PH 2102 : Mechanics II

Satvik Saha, 19MS154, Group E August 31, 2020

Exercise 1 Explicitly prove that the two ways of writing $A \cdot B$ and $A \times B$ are equivalent.

$$
\mathbf{A} \cdot \mathbf{B} = A_x B_x + A_y B_y + A_z B_z,
$$

\n
$$
\mathbf{A} \cdot \mathbf{B} = ||\mathbf{A}|| ||\mathbf{B}|| \cos \theta.
$$

\n
$$
\mathbf{A} \times \mathbf{B} = (A_y B_z - A_z B_y)\mathbf{\hat{i}} + (A_z B_x - A_x B_z)\mathbf{\hat{j}} + (A_x B_y - A_y B_x)\mathbf{\hat{k}},
$$

\n
$$
||\mathbf{A} \times \mathbf{B}|| = ||\mathbf{A}|| ||\mathbf{B}|| \sin \theta.
$$

Solution First, we show that

$$
\mathbf{A} \cdot \mathbf{B} = A_x B_x + A_y B_y + A_z B_z = ||\mathbf{A}|| ||\mathbf{B}|| \cos \theta
$$

Start with $\mathbf{A} \cdot \mathbf{B} = A_x B_x + A_y B_y + A_z B_z$. Then, $\|\mathbf{A}\|^2 = \mathbf{A} \cdot \mathbf{A} = A_x^2 + A_y^2 + A_z^2$ and $\|\mathbf{B}\|^2 = \mathbf{B} \cdot \mathbf{B} = A_x A_y + A_z B_z$. $B_x^2 + B_y^2 + B_z^2$. Construct $C = A - B$. Thus, the lengths $||A||$, $||B||$ and $||C||$ form a triangle. Applying the cosine rule yields

$$
||C||^2 = ||A||^2 + ||B||^2 - 2 ||A|| ||B|| \cos \theta.
$$

On the other hand, by the laws of vector arithmetic, we have

$$
||C||2 = C \cdot C
$$

= (A - B) \cdot (A - B)
= A \cdot A - A \cdot B - B \cdot A + B \cdot B

$$
||C||2 = ||A||2 + ||B||2 - 2A \cdot B.
$$

Comparing and equating the two expressions for $||C||^2$, we obtain $\mathbf{A} \cdot \mathbf{B} = ||\mathbf{A}|| ||\mathbf{B}|| \cos \theta$. Now, start with

$$
\mathbf{A} \times \mathbf{B} = (A_y B_z - A_z B_y)\mathbf{\hat{i}} + (A_z B_x - A_x B_z)\mathbf{\hat{j}} + (A_x B_y - A_y B_x)\mathbf{\hat{k}}.
$$

Taking norms and squaring,

$$
\begin{split}\n\|A \times B\|^{2} &= \sum_{cyc} (A_{y}B_{z} - A_{z}B_{y})^{2} \\
&= \sum_{cyc} (A_{y}^{2}B_{z}^{2} + A_{z}^{2}B_{y}^{2} - 2A_{y}A_{z}B_{y}B_{z}) \\
&= A_{x}^{2}(B_{y}^{2} + B_{z}^{2}) + A_{y}^{2}(B_{x}^{2} + B_{z}^{2}) + A_{z}^{2}(B_{x}^{2} + B_{y}^{2}) - 2\sum_{cyc} A_{y}A_{z}B_{y}B_{z} \\
&= (A_{x}^{2} + A_{y}^{2} + A_{z}^{2})(B_{x}^{2} + B_{y}^{2} + B_{z}^{2}) - (A_{x}^{2}B_{x}^{2} + A_{y}^{2}B_{y}^{2} + A_{z}^{2}B_{z}^{2}) - 2\sum_{cyc} A_{y}B_{y}A_{z}B_{z} \\
&= (A_{x}^{2} + A_{y}^{2} + A_{z}^{2})(B_{x}^{2} + B_{y}^{2} + B_{z}^{2}) - (A_{x}B_{x} + A_{y}B_{y} + A_{z}B_{z})^{2}.\n\end{split}
$$

Also, note that

$$
\begin{aligned} \|A\|^2 \, \|B\|^2 \sin^2 \theta &= \|A\|^2 \, \|B\|^2 \, (1 - \cos^2 \theta) \\ &= \|A\|^2 \, \|B\|^2 - (A \cdot B)^2 \\ &= (A_x^2 + A_y^2 + A_z^2)(B_x^2 + B_y^2 + B_z^2) - (A_x B_x + A_y B_y + A_z B_z)^2. \end{aligned}
$$

Thus, we have $\|\boldsymbol{A} \times \boldsymbol{B}\| = \|\boldsymbol{A}\| \|\boldsymbol{B}\| \sin \theta$.

