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Exercise 3 A rod of length L0 moves with a speed v along the x-axis, making an angle θ0 to the
axis. Find (a) the length of the rod with respect to a stationary observer and (b) the angle relative to a
stationary x-axis.

Solution We let S(x, y) be the stationary frame and let S′(x′, y′) be the frame of the moving rod. Note
that the frame S′ moves with a velocity v = v̂ı with respect to frame S. Suppose that in S′, one end
of the rod is fixed at the origin and the other is at coordinates (x′

0, y
′
0). We infer that L0 =

√
x′2
0 + y′20 .

Now, we can apply the Lorentz transformations for the spatial coordinates

x′ = γ(x− vt), y′ = y, z′ = z.

Note that these follow since the relative motion between S and S′ is purely directed along the x-axis.
Thus, at some given time t, the coordinates of (x′

0, y
′
0) are (x′

0/γ + vt, y0) in S, and the origin (0′, 0′) of
S′ is at (vt, 0) in S. Thus, the length of the rod in the stationary frame S is simply L =

√
(x′

0/γ)
2 + y′20 .

By introducing a third point in S′, the point of projection of the far end of the rod onto the x-axis (x′
0, 0),

we see that this transforms to (x0/γ + vt, 0) in S. Thus, it is immediately clear that only lengths along
the x-axis are contracted, which justifies the approach of taking components along axes and treating
them separately. This allows us to use the length contraction formulae to directly write ∆x = ∆x′/γ
and ∆y = ∆y′. Recognizing x′

0 = L0 cos θ0 and y′0 = L0 sin θ0, we have

L =

√
L2
0(1− β2) cos2 θ0 + L2

0 sin
2 θ0 = L0

√
1− β2 cos2 θ0, (a)

where β = v/c, γ = 1/
√
1− β2. Note that the presence of the β cos θ0 term indicates that we could have

solved our problem in another way, taking components of the velocity along axes along and perpendicular
to the rod.

It is also important to note that the rod does indeed remain linear in both frames. To see this, take an
intermediate point on the rod in S′, say (λ, y′0λ/x

′
0). This transforms to (λ/γ + vt, y′0λ/x

′
0) ≡ (x, y) in

S, which clearly describes a straight line passing through (vt, 0) and (x′
0/γ + vt, y′0).

γ(x− vt) = λ =
x′
0

y′0
y =⇒ y = γ

y′0
x′
0

(x− vt).

Note that the slope of the rod has changed – it is now γy′0/x
′
0. Thus, the inclination θ of the rod in the

stationary frame S is steeper.

θ = arctan

(
γ
y′0
x′
0

)
= arctan (γ tan θ0) . (b)

Exercise 4 Show that infinite velocity in S implies infinite velocity in S′, where S and S′ are two
frames moving with a constant velocity with respect to each other.

Solution Let the velocities in question be u and u′ in the frames S and S′. Suppose S′ is moving with
velocity v with respect to S. We can always choose our coordinate system such that v is directed along
the x-axis in both frames. Thus, using our velocity addition formulae, we have

ux =
u′
x + v

1 + vu′
x/c

2
, uy =

u′
y

γ(1 + vu′
x/c

2)
, uz =

u′
z

γ(1 + vu′
x/c

2)
.

Suppose u′ is finite. Thus, all three components u′
x, u′

y and u′
z must be finite, since

‖u′‖ =
√
u′2
x + u′2

y + u′2
z > |u′

x|,
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and so on for each component. Thus, all the numerators of ux, uy, uz are finite. Also note that
1 + u′

xv/c
2 > 0, and γ = 1/

√
1− v2/c2 is real and non-zero. This is true because the framework of

Special Relativity demands |u′
x| ≤ c and |v| < c, otherwise our transformation equations would fail.

Thus, each of the components ux, uy, uz is finite, from which we see that u is finite. The contrapositive
of this statement is that if u were infinite, then u′ would also be infinite.

Exercise 5 Consider a light beam passing through a horizontal column of water moving with velocity
v in the positive x direction. (a) Determine the speed u of light measured in the lab frame when the
beam travels in the same direction as the flow of water. (b) Obtain this velocity in the first order
approximation for v � c.

Solution Let the frame of the lab be S. The frame of the water S′ moves with velocity v with respect
to S. In this frame S′, we know that the speed of light in the water is given by u′ = c/n, where n is the
refractive index of water. Transforming to frame S while noting that all quantities are directed along
the x axis, we see that

u =
u′ + v

1 + uv/c2
=

c/n+ v

1 + v/nc
. (a)

When v � c, we can approximate (1 + v/nc)−1 = 1− v/nc+ v2/n2c2 − · · · ≈ 1− v/nc. Thus, we obtain
the first order approximation

u ≈
( c

n
+ v

)(
1− v

nc

)
=

c

n
+ v − v

n2
−

�
��v
2

nc
≈ c

n
+ v

(
1− 1

n2

)
. (b)

Exercise 6 Suppose we discover a particle with v > c with a relativistic mass mv. What can we say
about its properties?

Solution We note that the usual expression relating rest mass and relativistic mass,

mv = γm0 =
m0√

1− v2/c2
,

makes little sense here since
√
1− v2/c2 is now purely imaginary. Indeed, the momentum p = mvv

also becomes purely imaginary, so E =
√
(pc)2 + (mvc2)2 is also purely imaginary. Thus, these physical

quantities loes their ordinary meanings with regards to this particle.

Pick an inertial frame moving with velocity u in the same direction as our particle. In that frame, the
particle will move with speed

v′ =
v − u

1− uv/c2
.

Since we only have access to inertial frames such that |u| < c, yet v > c, the quantity v − u can never
vanish, i.e. there is no frame in which the particle will appear to be at rest relative to us. Hence, our
particle has no proper ‘rest mass’, which is in accordance with our previous observation that m0 must
be imaginary. Furthermore, it ought to be possible for us to choose u = c2/v < c. In this case, v′ → ±∞
(positive when approaching from the left, negative when approaching from the right). In other words,
the speed of the particle can be made as large desired, simply by choosing u appropriately. Additionally,
the velocity of the particle changes direction (sign) on either side of u = c2/v.

Exercise 7 For a particle in motion, E = 110 MeV. Suppose its rest mass is 100 MeV/c2. What is its
velocity in units of c?

Solution Using E = γm0c
2, where γ = 1/

√
1− v2/c2, we square and rearrange to obtain

v = c

√
1− m2

0c
4

E2
= c

√
1− 1002

1102
≈ 0.42 c.

Exercise 8 If h = 6.626 × 10−34 Js, and the wavelength of a sodium light is 5800 angstrom, what is
the relativistic mass of a photon corresponding to such light?
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Solution The energy of the photon is given by E = hc/λ. We also know that the relativistic mass m
of the photon is related to its energy as E = mc2. Thus, we obtain

m =
h

cλ
=

6.626× 10−34

5800× 10−10 × 299792458
≈ 3.81× 10−36 kg.

Alternatively, we may calculate E = hc/λ ≈ 3.42× 10−19 J ≈ 2.14 eV, so m ≈ 2.14 eV/c2.
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