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Abstract

A statistical depth function measures the centrality of a point with respect to a
distribution, thereby inducing a center-outward ordering on the underlying space
which in turn generalizes the notions of ranks and quantiles. This enables the
extension of many rank-based nonparametric univariate procedures to the mul-
tivariate and functional setting. In this thesis, we describe the construction of
numerous depth functions proposed in the literature, both on finite-dimensional
as well as function spaces, and comment briefly on common properties such as in-
variance, monotonicity, continuity, etc. Following this, we explore applications in
exploratory data analysis, testing, classification, clustering, and outlier detection
tasks. Finally, we focus on the concept of local depth, and use this to propose a
new kernel based regression procedure.
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Chapter 1

Introduction

A depth function is a map D : X × F → [0, 1] which quantifies the centrality of
a point x ∈ X, with respect to a distribution F ∈ F, as a number from [0, 1]
(Gijbels & Nagy, 2017; Liu et al., 1999; Mosler & Mozharovskyi, 2022; Zuo &
Serfling, 2000). For fixed F , this induces a center-outwards ordering on the space
X, which may be the real line R, a finite-dimensional space like Rd, even infinite
dimensional spaces like ℓ2 or function spaces like L2[a, b].

The introduction of depth functions is motivated by a desire to lift the notions of
univariate centers, quantiles, ranks, and order statistics to the multivariate setting
and beyond (Mosler & Mozharovskyi, 2022; Zuo & Serfling, 2000). Indeed, once
one has a suitable depth function D( · , · ) in hand, this may be accomplished
as follows: the center θ of a distribution F ought to be its deepest point, via
θ = argmaxx∈X D(x, F ). Instead of a p-th quantile, we may deal with a p-th
quantile surface which consists of all points x such that the probability of X ∼ F
being deeper than x is p, via

R(x, F ) = PX∼F (D(X, F ) ≤ D(x, F )) = p. (1.0.1)

Note the similarities between the ‘rank’ map R(x, F ) and the cumulative distribu-
tion function F (x) = PX∼F (X ≤ x); this will be explored further in our discussion
of multivariate testing (see Section 2.4). With this, the rank of a point xj within
a sample {xi}ni=1 may be defined as the proportion of sample points deeper than
it, via

R(xj, F̂n) =
1

n

n∑
i=1

1(D(xi, F̂n) ≤ D(xj, F̂n)). (1.0.2)

Finally, the center-outward order induced by D( · , F̂n) on X naturally lets us order
our sample as x[1], . . . ,x[n], where D(x[1], F̂n) ≤ · · · ≤ D(x[n], F̂n). This allows us
to extend a number of powerful tools in univariate nonparametric inference to
these more general domains. For instance, the median is a useful, robust measure
of location in the univariate setting; the spatial median of a distribution F , the
point θ ∈ Rd satisfying

EX∼F

[
θ −X

∥θ −X∥

]
= 0, (1.0.3)
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Chapter 1. Introduction
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Figure 1.1: Density contours (via kernel density estimation) and spatial depth (Defini-
tion 2.1.4) contours for 50 points sampled from a standard bivariate normal distribution.
The depth contours offer a clearer, more robust measure of centrality within the data
cloud.

can be realized as the maximizer of the spatial depth (Definition 2.1.4). Similarly,
Liu (1990) and Donoho and Gasko (1992) use simplicial and halfspace depths
to define and study multivariate location estimators. Liu and Singh (1993) and
Chenouri and Small (2012) use multivariate ranks induced by depth functions
to devise homogeneity tests analogous to the univariate Wilcoxon rank-sum and
Kruskal-Wallis tests. Liu et al. (1999) use depth functions for a variety of non-
parametric multivariate procedures, including developing graphical tools such as
the depth-depth plot (Definition 2.3.1) for exploratory data analysis. This idea
later lead to the development of the DD classifier (Li et al., 2012) and the DDG

classifier (Cuesta-Albertos et al., 2017). A lot of these procedures exploit proper-
ties such as invariance, monotonicity, continuity, etc. of various depth functions as
needed. Thus, depth functions provide a toolkit combining versatility, robustness
and computational ease.

It may seem natural at first to rely upon the density function as an indication
of centrality, the corresponding center being the mode. This approach presents a
number of problems – not every distribution admits a density function (consider
discrete distributions), and even when one exists, it may not be particularly in-
formative (see Example 2.2.5). A more practical concern is that density functions
become increasingly difficult to estimate for multivariate distributions on Rd as
the dimension d increases – this is popularly known as the curse of dimensionality.

One method of estimating the density function f from a sample {xi}ni=1 is via a
kernel density estimator (Wasserman, 2005), of the form

f̂h(x) =
1

n

n∑
i=1

Kh(x− xi). (1.0.4)
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Chapter 1. Introduction

Here, Kh : Rd → R is a kernel function with bandwidth(s) h; a simple example is
the Gaussian kernel

Kh(z) =
1

√
2π
∏d

i=1 hi

exp

(
−

d∑
i=1

z2i
2h2

i

)
(1.0.5)

The tuning parameters {hi}di=1 are typically determined via cross-validation; an op-
timal bandwidth is one that minimizes the integrated risk

∫
Rd E[(f(x)−f̂h(x))

2]dx.
It can be shown that under certain circumstances, the integrated risk is of order
O(n−4/(4+d)), which grows swiftly with the dimension d. This in turn means that
the number of sample points n required to achieve the same level of confidence
explodes with increasing dimension d. Besides, it is often the case that the number
of tuning parameters for the kernel Kh also increases. Of course, density estima-
tion in the functional setting is much more complex. Altogether, density does not
provide a tractable quantification of centrality. Depth functions will turn out to
alleviate a majority of these theoretical and computational concerns.

In Chapter 2, we introduce depth functions on multivariate data and distributions
on Rd, with a brief discussion on some of their properties. We look at the depth-
depth plot as a tool for exploratory data analysis, then move onto applications
in testing, classification, and clustering tasks. In Chapter 3, we extend our un-
derstanding of depth functions to functional data and distributions on function
spaces such as L2 and C. We see that although many procedures for multivariate
data carry over naturally to this setting, functional data poses its own unique
challenges. We explore applications of depth functions in classification and outlier
detection tasks, and briefly examine the setting of partially observed data and
the reconstruction problem. Finally, in Chapter 4, we discuss the concept of local
depth, focusing on a general recipe for converting a global depth function into
its local counterpart. Motivated by the construction of local depth regions, we
propose a new kernel based regression procedure which works reasonably well for
univariate, multivariate, and functional data.
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Chapter 2

Multivariate Data

Let F be a class of distributions on Rd. It is desirable for a depth function
D : Rd ×F → R to satisfy the following properties, described by Zuo and Serfling
(2000); these are sometimes referred to as the Zuo-Serfling axioms.

P1. Affine invariance. For any random vector X in Rd, any d × d nonsingular
matrix A, and any d-vector b,

D(Ax+ b, FAX+b) = D(x, FX). (2.0.1)

This makes D(x, FX) independent of the choice of coordinate system.

P2. Maximality at center. For any F ∈ F having ‘center’ θ,

D(θ, F ) = sup
x∈Rd

D(x, F ). (2.0.2)

This means that the deepest point coincides with some center of symmetry
of the distribution F .

P3. Monotonicity relative to deepest point. For any F ∈ F having deepest point
θ and for α ∈ [0, 1],

D(x, F ) ≤ D(θ + α(x− θ), F ). (2.0.3)

Thus, D( · , F ) monotonically decreases along any ray pointing away from
the deepest point.

