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Abstract

In this experiment, we study the phenomenon of diffraction and interference of waves,
specifically electromagnetic waves or light. Here, we observe the diffraction patterns pro-
duced by coherent light passing through both single and double slit apertures, and ex-
plore their dependence on parameters such as the slit width and separation. We thus use
diffraction patterns (generated by a coherent beam of known wavelength) to measure these
parameters.

1 Theory
Diffraction can be bluntly described as the phenomenon of bending of light over a sharp obstacle.
A closer look reveals that this phenomenon is caused by electromagnetic waves interacting with
matter, which alter its propagation. This redistribution of the ‘incident field’ is in a sense a
scattering phenomenon, introducing new components to the wave vector which in turn causes
the wave to veer off track. This phenomenon is best observed in what is called a single slit
experiment, with an incident coherent, monochromatic beam of light passing through a narrow
aperture. Under certain conditions, one of which is that the sizes of the aperture and the
wavelength of the light must be comparable, we observe alternating bands of light and dark
regions on a screen placed beyond the aperture. Note that this behaviour is very difficult to
explain if light is thought of as a stream of particles, but sits very nicely with a wavelike model,
where different waves are allowed to interfere with one another.

Interference is a phenomenon in which two waves superimpose, effectively acting like a new
wave which is the sum of the interfering ones. This phenomenon is best observed in a double slit
experiment, where two ‘rays’ of coherent, monochromatic light interact and produce interference
fringes on a screen – alternating dark and light bands similar to, but not quite the same as a
diffraction pattern. In reality, such an experiment will also include a component of diffraction
(as any source of light, or slit through which light is restricted is of finite size and will inevitably
introduce diffraction effects).

In the following analysis, we adopt a purely geometric approach, which ignores the specifics
of light-matter interactions as well as other phenonomena pertaining to the vector nature of
light (such as polarization). Our main tool is Huygen’s principle, with Fresnel’s extension.
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Experiment I

We first need to define the notion of a wavefront. This is simply a surface in space where
all oscillations (due to the electromagnetic wave) are precisely in phase. Huygen’s principle
states that every element of an unobstructed wavefront through an aperture acts as a source of
secondary disturbances. Thus, the net disturbance at any point in space is the superposition
of all these secondary disturbances. Furthermore, the amplitude of the disturbance due to any
secondary disturbance on the wavefront can be characterized as inversely proportional to its
amplitude, inversely proportional to the distance, and dependent on the angle between the line
joining them with the normal at the wavefront. Incorporating all of this, and using a far-field
approximation, we develop the Fraunhöfer integral.

E(x, y) = A(x, y)

∫∫
Aperture

e−
2πi
λz

(x′x+y′y) dx′ dy′.

Here, A(x, y) describes the complex amplitude of the source wave, typically of the form E0e
ikz/z.

Our physical setup involves the passage of light through an fully transparent aperture in a
fully opaque material, eventually striking a screen at a distance z away.

z = 0
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x
′ x
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In the far field, where the size of the aperture a through which light of wavelength λ is
allowed to pass satisfies a2 � zλ, we can use the Fraunhöfer integral to evaluate the amplitude
distribution on the screen at distance z. We are of course more interested in the intensity
distribution, which is proportional to the square of the amplitude distribution.

Consider the case where the aperture and screen are both one dimensional. Then we have

E(y) = A(y)

∫
Aperture

e−
2πi
λz

y′y dy′.

This integral is easily solved. The choice of the aperture determines the diffraction pattern.
For example, a single slit of width a looks like the interval [−a/2,+a/2], while two such slits
separated by a distance d looks like the domain [−(d+a)/2,−(d−a)/2]∪[+(d−a)/2,+(d+a)/2].

Single slit of finite width a: Suppose that our incident wave is a monochromatic plane
wave, so A(y) = Aeiωt. We evaluate the integral over the domain [−a/2,+a/2]

E(y) = Aeiωt
∫ +a/2

−a/2
e−2πiy′y/λz dy′ = −Aeiωt

λz

2πiy
e−2πiy′y/λz

∣∣∣∣+a/2

−a/2

.

