue equations, and h, k, l are integers called Miller indices.

Reciprocal lattice Let f(r) denote the electronic density in the crystal. Since the crystal
is periodic with respect to translations, we must have f(r + x) = f(r), for any lattice vector
x = pâ1 + qâ2 + râ3. Thus, we can expand f as a Fourier series

f(r) =
∑
n

fne
iGn·r =

∑
n

fne
iGn·(r+x) = eiGn·x

∑
n

fne
iGn·r.

This demands eiGn·x = 1, or equivalently Gn · x = 2πn for some integer n. The set of all such
Gn forms the reciprocal lattice. Each vector can be written in terms of the reciprocal basis as
Gn = hb̂1 + kb̂2 + lb̂3. Such a vector in the reciprocal lattice corresponds to a set of lattice
planes in the real space.

Bragg’s Law It can be shown that G · x = 2π(hp + kq + lr) = ∆k · x, which leads us to
identify G = ∆k. Thus, we have ‖kin‖2 = ‖kout − G‖2. For elastic scattering, we require
‖kin‖ = ‖kout‖, so expanding the previous equation, we obtain 2kout · G = ‖G‖2. If the
incident wave makes an angle θ with the lattice plane, then kout ·G = ‖kout‖‖G‖ sin θ. Clearly,
‖kout‖ = 2π/λ. If we choose G such that it is parallel to a lattice vector x, which in turn is
perpendicular to the lattice plane, we have ‖x‖ = md and ‖G‖‖x‖ = 2πn. By further choosing
the closest plane so that ‖x‖ = d, where d is the lattice constant, we can write ‖G‖ = 2πn/d,
so 2(2π/λ) sin θ = 2πn/d. This simplifies to

2d sin θ = nλ,

which is known as the Bragg condition for constructive interference. It is important to note that
under these conditions, the momentum of the wave remains unchanged in magnitude before and
after scattering.
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This can also be simply obtained by observing that when the incident and outgoing waves
‘reflect’ off the lattice plane at equal angles θ, the phase difference is 2d sin θ. For constructive
interference, we must have 2d sin θ = nλ.

θ θ

d sin θd sin θ

d

θ

Figure 2: Elastic scattering, the Bragg condition.

Note that the incoming wave suffers a net deviation of 2θ. Thus, if a beam is targeted at
a crystal sample, this particular set of scattered waves form a cone, with cone angle 2θ. If it
strikes a screen at a distance L away, we observe a ring of diameter D = 2L tan 2θ.

In this experiment, we observe Debye-Scherrer diffraction which employs a polycrystalline
graphite lattice. This hexagonal lattice has two lattice constants, d1 and d2 which lead to the
formation of two bright rings of diameters D1 and D2.

d1

d2

Figure 3: Lattice plane spacings in graphite.

Our electron beam is generated by accelerating electrons emitted from a cathode over a
potential U . This imparts them with a kinetic energy of eU = p2/2m, which means that they
obtain a momentum p =

√
2mK =

√
2meU . Here, e is the standard electronic charge and m is

the mass of the electron. Thus, we expect this beam to have a de Broglie wavelength

λ =
h√

2meU
.

After striking the graphite foil and undergoing diffraction, the brightest rings appear on the
screen when 2d sin θ = λ. For small angles, we approximate tan 2θ ≈ 2 sin θ ≈ 2θ, so we obtain

λ =
dD

2L
.
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Comparing these two expressions, we expect

D =
2Lh

d
√
2meU

=
k√
U
.

Thus, the diameter of the ring is inversely proportional to the square root of the accelerating
potential.

2 Experimental setup
In an electron diffraction tube, a beam of electrons is accelerated by a potential U and targeted
on a graphite foil. The diffracted beam is allowed to fall on a fluorescent screen on the far end
of the tube, from which the diameters of the circular maxima are observed. The distance from
the graphite foil and the screen is also noted. This data is used to deduce the two major lattice
spacings of graphite, by plotting Di versus 1/

√
U for each of the rings to obtain the slopes ki.

The lattice constant di is calculated as

di =
2Lh

ki
√
2me

.

3 Experimental data and analysis

3.1 Processing and plotting

The distance between the graphite and the screen has been measured as L = 135 mm. The ring
diameters have been measured for voltages between 3 and 5 kV, three times for each. These
three sets of data have been presented below.

Table 1: Diameters of the rings for each accelerating voltage.

Voltage U (kV) D1 (cm) D2 (cm)
2.905 5.110

3.0 2.830 4.995
2.870 4.970
2.765 4.780

3.5 2.560 4.640
2.650 4.550
2.585 4.375

4.0 2.520 4.490
2.340 4.320
2.515 4.200

4.5 2.510 4.225
2.300 3.920
2.310 3.995

5.0 2.270 4.035
2.160 3.790

We plot D vs 1/
√
U for both D1 and D2 and fit the data linearly. We record the slopes of

the fits as k1 and k2.
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Figure 4: Data points fitted (least square) to a straight line through the origin.

We obtain
k1 = 1.585, k2 = 2.765.

The lattice constants d1 and d2 are calculated as

di =
2Lh

ki
√
2me

.

Thus,
d1 = 2.089× 10−10 m, d2 = 1.198× 10−10 m.

We now calculate λi = diD/2L, and λi,theory = h/
√
2meU .

5



Experiment II

Table 2: Diameters and corresponding wavelengths for the first ring.