P4. Vanishing at infinity. For any F ∈ F,

D(x, F ) → 0 as ∥x∥ → ∞. (2.0.4)

By demanding that D be non-negative and bounded, we may assume hereon that
D only takes values in [0, 1].
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Chapter 2. Multivariate Data

The notion of a ‘center’ of a distribution in P2 is typically described in terms of
symmetry. We say that a random vector X is centrally symmetric about θ ∈ Rd

if X − θ
d
= θ − X. Similarly, we say that X is angularly symmetric about θ if

(X−θ)/∥X−θ∥ is centrally symmetric about 0. An even more restrictive notion
of symmetry is spherical symmetry, where we demand that U(X−θ)

d
= X−θ for

every orthonormal matrix U . Elliptical symmetry requires that VX is spherically
symmetric about θ for some nonsingular matrix V . Finally, the weakest notions of
symmetry discussed here is halfspace symmetry, where we impose P (X ∈ H) ≥ 1/2
for every closed halfspace in Rd containing θ. Thus, the symmetries in decreasing
order of strength are S > E > C > A > H.

Mosler and Mozharovskyi (2022, Table 2) provides a detailed summary of the
properties satisfied by the depth functions discussed in the following section.

2.1 Multivariate depth functions

The earliest formulation of a depth function may be attributed to Tukey (1975).

Definition 2.1.1 (Halfspace/Tukey depth). Denote the collection of all closed
halfspaces in Rd containing x by Hx. The halfspace depth, or Tukey depth, is
defined as

DH(x, F ) = inf
H∈Hx

PF (H). (2.1.1)

Remark. If F ∈ F is supported on a convex region K ⊂ Rd, then D( · , F ) vanishes
outside K. More generally, for convex K ⊂ Rd, we have DH(x, F ) ≤ PF (K

c) for
all x ∈ Kc. This is because one can choose a halfspace H ∈ Hx entirely contained
within Kc. Using this, we see that the halfspace depth obeys P4.

Proposition 2.1.2. The halfspace depth can be formulated as

DH(x, F ) = inf
v∈Sd−1

PX∼F (⟨v,X⟩ ≤ ⟨v,x⟩). (2.1.2)

Remark. When d = 1, the halfspace depth reduces to

DH(x, F ) = min{PF (−∞, x], PF [x,∞)}. (2.1.3)

Definition 2.1.3 (Mahalanobis depth). Let X ∼ F have mean µ and covariance
matrix Σ. The Mahalanobis depth is defined as

DM(x, F ) =
(
1 + (x− µ)⊤Σ−1(x− µ)

)−1
. (2.1.4)

Remark. The mean and covariance in the above definition may be replaced with
more robust estimates µ∗ and Σ∗, for instance using the minimum covariance de-
terminant (MCD) method. The corresponding depth function is called the robust
Mahalanobis depth.
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Figure 2.1: Depth contours with respect to purple points. Darker contours have higher
depth.
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Chapter 2. Multivariate Data

The spatial depth was introduced in Serfling (2002),

Definition 2.1.4 (Spatial depth). The spatial depth is defined as

DSp(x, F ) = 1−
∥∥∥∥EX∼F

[
x−X

∥x−X∥

]∥∥∥∥ . (2.1.5)

We use the convention 0/0 = 0.

Remark. Spatial depth defined as above does not obey P1. Indeed, spatial depth is
only invariant under spherical transformations of the form UX+b for orthonormal
U . We may define an affine invariant version of spatial depth as

DAISp(x, F ) = 1−

∥∥∥∥∥EX∼F

[
Σ−1/2(x−X)√

(x−X)⊤Σ−1(x−X)

]∥∥∥∥∥ . (2.1.6)

Remark. Nagy (2017) showed that spatial depth does not obey P3.

Definition 2.1.5 (Projection depth). The projection depth is defined as

DP (x, F ) =

(
1 + sup

v∈Sd−1

|⟨v,x⟩ −med(⟨v,X⟩)|
MAD(⟨v,X⟩)

)−1

, X ∼ F. (2.1.7)

Liu (1990) introduced the following depth function based on random simplices.

Definition 2.1.6 (Simplicial depth). The simplicial depth is defined as

DSim(x, F ) = P
Xi

iid∼F
(x ∈ conv(X1, . . . ,Xd+1)), (2.1.8)

where conv(x1, . . . ,xd+1) denotes the convex hull of {x1, . . . ,xd+1}.

Definition 2.1.7 (Oja depth). The simplicial volume depth, or Oja depth, is
defined as

DOja(x, F ) =
(
1 + E

Xi
iid∼F

[vol(conv(x,X1, . . . ,Xd))]
)−1

. (2.1.9)

Remark. Oja depth does not obey P1, since

vol(conv(Ax1 + b, . . . , Axd+1 + b)) = | det(A)| vol(conv(x1, . . . ,xd+1)). (2.1.10)

Instead, we may define an affine invariant version of Oja depth as

DAIOja(x, F ) =

(
1 + E

Xi
iid∼F

[
vol(conv(x,X1, . . . ,Xd))√

det(Σ)

])−1

, (2.1.11)

where Σ is the covariance matrix of F .
Remark. The Mahalanobis, projection, and Oja depths all follow the pattern of
(1 + O(x, F ))−1, where O(x, F ) measures some kind of outlyingess of x in F .
We will often see this performed in reverse, extracting a measure of outlyingess
1/D(x, F )− 1 from a depth function D.
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Chapter 2. Multivariate Data

2.1.1 The projection property

Definition 2.1.8 (Projection property). We say that a depth function D has the
projection property if

D(x, FX) = inf
v∈Sd−1

D(⟨v,x⟩, F⟨v,X⟩). (2.1.12)

Depths which have this property can be approximated by calculating the univariate
depths of the projected data along many directions v.

Lemma 2.1.9 (Mosler and Mozharovskyi, 2022). The halfspace depth, Maha-
lanobis depth, and projection depth have the projection property.

The halfspace depth in particular is often computationally challenging. Thus, the
property motivates the definition of the random Tukey depth (Cuesta-Albertos &
Nieto-Reyes, 2008).

Definition 2.1.10 (Random Tukey depth). Let v1, . . . ,vn be a realization of an
iid sample from U(Sd−1). The random Tukey depth is defined as

DRT (x, FX) = min
1≤i≤n

DH(⟨vi,x⟩, F⟨vi,X⟩). (2.1.13)

2.1.2 Continuity properties

It is also desirable for a depth function to obey some notions of continuity.

C1. Continuity in x.

D(xn, F ) → D(x, F ) when xn → x. (2.1.14)

C2. Continuity in F .

D(x, Fn) → D(x, F ) when Fn
d−→ F. (2.1.15)

C3. Uniform continuity.

sup
x∈G

|D(x, Fn)−D(x, F )| → 0 when Fn
d−→ F. (2.1.16)

Property C1 is rarely satisfied without imposing some regularity conditions on
F , such as absolute continuity. Property C2 helps bridge the gap between the
population and empirical versions of depth. Property C3 becomes relevant when
dealing with the convergence of depth contours.

The Mahalanobis depth is trivially continuous in x, i.e. obeys C1. Further-
more, it also satisfies C2 as long as F has a regular covariance matrix (Mosler
& Mozharovskyi, 2022).

The halfspace depth also enjoys all three notions of continuity, under mild restric-
tions on F .
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Chapter 2. Multivariate Data

Theorem 2.1.11 (Mizera and Volauf, 2002). Let F ∈ F be such that the proba-
bility of every hyperplane in Rd is zero, i.e. for all α ∈ R and v ∈ Sd−1,

PX∼F (⟨v,X⟩ = α) = 0. (2.1.17)

Then for xn → x and Fn
d−→ F , we have DH(xn, Fn) → DH(x, F ).

Remark. Equation 2.1.17 is satisfied whenever F is absolutely continuous.
Remark. It follows that if F ∈ F satisfies Equation 2.1.17, then the map DH( · , F )
is continuous.

Corollary 2.1.12. Let F ∈ F satisfy Equation 2.1.17. Then, for Fn
d−→ F , and

compact K ⊂ Rd,
sup
x∈K

|DH(x, Fn)−DH(x, F )| → 0. (2.1.18)

Proof. Denoting g = D( · , F ), gn = DH( · , Fn), we have the continuity of g along
with gn(xn) → g(x) whenever xn → x in K. If the given conclusion is false, we
may pass to a subsequence of gn and find ϵ > 0 such that each supx∈K |gn(x) −
g(x)| ≥ ϵ. Using the compactness of K, we pass to a further subsequence and find
x ∈ K such that xn → x. This contradicts |gn(xn)− g(xn)| ≥ ϵ.