Using Euler’s Formula, sinϕ = (eiϕ − e−iϕ)/2i, so

E(y) = aAeiωt
λz

πay
sin

πay

λz
.
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Experiment I

We set y/z = sin θ, where z = D is the distance between the aperture and the screen. Since the
intensity of light on the screen is proportional to ‖E‖2, we obtain the distribution

I(θ) = Imax
sin2 α

α2
,

where α = πa sin θ/λ.
Clearly, minima occur where sinα = 0, i.e. α = πa sin θ/λ = nπ for integers n. The exception

is at the very center, where we take the limit limα→0 sinα/α = 1, so θ = 0 actually corresponds
to a central maxima of maximum intensity (equal to the intensity of the incident beam). For
small θ, we can approximate the positions of the minima as θ = nλ/a. Thus, the first minima
on either side of the central maxima are at ±λ/a. This means means that the angular width of
the central maxima is simply 2λ/a, which can be measured and used to determine the width a
of the slit precisely. If the screen is located at a distance D from the slits, then θ ≈ y/D, so the
width of the central maxima ∆y is related to a as

a =
2λD

∆y
.

Two slits each of finite width a, separated by a distance d: We proceed similarly as
before, except we have the sum of two integrals

E(y) = Aeiωt

[∫ −(d−a)/2

−(d+a)/2
+

∫ +(d+a)/2

+(d−a)/2

]
e−2πiy′y/λz dy′ = aAeiωt(eπid/λz + e−πid/λz)

λz

πay
sin

πay

λz
.

This time, we use Euler’s Formula for the cosine, cosϕ = (eiϕ + e−iϕ)/2 to obtain

E(y) = 2aAeiωt
λz

πay
cos

πdy

λz
sin

πay

λz
.

Like before, we set y/z = sin θ. Thus, we obtain the intensity distribution

I(θ) = Imax cos
2 β

sin2 α

α2
,

where α = πa sin θ/λ and β = πd sin θ/λ.
Observe that for a double slit, the intensity distribution is very similar to that of a single slit

of finite width, except with the introduction of many convolutions due to the cos2 β distribution
of a ‘perfect’ (zero width) double slit.

The location of maxima and minima of the envelope remain the same as before, since the
sin2 α/α2 form remains unchanged. Thus, these can be used to determine the width of the two
slits like in the previous case. The convolutions cos2 β introduce finer maxima and minima.
These minima happen when cosβ = 0, i.e. πd sin θ/λ = (2n + 1)π/2. Again, for small θ, we
approximate the positions of the minima as θ = (2n + 1)λ/2d, which means that the first two
minima occur at λ/2d and 3λ/2d. This angular width λ/d between successive minima can be
used to determine the separation d between the two slits. We make the approximation θ ≈ y/D
to relate the separation ∆y′ of successive minima with d as

d =
λD

∆y′
.
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2 Experimental setup
A laser diode is used as a source of coherent monochromatic light. The wavelength of emitted
light λ is noted. The laser is set up on an optical bench, with a single slit in front of it. The
laser beam is adjusted so that it is centered on the slit, and a detector is set up on the other side
of the bench at the same height as the diffraction pattern. This detector is coupled to a rotary
motion sensor, which measures the displacement of the detector along the axis perpendicular to
the beam. The distance D between the slit and the detector is measured and noted. A suitable
software (Science Workshop) is connected to the detector and the rotary motor, and is set to
record data. The detector is slowly moved across the diffraction pattern from one end to the
other. The data is exported to a suitable format and the procedure is repeated for three single
slits and one double slit.

3 Experimental data and analysis

3.1 Processing and plotting

Intensity and displacement data has been gathered and exported as Excel spreadsheets. The
following code has been used to preprocess and visualize the raw data. We have used the python
library pandas to extract data and matplotlib/pyplot to plot graphs.

#!/usr/bin/env python2
# -*- coding: utf -8 -*-

import pandas as pd
import matplotlib.pyplot as plt
from os import sys

filename = sys.argv [1]
zoom = 1.0 # Zoom factor for x axis
if len(sys.argv) > 2:

zoom = float(sys.argv [2])

data = pd.read_excel(filename) # Read data from file
intensity , displacement = list(data.columns) # Extract columns
intensities = data[intensity]
displacements = data[displacement]

scale_factor = 0.05 / 0.0946 # Calculate scale factor
displacements *= scale_factor # Scale displacements
intensities /= intensities.max() # Normalize intensities

maxima_position = displacements[intensities.idxmax ()] # Get maxima position
displacements -= maxima_position # Centre the maxima

max_displacement = displacements.abs (). max()
x_limit = max_displacement / zoom # Limit for x axis

plt.plot(displacements , intensities) # Plot columns
plt.xlabel("Displacement␣(metres)")
plt.ylabel("Intensity␣(normalized)")
plt.axis((-x_limit , +x_limit , -0.05, +1.05)) # Set axis limits
plt.show()