Exercise 2

- (i) Show that $\nabla \times (\nabla \phi) = \mathbf{0}$ when $\phi(\mathbf{r}) = 1/r$.
- (ii) Show that $\nabla \times (\nabla \phi) = \mathbf{0}$ in general for any $\phi(x, y, z)$.
- (iii) Show that $\nabla \cdot (\nabla \times \mathbf{A}) = 0$ in general for any $\mathbf{A}(x, y, z)$.

Solution

(i) Note that

$$
\phi(x, y, z) = \frac{1}{\sqrt{x^2 + y^2 + z^2}}.
$$

We calculate

$$
\nabla \phi(x, y, z) = \frac{\partial \phi}{\partial x} \mathbf{\hat{i}} + \frac{\partial \phi}{\partial y} \mathbf{\hat{j}} + \frac{\partial \phi}{\partial z} \mathbf{\hat{k}}
$$

=
$$
-\frac{x}{(x^2 + y^2 + z^2)^{3/2}} \mathbf{\hat{i}} - \frac{y}{(x^2 + y^2 + z^2)^{3/2}} \mathbf{\hat{j}} - \frac{z}{(x^2 + y^2 + z^2)^{3/2}} \mathbf{\hat{k}}
$$

Now,

$$
(\nabla \times \nabla \phi)_x = \frac{\partial}{\partial y} \left[\frac{-z}{(x^2 + y^2 + z^2)^{3/2}} \right] - \frac{\partial}{\partial z} \left[\frac{-y}{(x^2 + y^2 + z^2)^{3/2}} \right]
$$

=
$$
\frac{3yz}{(x^2 + y^2 + z^2)^{5/2}} - \frac{3zy}{(x^2 + y^2 + z^2)^{5/2}}
$$

= 0.

Similarly,

$$
(\nabla \times \nabla \phi)_y = \frac{\partial}{\partial z} \left[\frac{-x}{(x^2 + y^2 + z^2)^{3/2}} \right] - \frac{\partial}{\partial x} \left[\frac{-z}{(x^2 + y^2 + z^2)^{3/2}} \right] = 0.
$$

$$
(\nabla \times \nabla \phi)_z = \frac{\partial}{\partial x} \left[\frac{-y}{(x^2 + y^2 + z^2)^{3/2}} \right] - \frac{\partial}{\partial y} \left[\frac{-x}{(x^2 + y^2 + z^2)^{3/2}} \right] = 0.
$$

Thus, we have $\boldsymbol{\nabla}\times\boldsymbol{\nabla}\phi=\mathbf{0}$ in this instance.

(ii) We use the formula

$$
\frac{\partial^2 \phi}{\partial x \partial y} = \frac{\partial^2 \phi}{\partial y \partial x}.
$$

Thus,

$$
(\nabla \times \nabla \phi)_x = \frac{\partial}{\partial y} (\nabla \phi)_z - \frac{\partial}{\partial z} (\nabla \phi)_y = \frac{\partial^2 \phi}{\partial y \partial z} \frac{\partial^2 \phi}{\partial z \partial y} = 0.
$$

Similarly,

$$
(\nabla \times \nabla \phi)_y = \frac{\partial^2 \phi}{\partial z \partial x} - \frac{\partial^2 \phi}{\partial x \partial z} = 0.
$$

$$
(\nabla \times \nabla \phi)_z = \frac{\partial^2 \phi}{\partial x \partial y} - \frac{\partial^2 \phi}{\partial y \partial x} = 0.
$$

Thus, we have $\nabla \times \nabla \phi = 0$ in general.

(iii) We have

$$
\nabla \times \mathbf{A} = \left(\frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z}\right)\mathbf{\hat{i}} + \left(\frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x}\right)\mathbf{\hat{j}} + \left(\frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y}\right)\mathbf{\hat{k}}.
$$

Thus,

$$
\nabla \cdot (\nabla \times \mathbf{A}) = \frac{\partial}{\partial x} \left(\frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z} \right) + \frac{\partial}{\partial y} \left(\frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x} \right) + \frac{\partial}{\partial z} \left(\frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y} \right)
$$

= $\frac{\partial^2 A_x}{\partial y \partial z} \frac{\partial^2 A_x}{\partial z \partial y} + \frac{\partial^2 A_y}{\partial z \partial x} \frac{\partial^2 A_y}{\partial x \partial z} + \frac{\partial^2 A_z}{\partial x \partial y} \frac{\partial^2 A_z}{\partial y \partial x}$
= 0.