Theorem 2.1.13. Let F ∈ F satisfy Equation 2.1.17. Then, for Fn
d−→ F ,

sup
x∈Rd

|DH(x, Fn)−DH(x, F )| → 0. (2.1.19)

Proof. Let Kr = {x ∈ Rd : ∥x∥ ≤ r} be a continuity set of F . Observe that
DH(y, F ) ≤ PF (K

c
r) for y ∈ Kc

r , hence

sup
y∈Kc

r

|DH(y, Fn)−DH(y, F )| ≤ PFn(K
c
r) + PF (K

c
r). (2.1.20)

As n → ∞, we have PFn(K
c
r) → PF (K

c
r) = pr (say). Thus, denoting δn(X) =

supx∈X |DH(x, Fn)−DH(x, F )|, we have

lim sup
n→∞

δn(Rd) ≤ lim
n→∞

δn(Kr) + lim sup
n→∞

δn(K
c
r) (2.1.21)

≤ 0 + 2pr. (2.1.22)

Using pr → 0 as r → ∞ completes the proof.

The spatial depth is similarly well behaved.

Theorem 2.1.14. Spatial depth obeys C1 when F is non-atomic, as well as C2.

Proof. Consider the spatial map

SF : Rd → Rd, x 7→ EX∼F

[
x−X

∥x−X∥

]
. (2.1.23)

The Dominated Convergence Theorem guarantees the continuity of SF , hence of
DSp( · , F ) = 1−∥SF ( · )∥. Furthermore, if Fn

d−→ F , we have SFn(x) → SF (x) by
the Portmanteau Lemma for all x ∈ Rd.

14



Chapter 2. Multivariate Data

Theorem 2.1.15 (Serfling, 2002). For F ∈ F and compact K ⊂ Rd,

sup
x∈K

|DSp(x, F̂n)−DSp(x, F )| a.s.−→ 0. (2.1.24)

Remark. This result can be generalized from compact subsets K to the whole of
Rd, using the following Lemma (2.1.16) and arguments similar to the proof of
Theorem 2.1.13.

Lemma 2.1.16. Spatial depth obeys P4, i.e. DSp(x, F ) → 0 as ∥x∥ → ∞.

Proof. Let ϵ > 0, and let M > 0 such that PX∼F (∥X∥ > M) = ϵ. Denote
Y = (x−X)/∥x−X∥, and observe that

EX∼F [Y ] = (1− ϵ)E [Y | ∥X∥ ≤ M ] + ϵE [Y | ∥X∥ > M ] (2.1.25)

Thus, using ∥Y ∥ = 1 and the reverse triangle inequality,

∥E [Y ] ∥ ≥ (1− ϵ)∥E [Y | ∥X∥ ≤ M ] ∥ − ϵ. (2.1.26)

Let α = arccos((1 − 2ϵ)/(1 − ϵ)), and let rα = M/ sinα. It follows that the ball
{x ∈ Rd : ∥x∥ ≤ M} subtends an angle of at most 2α from any point x such that
∥x∥ > rα. This gives ∥E[Y | ∥X∥ ≤ M ]∥ ≥ cosα. Thus, for ∥x∥ > rα,

∥E[Y ]∥ ≥ (1− ϵ) cosα− ϵ = 1− 3ϵ, (2.1.27)

whence DSp(x, F ) ≤ 3ϵ.

2.1.3 Characterization properties

It seems natural to ask the question – do depth functions completely characterize
a distribution, the way density functions do? In other words, can we recover
F ∈ F from D( · , F )? For most depth functions, the answer is ‘no’, unless we
greatly restrict the class of functions F under consideration. For instance, the
Mahalanobis depth DM( · , F ) only depends on the first two moments of F , and
thus has no hope of distinguishing between distributions which differ in higher
moments. On the other hand, if we only consider a family of elliptical distributions
Ell(h; · , · ) for strictly monotonically decreasing h, it can be shown that any depth
D satisfying P1 and C1 uniquely determines F (Mosler & Mozharovskyi, 2022).

Definition 2.1.17 (Elliptical distributions). We say that a distribution is elliptical
if it has a density of the form

f(x) = c |Σ|−1/2 h
(
(x− µ)⊤Σ−1(x− µ)

)
(2.1.28)

for some non-increasing function h. This is denoted by Ell(h;µ,Σ).

A positive result for the halfspace depth is that it fully characterizes empirical
distributions.
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Chapter 2. Multivariate Data

Theorem 2.1.18 (Struyf and Rousseeuw, 1999). The empirical distribution of
any dataset {Xi}ni=1 ⊂ Rd is uniquely determined by its halfspace depth function
D( · , F̂n).

Nagy (2020) offers a comprehensive overview of the halfspace depth character-
ization problem. Indeed, Nagy (2021) supplies examples of distinct probability
distributions F1, F2 such that DH( · , F1) = DH( · , F2). It can be shown that for an
α-symmetric distribution F with 0 < α ≤ 1 that DH(x, F ) = G(−∥x∥∞), where
G is the marginal distribution of the first component of X ∼ F . Using this idea,
Nagy (2021) produces two such distributions with the same marginal G.

2.2 Depth contours

Given a depth function D and some fixed distribution F ∈ F, we may examine
contours produced by D( · , F ). The following definitions are adapted from Liu
et al., 1999.

Definition 2.2.1. The contour of depth t is the set {x ∈ Rd : D(x, F ) = t}.

Definition 2.2.2. The region enclosed by the contour of depth t is the set

RF (t) = {x ∈ Rd : D(x, F ) > t}. (2.2.1)

It is often more convenient to deal with depth contours and regions based on their
probability content rather than a depth cutoff.

Definition 2.2.3. The p-th central region is the set

CF (p) =
⋂
t

{RF (t) : PF (RF (t)) ≥ p}. (2.2.2)

Definition 2.2.4. The p-th level contour, or center-outward contour surface, is
the set QF (p) = ∂CF (p).

Example 2.2.5. Consider U(Bd), i.e. the uniform distribution on the unit ball
in Rd. While there are no proper density contours to speak of, halfspace depth
contours are concentric spheres centered at the origin, the deepest point. This
illustrates how depth contours are more suited to indicating centrality than density
contours.

Depth based central regions and contours may be approximated empirically as
follows.

Definition 2.2.6. Let X1, . . . ,Xn
iid∼ F . We introduce depth based order statistics

X[1], . . . ,X[n], which are a reordering of the sample in decreasing order of depth,
i.e. D(X[1], F ) ≥ · · · ≥ D(X[n], F ).
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With this, given X1, . . . ,Xn
iid∼ F , the sample p-th central region is given by

CF̂n
(p) = conv(X[1], . . . ,X[⌈np⌉]). (2.2.3)

The consistency of these sample central regions typically requires some continuity
of type C3 (Donoho & Gasko, 1992; He & Wang, 1997; Liu, 1990).

Depths such as the halfspace depth, the Mahalanobis depth, and the Oja depth
produce convex central regions. Any depth satisfying P3 produces star-shaped
central regions. Notably, the spatial depth does not necessarily produce convex
nor star-shaped central regions (Nagy, 2017).

2.2.1 The Monge-Kantorovich depth

Depths which produce convex, nested central regions are appropriate for a large
class of unimodal distributions with some degree of symmetry. Indeed, the fact
that depths satisfying P1 and C1 characterize elliptical distributions follows from
the fact that the depth contours coincide with density contours. However, there
are instances where this is unsuitable, such as in the distributions illustrated in
Figures 4.1 and 4.2. In Chapter 4, we will examine the idea of local depth, which
is capable of producing non-convex, non-star-shaped, un-nested central regions.