Note that the displacements measured by the rotary motor have been appropriately cali-
brated with actual displacements. Graphs of the data are presented below.
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(a) D = 0.90 m
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(b) D = 0.73 m

−0.0100−0.0075−0.0050−0.0025 0.0000 0.0025 0.0050 0.0075 0.0100
Displacement (metres)

0.0

0.2

0.4

0.6

0.8

1.0

In
te
ns

ity
 (n

or
m
al
ize

d)

(c) D = 0.41 m

−0.004 −0.002 0.000 0.002 0.004
Displacement (metres)

0.0

0.2

0.4

0.6

0.8

1.0

In
te
ns

ity
 (n

or
m
al
ize

d)

(d) D = 0.73 m, central maxima

Figure 1: Data from single slit measurements.
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(b) Central maxima in detail

Figure 2: Data from the double slit measurement.

The pyplot interface lets us determine the precise coordinates of points on the curve, so
we use this tool to calculate the width of the central maxima and distances between minima
as required. These are tabulated below. We have also calculated the slit widths ai and the
distance between the slits d using the formulae mentioned in the theory section.
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Table 1: Parameters and quantities. The wavelength of light used is λ = 650 ± 3 nm. All the
ai are calculated as 2λD/∆y and d is calculated as λD/∆y.

Slit type Quantity Distance D (m) Separation ∆y (m) Value of quantity
a1 0.90 0.0072 a1 = 0.000163 m

Single Slit a2 0.73 0.0059 a2 = 0.000161 m
a3 0.41 0.0033 a3 = 0.000162 m

Double Slit a4 0.90 0.0150 a4 = 0.000078 m
d 0.90 0.00057 d = 0.00103 m

3.2 Error Analysis

For the quantity a = f(Y,D, λ) = 2λD/Y , with standard deviations δa, δY , δD and δλ, we
relate them using

(δa)2 =

∣∣∣∣ ∂f∂Y
∣∣∣∣2 (δY )2 +

∣∣∣∣ ∂f∂D
∣∣∣∣2 (δD)2 +

∣∣∣∣∂f∂λ
∣∣∣∣2 (δλ)2

=

(
2λD

Y 2

)2

(δY )2 +

(
2λ

Y

)2

(δD)2 +

(
2D

Y

)2

(δλ)2.

We note that this is equivalent to writing(
δa

a

)2

=

(
δY

Y

)2

+

(
δD

D

)2

+

(
δλ

λ

)2

.

Similarly, for d = λD/Y , we can show that like before,(
δd

d

)2

=

(
δY

Y

)2

+

(
δD

D

)2

+

(
δλ

λ

)2

.

Note that in place of Y , we actually have Y = ∆y = y2 − y1, so (δY )2 = 2 (δy)2. Also,
actual displacements y are related to displacements y′ measured by the rotary motion sensor
by a scaling factor as y = ky′, where k = 0.05/0.0946. Thus, δy = k δy′.

For the single slit, we have three measurements, each with standard deviation δai. We report
the (naïve) mean ā, with standard deviation δa = 1

3

√
(δa1)2 + (δa2)2 + (δa3)2.

We tabulate the standard deviations δX in measured quantities below.

Table 2: Standard deviations in measured quantities, with justification.

Quantity Deviation Value Justification
Wavelength δλ 3 nm Given

Distance δD 0.5 mm Least count of scale
Displacement δy′ 0.1 mm Resolution of rotary sensor

δy 0.05 mm δy = k δy′

δY 0.075 mm δY =
√
2 δy

By far the biggest source of measurement uncertainty is from the separation δy. The relative
error δY/Y is on the order of 1% in the single slits, only 0.5% in the slit width in the double
slit, but contributes nearly the whole 13% when calculating the separation of slits! In contrast,
the relative errors δD/D are usually of the order of 0.1%, and δλ/λ is around 0.5%. It may
be the case that we have overestimated δY , which we could have reduced by taking multiple
measurements. Indeed, repeating the measurement by considering n such fringe widths near
the center, we could cut this uncertainty by

√
n. Considering the 14 fringes which span 0.008
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Experiment I

m in the central maxima, we see that their widths agree at 0.00057 m each. Thus, we can cut
down the relative error to δY/Y ≈ 13/

√
14 ≈ 3.5%.