Voltage U (kV) D1 (cm) λ1 (pm) λ̄1 (pm) λ1,theory (pm)
2.905 22.472

3.0 2.830 21.892 22.189 ± 0.29 22.391
2.870 22.202
2.765 21.389

3.5 2.560 19.803 20.564 ± 0.79 20.730
2.650 20.500
2.585 19.997

4.0 2.520 19.494 19.198 ± 0.98 19.391
2.340 18.102
2.515 19.455

4.5 2.510 19.417 18.888 ± 0.95 18.282
2.300 17.792
2.310 17.870

5.0 2.270 17.560 17.380 ± 0.60 17.344
2.160 16.709

Table 3: Diameters and corresponding wavelengths for the second ring.

Voltage U (kV) D2 (cm) λ2 (pm) λ̄2 (pm) λ2,theory (pm)
5.110 22.677

3.0 4.995 22.156 22.293 ± 0.34 22.391
4.970 22.046
4.780 21.208

3.5 4.640 20.582 20.658 ± 0.52 20.730
4.550 20.183
4.375 19.406

4.0 4.490 19.916 19.495 ± 0.39 19.391
4.320 19.162
4.200 18.630

4.5 4.225 18.741 18.253 ± 0.75 18.282
3.920 17.388
3.995 17.721

5.0 4.035 17.898 17.477 ± 0.58 17.344
3.790 16.811

The following code has been used for the entire process of plotting, fitting and calculation.

#!/usr/bin/env python2
# -*- coding: utf -8 -*-

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

data = pd.read_csv(’data.txt’, sep=’\s+’)
U, D1, D2 = data[’Voltage ’], data[’D1’], data[’D2’]

# Scale data to SI units
U *= 1000
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D1 /= 100
D2 /= 100

# Plot datapoints
plt.scatter (1 / np.sqrt(U), D1, c=’b’, marker=’1’, label=’D1’)
plt.scatter (1 / np.sqrt(U), D2, c=’r’, marker=’2’, label=’D2’)

# Fit data to straight line through origin and plot
x = np.linspace (1 / np.sqrt (8000) , 1 / np.sqrt (2500) , 10)
k1 , _, _, _ = np.linalg.lstsq ((1 / np.sqrt(U))[:, np.newaxis], D1 , rcond=None)
k2 , _, _, _ = np.linalg.lstsq ((1 / np.sqrt(U))[:, np.newaxis], D2 , rcond=None)
plt.plot(x, k1 * x, ’--b’, label=’Linear␣fit:␣$k_1␣\\ approx␣’ + str(k1 [0])[:4] + ’$’)
plt.plot(x, k2 * x, ’--r’, label=’Linear␣fit:␣$k_2␣\\ approx␣’ + str(k2 [0])[:4] + ’$’)
plt.xlabel(’$1␣/␣\sqrt{U}$’)
plt.ylabel(’Diameter␣$D$’)
plt.legend ()
plt.show()

# Display fit parameters
print ’k1␣=␣%f,␣k2␣=␣%f’ % (k1 , k2)

# Set constants and formulae
L = 135e-3
m = 9.1091e-31
e = 1.6021e-19
h = 6.6256e-34
d = lambda k: 2 * L * h / (k * np.sqrt(2 * m * e))
l = lambda d, D: d * D / (2 * L)

# Calculate theoretical wavelengths
l_theory = h / np.sqrt(2 * m * e * U)
# Calculate and display lattice constants
d1 , d2 = d(k1), d(k2)
print ’d1␣=␣%f,␣d2␣=␣%f␣(Angstrom)’ % (d1 * 1e10 , d2 * 1e10)

# Calculate and insert wavelengths for each datapoint
data.insert(3, ’Lambda_1 ’, l(d1, D1))
data.insert(4, ’Lambda_2 ’, l(d2, D2))
data.insert(5, ’Lambda␣(theory)’, l_theory)

# Display all data and calculations
print data

3.2 Error Analysis

We can compare our calculated values for d1 and d2 against literature values.

Table 4: Parameters and standard/literature values.

Parameter Value Unit
d1 2.13× 10−10 m
d2 1.23× 10−10 m
m 9.1091× 10−31 kg
e 1.6021× 10−19 C
h 6.6256× 10−34 J s

The deviations from literature values are

∆d1 = −0.041× 10−10 m, ∆d2 = −0.032× 10−10 m.
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The percentage errors are −1.9% and −2.6% respectively.

3.3 Reported Values

We report

d1 = 2.09× 10−10 m, Error: − 1.9%,

d2 = 1.20× 10−10 m, Error: − 2.6%.

4 Discussion
We see from Tables 2 and 3 that the calculated wavelengths agree well with the theoretical
values, within one standard deviation. This is in accordance with the de Broglie equation.

We note that with prior knowledge of the lattice constants, this method could be instead
used to determine Planck’s constant to a reasonable level of accuracy.

This particular technique is commonly used in the field of X-ray crystallography, in order
to obtain the molecular structure of crystals. There is a particularly nice interpretation of
scattering in terms of Fourier transforms – if the electronic density in the crystal is f(r),
diffraction gives us information about its Fourier transform F (g), where the vectors g are part
of the reciprocal or Fourier space.

4.1 Sources of error

The most significant source of error is introduced by the diameter measurements, which have
uncertainties of up to 2 mm. This is reflected in the wide range in values in Di for a given U , as
seen in Table 1. Further systematic errors may arise from improper calibration of the electron
gun, improper centering of the beam or even a slight tilt in the screen from the perpendicular
which would distort the shape of the ring into an ellipse.

5 Conclusion
In conclusion, we have observed the phenomenon of electron diffraction and used this to verify de
Broglie’s equation, thus experimentally demonstrating wave-particle duality. We have further
determined the lattice plane spacing constants of graphite with errors of less than 3%.
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