Here, we briefly look at the Monge-Kantorovich depth introduced by Chernozhukov
et al. (2017), which is also capable of producing non-convex contours but retains
their nestedness. This is based on the idea of ‘transporting’ contours from a
reference distribution Ud, say U(Bd), to the target distribution F on Rd via a
canonical vector quantile map Q : Bd → Rd. We say that Q ‘pushes forward’ Ud

into F , denoted Q#F = Ud; for U ∼ Ud, we have Q(U) ∼ F . The inverse map from
F to the reference Ud is called the vector rank map R; we write R#F = Ud. Now,
Q is defined via the theory of optimal transport (Villani, 2003); it is the map which
minimizes the quadratic cost EU∼Ud

[(Q(U) − U)2] subject to Q(U) ∼ F . Under
certain conditions, the maps Q,R exist and are unique; for instance, the Brenier-
McCann theorem requires the absolute continuity of U, F supported within convex
subsets of Rd. With this, we supply a loose definition of the Monge-Kantorovich
depth below.

Definition 2.2.7 (Monge-Kantorovich depth). Let Q be the vector quantile map
associated with F , and let R be its inverse, so that R#F = Ud. The Monge-
Kantorovich depth is defined as

DMK(x, F ) = DH(R(x), Ud). (2.2.4)

Similarly, the Monge-Kantorovich rank of x ∈ Rd in F is given by ∥R(x)∥. If
Kp = ∂CUd

(p) is the p-th level contour of Ud, then the Monge-Kantorovich p-
quantile of F is the image Q(Kp). The reference distribution Ud and depth DH

may of course be replaced as necessary.
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Figure 2.2: Empirical DD plot using spatial depth, where both underlying distributions
(bivariate normal) are identical. Observe how the points in the DD plot stay close to the
diagonal black line.

One major strength of this notion of depth is the distribution-free nature of the
ranks produced. This has produced applications in areas such as distribution-free
(nonparametric, multivariate) testing (Deb & Sen, 2023; Ghosal & Sen, 2022).

2.3 Depth-Depth plots

The DD plot, introduced by Liu et al. (1999), is a very useful tool for visualizing
differences between distributions.

Definition 2.3.1 (DD plot). Let F,G be two distributions on Rd, and let D be
a depth function. The Depth-Depth plot, also known as the DD plot, of F and G
is given by

DD(F,G) = {(D(z, F ), D(z, G)) : z ∈ Rd}. (2.3.1)

Remark. The above definition generalizes naturally to involve more than two dis-
tributions on Rd.

When the depth function D only takes values in [0, 1], the DD plot is a subset of
[0, 1]2 and hence easily visualized. Clearly when F = G, the corresponding DD
plot is confined to the diagonal {(t, t) : t ∈ [0, 1]}. However, when d ≥ 2 and F,G
are absolutely continuous, DD(F,G) has non-zero area (Lebesgue measure) when
F ̸= G. Assuming that D is affine invariant, Liu et al. (1999) propose this area as
an affine invariant measure of the discrepancy between F and G.

If the distributions F,G are unknown, we may use data samples DF = {Xi} and
DG = {Yj} where X1, . . . ,Xn

iid∼ F and Y1, . . . ,Ym
iid∼ G, then construct empirical
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Figure 2.3: Empirical DD plot using spatial depth, where both underlying distributions
(bivariate normal) differ only in location. Observe how most of the orange points fall in
the lower triangle, while the purple ones fall in the upper triangle. The deepest point
with respect to the orange distribution has fairly low depth with respect to the purple
one, and vice versa.

distributions F̂n, Ĝm. With this, we may examine the empirical DD plot

DD(F̂n, Ĝn) = {(D(z, F̂n), D(z, Ĝm)) : z ∈ DF ∪ DG}. (2.3.2)

DD plots can be used as a diagnostic tool to detect differences in location and
scale between two multivariate distributions.

1. If F = G, the points in DD(F̂n, Ĝm) stay close to the diagonal. See Figure 2.2.

2. If the same point z0 achieves maximum depths with respect to both distribu-
tions F and G, this indicates that z0 is their common center. See Figure 2.3.

3. Suppose that F and G have the same center. If the points in DD(F̂n, Ĝm)
arch above the diagonal, i.e. the bulk of points are deeper in G than in F ,
this indicates that F has a greater spread than G. See Figure 2.4a.

Liu et al. (1999) also demonstrate the use of DD plots to detect differences in
skewness and kurtosis. This tool is especially convenient since the DD plot is
always two dimensional regardless of the dimension d of the sample points.

2.4 Testing

We are mainly interested in the two sample homogeneity test. Given samples from
F and G, we wish to test the null hypothesis H0 : F = G against an alternate
hypothesis that F and G differ in location or scale.
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(a) Σ+ = I2, Σ× = 4I2,
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(b) Σ+ =

[
1 −0.5

−0.5 1

]
, Σ× =

[
1 0.5
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]
.

Figure 2.4: Empirical DD plot using spatial depth, where both underlying distributions
(bivariate normal) differ only in scale. In (a), observe how the points remain in the upper
triangle in the DD plot. In (b), observe how there are more orange points in the lower
triangle, and more purple points in the upper triangle in the DD plot, especially in the
region close to the origin.
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Figure 2.5: Empirical DD plot using spatial depth, where both underlying distribu-
tions (bivariate normal) differ in both location and scale. Observe that there is a clear
separation between the orange and purple points in the DD plot, although not about the
diagonal line.

When F,G are distributions on R, rank based tests such as the Wilcoxon rank-sum
test or the Siegel-Tukey test are readily available. A very useful tool in this setting
is the probability integral transform.

Proposition 2.4.1. Let X ∼ F , and let the distribution F be continuous. Then,
F (X) ∼ U [0, 1].

Since F (Xj) has the same rank within {F (Xi)} as does Xj within {Xi}, the above
result is the key towards establishing many distribution-free tests and procedures.

In the multivariate setting, Liu and Singh (1993) use the following depth based
analogue.

Definition 2.4.2. Denote

R(z, F ) = PX∼F (D(X, F ) ≤ D(z, F )). (2.4.1)

Note that in the empirical setting, R(z, F̂n) is simply the proportion of sample
points {Xi} which are deeper in F than z.

Proposition 2.4.3 (Liu and Singh, 1993). Let X ∼ F , and let the distribution
of D(X, F ) be continuous. Then, R(X, F ) ∼ U [0, 1].

Definition 2.4.4. Denote the quality index

Q(F,G) = P (D(X, F ) ≤ D(Y , F ) | X ∼ F, Y ∼ G). (2.4.2)

21



Chapter 2. Multivariate Data

Note that Q(F,G) and Q(G,F ) are not necessarily the same. We may also write

Q(F,G) = EY ∼G[R(Y , F )]. (2.4.3)

It is clear that Q(F,G) = 1/2 when F = G. It can be shown under special
circumstances that Q(F,G) < 1/2 if F,G differ in terms of location or scale. This
will form the basis of our testing scheme, with H0 : F = G versus HA : Q(F,G) <
1/2. Specifically, we restrict our attention to elliptical distributions on Rd.

Proposition 2.4.5 (Liu and Singh, 1993). Let F ∼ Ell(h;µ1,Σ1) and G ∼
Ell(h;µ2,Σ2) where Σ1 − Σ2 is positive definite. Further suppose that D( · , F )
has the affine invariance and monotonicity properties. Then, Q(F,G) ≤ 1/2 de-
creases monotonically as µ2 is moved away from µ1 along any line.

Proposition 2.4.6 (Liu and Singh, 1993). Let F ∼ Ell(h;µ,Σ1) and G ∼ Ell(h;µ,Σ2)
where Σ1 − Σ2 is positive definite. Consider Huber’s contamination of the form

Gα = (1− α)F + αG (2.4.4)

where 0 ≤ α ≤ 1. Then, Q(F,Gα) decreases monotonically as α increases.

This motivates a modified Wilcoxon rank-sum test in the multivariate setting,
using the quality index Q(F,G). Let X1, . . . ,Xn

iid∼ F , and Y1, . . . ,Ym
iid∼ G.