Exercise 3 Prove the invariance of

$$
\nabla \times \boldsymbol{E} + \frac{\partial \boldsymbol{B}}{\partial t} = 0
$$

for the same field configutation and charge movement as in the given example.

Solution Recall that in frame S, we have a charge q with velocity $v = v\hat{\textbf{i}}$ experiencing fields $E = E\hat{\textbf{i}}$ and $\mathbf{B} = B\hat{\mathbf{k}}$. In the frame S' which moves with constant velocity $\mathbf{V} = V\hat{\mathbf{i}}$ with respect to S, the transformed quantities are v', E' and B' . Special Relativity demands that the coordinates transform as follows.

$$
x' = \gamma(x - Vt),
$$

\n
$$
y' = y,
$$

\n
$$
z' = z,
$$

\n
$$
t' = \gamma(t - Vx/c^2),
$$

where $\gamma = 1/\sqrt{1 - V^2/c^2}$. Furthermore, we state without proof that the fields transform as

$$
E = \gamma (E' + VB'),
$$

\n
$$
B = \gamma (B' + VE'/c^2).
$$

In our given configuration, $E_x = E_z = 0$ and $B_z = B_y = 0$. Also, we are only concerned with the variation along $\hat{\mathbf{i}}$, so E, B are purely functions of x, t . Thus, all we must verify is that the following equation is invariant.

$$
\frac{\partial E}{\partial x} + \frac{\partial B}{\partial t} = 0.
$$

We calculate

$$
\frac{\partial x'}{\partial x} = \gamma, \qquad \frac{\partial x'}{\partial t} = -\gamma V, \n\frac{\partial t'}{\partial x} = -\gamma \frac{V}{c^2}, \qquad \frac{\partial t'}{\partial t} = \gamma.
$$

Thus, the differential operators transform as follows.

$$
\frac{\partial}{\partial x} = \frac{\partial x'}{\partial x} \frac{\partial}{\partial x'} + \frac{\partial t'}{\partial x} \frac{\partial}{\partial t'} = \gamma \frac{\partial}{\partial x'} - \gamma \frac{V}{c^2} \frac{\partial}{\partial t'}
$$

$$
\frac{\partial}{\partial t} = \frac{\partial x'}{\partial t} \frac{\partial}{\partial x'} + \frac{\partial t'}{\partial t} \frac{\partial}{\partial t'} = -\gamma V \frac{\partial}{\partial x'} + \gamma \frac{\partial}{\partial t'}
$$

We then substitute our formulae for E, B in terms of E', B' into the given equation, along with the transformed differential operators.

$$
\frac{\partial E}{\partial x} + \frac{\partial B}{\partial t} = 0
$$
\n
$$
\left[\gamma \frac{\partial}{\partial x'} - \gamma \frac{V}{c^2} \frac{\partial}{\partial t'} \right] (\gamma E' + \gamma V B') + \left[-\gamma V \frac{\partial}{\partial x'} + \gamma \frac{\partial}{\partial t'} \right] \left(\gamma B' + \gamma \frac{V}{c^2} E' \right) = 0,
$$
\n
$$
\left(\gamma^2 - \gamma^2 \frac{V^2}{c^2} \right) \frac{\partial E'}{\partial x'} + \left(-\gamma^2 \frac{V}{c^2} + \gamma^2 \frac{V}{c^2} \right) \frac{\partial E'}{\partial t'} + \left(\gamma^2 V - \gamma^2 V \right) \frac{\partial B'}{\partial x'} + \left(-\gamma^2 \frac{V^2}{c^2} + \gamma^2 \right) \frac{\partial B'}{\partial t'} = 0,
$$
\n
$$
\left(\gamma^2 - \gamma^2 \frac{V^2}{c^2} \right) \frac{\partial E'}{\partial x'} + \left(-\gamma^2 \frac{V^2}{c^2} + \gamma^2 \right) \frac{\partial B'}{\partial t'} = 0.
$$

Using the fact thet $\gamma^2(1 - V^2/c^2) = 1$ (assuming $V < c$), we obtain the transformed equation

$$
\frac{\partial E'}{\partial x'} + \frac{\partial B'}{\partial t'} = 0,
$$

as desired.