The standard deviations in ai and d are listed below.

Table 3: Standard deviations in calculated quantities.

Quantity Deviation Value
a1 δa1 1.8 µm
a2 δa2 2.2 µm
a3 δa3 3.7 µm
ā δa 1.6 µm
a4 δa4 0.53 µm
d δd 36 µm

3.3 Reported Values

Table 4: Calculated quantities with uncertainties.

Slit type Quantity Reported value Percentage uncertainty
Single Slit Slit width (a) 162.0± 1.6 µm 1.0%
Double Slit Slit width (a4) 78.0± 0.6 µm 0.8%

Distance between slits (d) 1.03± 0.04 mm 4 %

4 Discussion

4.1 Sources of error

As previously discussed in the erorr analysis section, the largest contributer of error is related
to the rotary motion sensor, which has a fairly low resolution for the measurements we are
trying to make. Additionally, the minima are somewhat spread out, especially in the case of the
double slit where the minima of the envelope is highly convoluted. This introduces a degree of
random error, which is reflected in the low precision of measurements where ∆y is small. Other
sources of random error involve the laser diode, which may not be perfectly monochromatic.

Without knowledge of the expected values for slit widths and separation, it is difficult to
judge systematic error. Some possible sources may be an incorrectly calibrated instrument or
a tilted axis for the light sensor (if the sensor doesn’t move exactly perpendicular to the laser
beam, this would distort all displacements). Furthermore, the slits may not be completely
identical, which leads to a phenomenon which we discuss in the next subsection.

4.2 Fringe visibility

A curious phenomenon is observed in the double slit data, where the intensity distribution seems
to have a lower envelope, of the same form as the upper envelope, instead of the expected flat
lower envelope (all minima are expected to be of zero intensity).

7



Experiment I

−0.015 −0.010 −0.005 0.000 0.005 0.010 0.015
Displacement (metres)

0.02

0.04

0.06

0.08

0.10

0.12
In
te
ns

ity
 (n

or
m
al
ize

d)

Figure 3: Detail of lower half of the double slit diffraction pattern. Note the presence of a ‘lower
envelope’.

We may explain this by proposing that the two slits are not equally illuminated, perhaps due
to slightly differing size or an asymmetric positioning of the laser. Recall that with symmetrical
slits, we expected an amplitude distribution E(y). Suppose that one of the slits is illuminated
with amplitude A1 = (1 + ε)A, and the other slit is illuminated with amplitude A2 = (1− ε)A
instead. Using the Fraunhöfer integral, we thus have the new distribution Ẽ(y), where

Ẽ(y) = E(y) + εaAeiωt(eiβ − e−iβ)
sinα

α
= E(y) + 2iεaAeiωt sinβ

sinα

α
.

To obtain the intensity profile, we square the absolute value, thus obtaining

‖E(y)‖2 + 4ε2a2A2 sin2 β
sin2 α

α2
.

Setting I0 ∝ 4a2A2, we obtain our new intensity distribution,

Ĩ(θ) = I0 cos
2 β

sin2 α

α2
+ ε2I0 sin

2 β
sin2 α

α2
.

Comparing this with the older I(θ), we see that the second term clearly constitutes an additional
lower envelope. Note that the maxima in the upper envelope is simply Imax = I0, and the
maxima in the lower envelope is Imin = ε2I0, both at β = 0. This is closely related to a
parameter called fringe visibility, which is calculated as

V =
Imax − Imin

Imax + Imin
=

2
√
I1I2

I1 + I2
=

1− ε2

1 + ε2
.

Here, I1 ∝ (1 + ε)2 and I2 ∝ (1− ε)2 are the incident intensities on the two slits.
In our particular case, we observe that Imin ≈ 0.075Imax, from which we have ε ≈ 0.27 and

V ≈ 86%. Thus, I1/I2 ≈ 3.

5 Conclusion
In conclusion, we have observed the phenomena of diffraction and interference, and used them
to make precise measurements of quantities on a microscopic scale.
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