Since R( · , F ), Q(F, · ) depend on D( · , F ), the latter has to be approximated using
D( · , F̂n0), where F̂n0 is based on a (fairly large) additional sample Z1, . . . ,Zn0

iid∼
F , with n0 ≫ n,m. With this, we compute

R( · , F̂n0) =
1

n0

n0∑
i=1

1(D(Zi, F̂n0) ≤ D( · , F̂n0)). (2.4.5)

Assign ranks 1, . . . , n+m to the arranged values R(Xi, F̂n0), R(Yj, F̂n0) (ascending
order), and define W to be the sum of ranks of the R(Yj, F̂n0). If necessary,
break ties at random. Under the null hypothesis F = G, it is clear that W
has the same distribution as the sum of m numbers drawn without replacement
from {1, . . . , n+m}. Under the alternate hypothesis Q(F,G) < 1/2, the ranks of
R(Yj, F̂n0) will tend to be lower on average, making W smaller.

Theorem 2.4.7 (Liu and Singh, 1993). Let Hn,m be the distribution of the sum
of m numbers drawn randomly without replacement from {1, . . . , n+m}. Suppose
that F admits a density function f . Under the null hypothesis F = G, we have
W ∼ Hn,m.

It is also possible to approximate Q(F,G) more directly via Q(F̂n, Ĝm) and perform
our test this way. This sidesteps the need for the ‘reference’ sample Z1, . . . ,Zn0

iid∼
F . Note that

Q(F̂n, Ĝm) =
1

m

m∑
j=1

R(Yj, F̂n) =
1

nm

∑
i,j

1(D(Xi, F̂n) ≤ D(Yj, F̂n)). (2.4.6)

This estimate is indeed consistent under mild assumptions.
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Theorem 2.4.8 (Liu and Singh, 1993). Suppose that the distribution of D(Y , F )
is continuous where Y ∼ G, and that

sup
z∈Rd

|D(z, F̂n)−D(z, F )| a.s.−→ 0. (2.4.7)

Then, Q(F̂n, Ĝn)
a.s.−→ Q(F,G) as min{n,m} → ∞.

This allows us to determine the asymptotic null distribution of Q(F̂n, Ĝm).

Theorem 2.4.9 (Liu and Singh, 1993). Let F be absolutely continuous, such that
EX∼F ∥X∥4 < ∞. Using Mahalanobis depth to define Q, we have

S(F̂n, Ĝm) =

[
1

12

(
1

n
+

1

m

)]−1/2 [
Q(F̂n, Ĝm)−

1

2

]
d−→ N (0, 1) (2.4.8)

as min{n,m} → ∞, under the null hypothesis F = G.

Later, Zuo and He (2006) show that under certain mild regularity conditions,
the above asymptotic convergence can be extended to a broader class of depth
functions, without the assumption F = G. They demonstrate that[

σ2
GF

n
+

σ2
FG

m

]−1/2 [
Q(F̂n, Ĝm)−Q(F,G)

]
d−→ N (0, 1), (2.4.9)

where

σ2
FG =

∫
P 2
X∼F (D(X, F ) ≤ D(y, F )) dG(y)−Q2(F,G), (2.4.10)

σ2
GF =

∫
P 2
Y ∼G(D(x, F ) ≤ D(Y , F )) dF (x)−Q2(F,G). (2.4.11)

Observe that given two samples, we have a choice between using Q(F̂n, Ĝm) or
Q(Ĝm, F̂n). It may be advantageous to use the sample with a greater number of
observations as the reference distribution. Shi et al. (2023) propose a weighted
combination of the form

Wα
n,m = αS(F̂n, Ĝm)

2 + (1− α)S(Ĝm, F̂n)
2 (2.4.12)

for α ∈ [0, 1], or a maximum

Mn,m = max{S(F̂n, Ĝm)
2, S(Ĝm, F̂n)

2}. (2.4.13)

Under similar assumptions, they show that both Wα
n,m

d−→ χ2
1 and Mn,m

d−→ χ2
1

as min{n,m} → ∞ and n/m converges to a positive constant, under the null
hypothesis F = G.

For multisample homogeneity testing, Chenouri and Small (2012) construct a
Kruskal-Wallis-like test, with the role of univariate ranks replaced by the depth
based ranks R( · , F̂ ) within the pooled data. The resulting test is shown to be
powerful for both location and scale shifts.
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2.5 Classification

The k-class classification task involves assigning an observation x to one of k
populations, described by distributions Fi for 1 ≤ i ≤ k. The populations may
also be associated with prior probabilities πi.

Definition 2.5.1 (Classifier). A classifier is a map ι̂ : Rd → {1, . . . , k}.

Example 2.5.2 (Bayes classifier). Suppose that the population densities fi for
each 1 ≤ i ≤ k are known. The Bayes classifier assigns x to the ι̂B-th population
where

ι̂B(x) = argmax
1≤i≤k

πifi(x). (2.5.1)

One way of measuring the performance of a classifier (given the population distri-
butions and their priors) is by measuring its average misclassification rate.

Definition 2.5.3 (Average misclassification rate). The average misclassification
rate of a classifier ι̂ is given by

∆(ι̂) =
k∑

i=1

πi PX∼Fi
(ι̂(X) ̸= i). (2.5.2)

Proposition 2.5.4. The Bayes classifier has the lowest possible average misclas-
sification rate. This is known as the optimal Bayes risk, denoted ∆B.

The simplest depth based classifier is the maximum depth classifier (Ghosh &
Chaudhuri, 2005).

Example 2.5.5 (Maximum depth classifier). Suppose that the prior probabilities
πi are equal. The maximum depth classifier ι̂D for a choice of depth function D is
described by

ι̂D(x) = argmax
1≤i≤k

D(x, Fi). (2.5.3)

In practice, instead of having direct access to the population distributions Fi, we
have typically deal with labeled training data

D = {(xij, i)} ⊂ Rd × {1, . . . , k}, (2.5.4)

where xi1, . . . ,xini
is an instance of an iid sample from Fi for each 1 ≤ i ≤ k. The

empirical maximum depth classifier simply replaces the population distributions
Fi with their empirical counterparts F̂i determined by xi1, . . . ,xini

. Thus, it is
given by

ι̂D(x) = argmax
1≤i≤k

D(x, F̂i). (2.5.5)

Under certain restrictions, this classifier becomes asymptotically optimal in the
following sense.
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Figure 2.6: The DD classifier using spatial depth and a polynomial separating curve.
The orange and purple shaded regions indicate the prediction rule learned from the
training data; the black line marks the separating boundary. The classification accuracy
here is 88%.

Theorem 2.5.6 (Ghosh and Chaudhuri, 2005). Suppose that the population den-
sity functions fi are elliptically symmetric, with fi(x) = g(x−µi) for parameters
µi and a density function g such that g(kx) ≤ g(x) for every x and k > 1. Further
suppose that the priors on the populations are equal, and the depth function D is
one of HD, SD, MJD, PD. Then, ∆(ι̂D) → ∆B as min{n1, . . . , nk} → ∞.

Note that this result deals with elliptic population densities differing only in loca-
tion. Relax this assumption, and instead suppose that fi ∼ Ell(hi;µi,Σ), i.e.

fi(x) = ci|Σ|−1/2hi

(
(x− µi)

⊤Σ−1(x− µi)
)

(2.5.6)

for strictly decreasing hi, and that the depths can be expressed as D( · , Fi) =
li(fi( · )) for strictly increasing functions li. It follows that the Bayes decision rule
can be reformulated as

πifi(x) > πjfj(x) ⇐⇒ D(x, Fi) > rij(D(x, Fj)) (2.5.7)

for some real increasing function rij. Using this observation, the DD classifier (Li
et al., 2012) picks separating functions rij which best classify the training data D.

Definition 2.5.7 (Empirical misclassification rate). The empirical misclassifica-
tion rate of a classifier ι̂, with respect to data D, is given by

∆̂(ι̂) =
k∑

i=1

πi

ni

ni∑
j=1

1(ι̂(xij) ̸= i). (2.5.8)
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Definition 2.5.8 (DD classifier). Suppose that k = 2, that D is a depth function,
and that r : [0, 1] → [0, 1] is an increasing function. The DD classifier ι̂D,r is given
by

ι̂D,r(x) =

{
1, if D(x, F2) ≤ r(D(x, F1)),

2, if D(x, F2) > r(D(x, F1)).
(2.5.9)

The empirical DD classifier ι̂D,r̂ replaces Fi by their empirical counterparts F̂i.
Here, the separating curve r̂ is chosen from a family Γ so as to minimize the
empirical misclassification rate, i.e.

r̂ = argmin
r∈Γ

∆̂(ι̂D,r). (2.5.10)

Figure 2.6 shows the DD classifier applied on normal populations.
Remark. The maximum depth classifier ι̂D is simply the DD classifier ι̂D,id, where
id(x) = x. Figure 2.5 clearly illustrates how this choice of separating function may
not always be appropriate, especially when the different populations have scale
differences.

Li et al. (2012) show that under certain restrictions, the empirical DD classifier is
asymptotically equivalent to the Bayes rule. We give one such instance below.

Lemma 2.5.9. Suppose that the following conditions hold.
1. Γ is the class of polynomial functions on [0, 1].
2. The depth functions D( · , Fi) are continuous.
3. As min{n1, n2} → ∞, we have for each i ∈ {1, 2},

sup
z∈Rd

|D(z, F̂i)−D(z, Fi)|
a.s.−→ 0. (2.5.11)

4. The distributions Fi are elliptical and satisfy for all δ ∈ R

PZ∼Fi
(D(Z, Fi) = δ) = 0. (2.5.12)

Then, ∆(ι̂D,r̂) → ∆B as min{n1, n2} → ∞.

In all the depth based classifiers we have seen so far, the classification rule depends
on the observation x only through the depths D(x, Fi). Thus, we are motivated
to define the following transformation from Rd to a depth feature space.

Definition 2.5.10. The depth feature vector xD of an observation x, with respect
to the population distributions Fi and a choice of depth function D, is defined as

xD = (D(x, F1), . . . , D(x, Fk)) . (2.5.13)

Remark. The graph
DD(F1, . . . , Fk) = {xD : x ∈ Rd} (2.5.14)

is the analogue of the DD plot, with k distributions.
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Assuming that the depth function D only takes values in [0, 1], the map x 7→ xD

takes values in [0, 1]k, regardless of the dimensionality of the original vector x.
With this, the maximum depth classification rule can be expressed as

ι̂D(x) = i ⇐⇒ xD ∈ RD
i = {y ∈ [0, 1]k : yi = max

j
yj}. (2.5.15)

Indeed, any partition of the unit cube [0, 1]k into k decision regions RD
i gives rise

to a depth based classifier. The DD classifier achieves this by using an increasing
separating function r to partition [0, 1]2. Furthermore, r ∈ Γ is chosen so as to best
separate the training data D transformed into the depth feature space. However,
we can in principle use the transformed training data

DD = {(xD
ij , i)} ⊂ [0, 1]k × {1, . . . , k} (2.5.16)

along with any multivariate classification algorithm (LDA, QDA, kNN, GLM, etc)
to devise suitable decision regions. This is precisely the formulation of the DDG

classifier (Cuesta-Albertos et al., 2017).

2.6 Clustering

The unsupervised clustering task involves grouping a collection of observations,
such that points within the same group are more similar to each other than those
from different groups.

Definition 2.6.1 (Clustering). Given observations x1, . . . ,xN ∈ Rd, a clustering
assignment is a choice of a partition I1, . . . , IK of {1, . . . , N}.

With this notation, the k-th cluster consists of the points {xi}i∈Ik . A good cluster
assignment is one that maximizes similarity within clusters, as well as dissimi-
larity between clusters. Thus, the problem of clustering can be framed as the
optimization of some objective function which combines these notions of similarity
and dissimilarity. A simple algorithm such as the K-means clustering seeks to
minimize

{I1, . . . , IK} 7→ 1

N

K∑
k=1

∑
i∈Ik

∥xi − µk∥2, (2.6.1)

the average sum of square distances between each point and its cluster mean

µk =
1

|Ik|
∑
i∈Ik

xi = argmin
µ∈Rd

∑
i∈Ik

∥xi − µ∥2. (2.6.2)

Jörnsten (2004) proposes a depth based approach to this problem, by examin-
ing the depth of a point within its cluster, relative to its depth within the best
competing cluster.

In this section, we will abbreviate Dk(x) = D(x, F̂Ik), i.e. the empirical depth of
x with respect to the points in the k-th cluster. Jörnsten (2004) chooses L1 depth,
the empirical version of spatial depth.
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Definition 2.6.2. The within cluster depth of xi is Dw
i = Dk(xi), where i ∈ Ik.

To deal with dissimilarity between clusters, we represent each cluster by its L1-
median.

Definition 2.6.3 (L1-median). The L1-median of the k-th cluster is given by

θk = argmin
θ∈Rd

∑
i∈Ik

∥xi − θ∥. (2.6.3)

Definition 2.6.4. The between cluster depth of xi is Db
i = Dℓ(xi), where

ℓ = argmin
k : i/∈Ik

∥xi − θk∥. (2.6.4)

In other words, the between cluster depth of xi is its depth within the best com-
peting cluster.

Definition 2.6.5 (Relative depth). The relative depth of xi is ReDi = Dw
i −Db

i .

A point xi is well clustered if ReDi is very high, i.e. it is deep within its own
cluster, and has low depth with respect to its next best competing cluster. Thus,
to obtain a good clustering, we may choose to maximize the objective function

{I1, . . . , IK} 7→ 1

N

K∑
k=1

∑
i∈Ik

ReDi, (2.6.5)

which is simply the average relative depth. This maximization can be achieved
iteratively, starting with a random cluster assignment and reassigning a subset of
observations with low ReDi to their nearest competing clusters. The reassignment
is accepted if the objective function increases, and the process is repeated. Jörnsten
(2004) also suggests the use of simulated annealing to overcome the problem of
getting trapped in local maxima. Here, the reassignment is accepted with some
probability P (β, δ) where δ is the change in the objective function value, even if
the objective function decreases at that step. P (β, δ) is chosen to decrease with
increasing β and δ. The tuning parameter β can be increased every iteration
so that the probability of accepting poorer clustering assignments drops to zero
eventually.

Another notion of similarity and dissimilarity involves silhouette width.

Definition 2.6.6 (Silhouette width). Denote the average distance of z from points
in the k-th cluster not equal to z by

d̄k(z) =
1

|{i ∈ Ik : xi ̸= z}|
∑
i∈Ik
xi ̸=z

∥xi − z∥. (2.6.6)

The silhouette width of xi where i ∈ Ik is given by

Sili =
bi − ai

max{ai, bi}
, ai = d̄k(xi), bi = min

ℓ ̸=k
d̄ℓ(xi). (2.6.7)
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It has been observed that the silhouette width is greatly affected by differences in
scale between clusters, while the relative depth is not. An objective function of
the form

{I1, . . . , IK} 7→ 1

N

K∑
k=1

∑
i∈Ik

(1− λ) Sili +λReDi (2.6.8)

may be used to combine both notions. Here, λ ∈ [0, 1] controls the influence of the
relative depth. It seems that small values of λ encourages equal scale clusters, while
large values of λ allows unequal scale clusters. Thus, λ may be tuned accordingly
to favour these different kinds of clustering assignments.
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Functional Data

Consider a class of functions X of the form x : [0, 1] → Rd, equipped with a norm
∥ · ∥, and let F be a suitable class of distributions on X. Typically, we choose X
to be either L2[0, 1] or C[0, 1]. It is desirable for a depth function D : X ×F → R
to satisfy the following properties (Gijbels & Nagy, 2017).

P0. Non-degeneracy. For F ∈ F,

inf
x∈X

D(x, F ) < sup
x∈X

D(x, F ). (3.0.1)

The property P0 has been introduced to emphasize that generalizing multivariate
depth to the functional setting requires some care; the natural functional analogue
to halfspace/Tukey depth when X is a Banach space,

DH(x, F ) = inf
v∈X∗

PX∼F (v(X) ≤ v(x)), (3.0.2)

turns out to be degenerate for a wide class of distributions F (Chakraborty &
Chaudhuri, 2014a). For example, when X = C[0, 1] with the supremum norm
and X is a Gaussian process with a positive definite covariance kernel, we have
DH( · , FX) = 0 almost surely. A similar result holds for the analogue to the
projection depth. However, neither the functional random Tukey depth nor the
functional spatial depth

DS(x, FX) = 1−
∥∥∥∥EX∼F

[
x−X

∥x−X∥2

]∥∥∥∥
2

(3.0.3)

suffer this deficiency when X = L2 (Cuesta-Albertos & Nieto-Reyes, 2008; Gijbels
& Nagy, 2017).

The remaining properties are analogues of the Zuo-Serfling properties for multivari-
ate depth functions. First, the notion of affine invariance in P1 can be generalized
in many ways; Gijbels and Nagy (2017) recommend the following.
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P1S. Scalar-affine invariance. For a, b ∈ R with a non-zero and x ∈ X,

D(ax+ b, FaX+b) = D(x, FX). (3.0.4)

P1F. Function-affine invariance. For a, b, x ∈ X with ax ∈ X,

D(ax+ b, FaX+b) = D(x, FX). (3.0.5)

When generalizing P2, we must first define a notion of symmetry of F ∈ F.
To this end, we say that FX is symmetric about θ ∈ X if for all φ ∈ X∗, we
have φ(X) is symmetric about φ(θ). Again, we are free to choose our notion
of univariate symmetry for φ(X). Gijbels and Nagy (2017) consider central and
halfspace symmetry.

P2C. Maximality at center of central symmetry. Any centrally symmetric F ∈ F
is symmetric about θ ∈ X if and only if D(θ, F ) = supx∈X D(x, F ).

P2H. Maximality at center of halfspace symmetry. Any halfspace symmetric F ∈
F is symmetric about θ ∈ X if and only if D(θ, F ) = supx∈X D(x, F ).

Earlier, Nieto-Reyes and Battey (2016) proposed the following variant of P2.

P2G. Maximality at Gaussian process mean. For a zero-mean, stationary, almost
surely continuous Gaussian process F ∈ F, we have D(θ, F ) = supx∈X D(x, F )
where θ is the zero mean function.

The above notions of maximality at the center are P2H > P2C > P2G in order
of strength.

The properties P3 and P4 have straightforward generalizations.

P3D. Monotonicity relative to deepest point. For F ∈ F such that D(θ, F ) =
supx∈X D(x, F ), we have for α ∈ [0, 1],

D(x, F ) ≤ D(θ + α(x− θ), F ). (3.0.6)

P4V. Vanishing at infinity. For any F ∈ F,

D(x, F ) → 0 as ∥x∥ → ∞. (3.0.7)

Nieto-Reyes and Battey (2016) and Gijbels and Nagy (2017) also deal with the
notions of continuity in F . Let dF metrize the topology of weak convergence in F.

C2W. Weak continuity in F . For all ϵ > 0 and F ∈ F, there exists δ > 0 such that
for all G ∈ F such that dF(F,G) < δ, we have |D(x, F ) − D(x, G)| < ϵ,
F -almost surely.
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C2U. Uniform continuity in F . For all ϵ > 0 and F ∈ F, there exists δ > 0
such that for all G ∈ F such that dF(F,G) < δ, we have supx∈X |D(x, F )−
D(x, G)| < ϵ.

Gijbels and Nagy (2017, Table 1) provides a detailed summary of which of these
properties are satisfied by the depth functions discussed in the following section.

3.1 Functional depth functions

3.1.1 Summary depths

Let D be a univariate or multivariate depth function. We can use this to define
the depth of a curve x by first computing the multivariate D-depth of each time
slice x(t), then ‘summarizing’ these depths over all t ∈ [0, 1]. One possibility is
to take a simple or weighted time average, as in the integrated depth (Fraiman &
Muniz, 2001).

Definition 3.1.1 (Fraiman-Muniz depth). The integrated depth, or Fraiman-
Muniz depth, is defined as

DF (x, FX) =

∫
[0,1]

D(x(t), FX(t)) w(t) dt. (3.1.1)

Here, w is a weight function.

Alternatively, we may choose the lowest or ‘worst’ depth over time (Mosler, 2013).
This way, low depth values over small portions of time, which indicate a deviation
from centrality, are better reflected in the summary.

Definition 3.1.2 (Infimal depth). The infimal depth is defined as

DInf (x, FX) = inf
t∈[0,1]

D(x(t), FX(t)). (3.1.2)

Nagy et al. (2017), motivated by the problem of detecting shape outliers, extend
the definitions of Fraiman-Muniz depth and infimal depth as follows. We will
examine their significance briefly in Section 3.3.

Definition 3.1.3. The J-th order integrated depth is defined as

DJ
F (x, FX) =

∫
[0,1]J

D((x(t1), . . . ,x(tJ))
⊤, F(X(t1),...,X(tJ ))⊤) w(t) dt. (3.1.3)

Definition 3.1.4. The J-th order infimal depth is defined as

DJ
Inf (x, FX) = inf

t∈[0,1]J
D((x(t1), . . . ,x(tJ))

⊤, F(X(t1),...,X(tJ ))⊤ . (3.1.4)

Remark. It is often convenient to use Monte-Carlo approximations of the J-th
order Fraiman-Muniz and infimal depths.
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3.1.2 Band depths

López-Pintado and Romo (2009) later introduced the notion of band depth for
univariate functional data.

Definition 3.1.5 (Band depth). The band depth, for some index J ≥ 2, is defined
as

DJ
B(x, FX) =

J∑
j=2

P
Xi

iid∼FX
(x ∈ conv(X1, . . . ,Xj)). (3.1.5)

The empirical version of band depth is defined as

DJ
B(x, F̂n) =

J∑
j=2

(
n

j

)−1 ∑
1≤i1<···<ij≤n

1(x ∈ conv(xi1 , . . . ,xij)). (3.1.6)

This is simply the proportion of j-tuples of curves (for 2 ≤ j ≤ J) which envelope
x. Note that if two curves intersect at a point, a third curve is enveloped by
them only when it passes through the point of intersection. For most commonly
used FX , this happens with probability zero, making the band depth for J = 2
degenerate. Thus, we generally use J = 3.
Remark. The band depth may fail to satisfy P0 even for J ≥ 3. It follows from
Chakraborty and Chaudhuri (2014a, Theorem 3.2) that when X = C[0, 1] and X
is a Feller process (for instance, Brownian motion) such that P (X0 = 0) = 1 and
the distribution of each Xt for t ∈ (0, 1] is non-atomic and symmetric about 0, the
band depth DJ

B( · , FX) = 0 almost surely. The following modification of the band
depth resolves this issue.

Definition 3.1.6 (Modified band depth). Define the enveloping time

ET(x; x1, . . . ,xj) = m1({t ∈ [0, 1] : x(t) ∈ conv(x1(t), . . . ,xj(t))}), (3.1.7)

where m1 is the Lebesgue measure on R. The modified band depth is defined as

DJ
MB(x, FX) =

J∑
j=2

E
Xi

iid∼FX
[ET(x; X1, . . . ,Xj)] . (3.1.8)

The empirical version of modified band depth is defined as

DJ
MB(x, F̂n) =

J∑
j=2

(
n

j

)−1 ∑
1≤i1<···<ij≤n

ET(x; xi1 , . . . ,xij). (3.1.9)

We generally use J = 2 for ease of computation, and denote the corresponding
modified band depth simply as DMB( · , · ), dropping the superscript.

DMB(x, F̂n) =

(
n

2

)−1 n∑
i=1

n∑
j=i+1

ET(x;xi,xj). (3.1.10)
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3.1.3 Half-region depths

Later, López-Pintado and Romo (2011) introduced the half-region depth.

Definition 3.1.7. We say that y is in the hypograph of x, denoted, y ∈ Hx, if
y(t) ≤ x(t) for all t ∈ [0, 1]. Similarly, we say that y is in the epigraph of x,
denoted, y ∈ Ex, if y(t) ≥ x(t) for all t ∈ [0, 1].

Definition 3.1.8 (Half-region depth). The half-region depth is defined as

DHR(x, F ) = min{PF (Hx), PF (Ex)}. (3.1.11)

The quantity PF (Ex) is called the epigraph index, which measures the proportion
of curves that lie entirely above x.

Remark. The half-region depth may also fail to satisfy P0, with the same coun-
terexample used earlier for the degeneracy of the band depth (Chakraborty &
Chaudhuri, 2014a, Theorem 3.2).

Definition 3.1.9 (Modified half-region depth). Denote the modified hypograph
(MHI) and epigraph (MEI) indices

MHIF (x) = EX∼F [m1({t ∈ [0, 1] : x(t) ≥ X(t)})], (3.1.12)
MEIF (x) = EX∼F [m1({t ∈ [0, 1] : x(t) ≤ X(t)})]. (3.1.13)

The modified half-region depth is defined as

DMHR(x, F ) = min{MHIF (x), MEIF (x)}. (3.1.14)

3.2 Classification

Observe that the classification procedures for multivariate data described in Sec-
tion 2.5 (the maximum depth classifier, the DD classifier, and the DDG classifier)
only depend on the data through the depth feature vectors

xD = (D(x, F1), . . . , D(x, Fk)) ∈ Rk. (3.2.1)

By simply choosing an appropriate functional data depth D, all of these classifi-
cation procedures naturally generalize to the functional setting. The most flexible
of these is the DDG classifier (Cuesta-Albertos et al., 2017), which allows for any
multivariate classification procedure on the transformed data DD.

1http://www-stat.stanford.edu/ElemStatLearn
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Figure 3.1: Classification of periodograms of digitized speech,1 by phonemes (‘aa’, ‘ao’,
‘dcl’, ‘iy’, ‘sh’). The thick colored lines in the plot on the left mark the median curve
across 400 examples in each of the five groups. The boxplot shows classification accuracies
for 20 runs of each of the following methods: maximum depth classification using the
first order (FM) and second order (FM2) Fraiman-Muniz depths in red, the RM and
VOM classifiers in green, and the maximum depth Mahalanobis (PM) and spatial (PSp)
depth classifiers on d-variate feature vectors obtained by d = 10 random projections in
blue. In each run, 50% of the data was been aside for training.

3.2.1 Outlyingness matrices

Dai and Genton (2018) proposed a method which measures the outlyingness of x
with respect to a population via depth as follows.

Definition 3.2.1. Let X be a d-variate stochastic process of continuous functions.
At each time point t ∈ [0, 1], the directional outlyingness is defined as

O(t) = O(X(t), FX(t)) =

(
1

D(X(t), FX(t))
− 1

)
v(t), (3.2.2)

where v(t) is the unit vector pointing from the median of FX(t) to X(t).

Definition 3.2.2. The functional directional outlyingness is defined as

FO(X, FX) =

∫
[0,1]

∥O(t)∥2 w(t) dt. (3.2.3)

Definition 3.2.3. The mean directional outlyingness is defined as

MO(X, FX) =

∫
[0,1]

O(t) w(t) dt. (3.2.4)

Definition 3.2.4. The variation of directional outlyingness is defined as

VO(X, FX) =

∫
[0,1]

∥O(t)− MO(t)∥2 w(t) dt. (3.2.5)
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Here, w is a weight function on [0, 1]. In our discussion, we set w = 1.

It is easily verified that
FO2 = ∥MO ∥2 +VO . (3.2.6)

Dai and Genton (2018) propose using the (d+ 1)-variate feature vectors

Y (X, FX) = (MO⊤, VO)⊤ (3.2.7)

corresponding to the curve X for the purposes of classification. The MO gives a
sense of how outlying the curve X is within FX as a whole, while the VO measures
the amount of variation in the outlyingness over time. Loosely speaking, MO is
affected by the position, while VO is affected by the shape of X within FX . For
instance, one may define the classifier

ι̂(X) = argmax
1≤i≤k

D′(Y (X, Fi), FY (X,Fi)), (3.2.8)

where D′ is a multivariate depth function. This is simply a maximum depth
classifier applied on the feature vectors Y . When D′ is chosen to be the robust
Mahalanobis depth, we have the RM classifier

ι̂RM(X) = argmax
1≤i≤k

DRM(Y (X, Fi), FY (X,Fi)). (3.2.9)

Definition 3.2.5. The functional directional outlyingness matrix is defined as

FOM(X, FX) =

∫
[0,1]

O(t)O(t)⊤ w(t) dt. (3.2.10)

Definition 3.2.6. The functional directional outlyingness matrix is defined as

VOM(X, FX) =

∫
[0,1]

(O(t)− MO(t)) (O(t)− MO(t))⊤ w(t) dt. (3.2.11)

Again, it is easily verified that

FOM = MO MO⊤+VOM, (3.2.12)

and that
FO = trace(FOM), VO = trace(VOM). (3.2.13)

We may also use the feature matrix VOM, or its matrix norm ∥VOM ∥F corre-
sponding to the curve X for the purposes of classification. Here, ∥ · ∥F denotes
the Frobenius norm. For instance, a VOM based classifier may be defined as

ι̂VOM(X) = argmin
1≤i≤k

∥VOM(X, Fi)∥F . (3.2.14)
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Figure 3.2: NMR spectra of 40 wine samples,2 from the R package speaq, with some
curves showing outlying behaviour highlighted. The green curve #37 is an isolated
outlier, the blue and red curves are shift outliers, and the purple curve is a shape outlier.

3.2.2 Random projections

Another approach is to use a feature vector consisting of multiple projections of
X. Given functions v1, . . . ,vd chosen at random, we examine the d-variate feature
vectors

V (X, FX) = (⟨v1,X⟩, . . . , ⟨vd,X⟩) (3.2.15)

and apply a depth based multivariate classifier. For instance, given a multivariate
depth function D′, we may define a classifier

ι̂dD′(X) = argmax
1≤i≤k

D′(V (X, Fi), FV (X,Fi)). (3.2.16)

3.3 Outlier detection

A curve x : [0, 1] → R may exhibit outlying behaviour with respect to a body of
curves in many ways; we use the useful classification as detailed in Hubert et al.
(2015). It may deviate significantly over a short interval, in which case we call
it an isolated outlier. Alternatively, it may deviate over a large, or perhaps even
the whole interval, in which case we call it a persistent outlier. If this deviation
is in terms of shape – for instance, the curve may be rougher or smoother – we
call it a shape outlier. Otherwise, if the curve has the same shape as the rest but
appears above or below them, we call it a shift outlier. Another possibility is that
the curve differs in scale, in which case we call it an amplitude outlier. Some of
these behaviours have been illustrated in the dataset in Figure 3.2.

2https://ucphchemometrics.com/datasets/
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A simple way of detecting shift outliers is using a functional boxplot (Sun & Genton,
2011), which is a natural analogue of the boxplot for univariate data. Here, curves
are ranked according to their depths (say using the modified band depth), and
the 50% central region is identified. A fence is created by inflating this central
region envelope by a factor of 1.5; curves straying outside this fence are identified
as outliers.

An important consideration when dealing with shape outliers is that each time
slice x(t) may be fairly inconspicuous with respect to the marginal FX(t). For
instance, a shape outlier may be significantly more oscillatory than the rest, yet
remain within the central region. This means that a tool like the functional boxplot
may succeed in identifying shift or amplitude outliers, but fall short against shape
outliers. In general, the basic algorithm of iteratively selecting curves with low
functional depth as outliers is often insufficient.

A common approach towards examining the shapes of curves in a dataset is to bun-
dle them with their derivatives. For instance, motion data often involves track-
ing both position and velocity over time. Thus, one may replace a curve x by
(x( · ), x′( · )) and examine its depth; the Fraiman-Muniz depth for such a curve
would be of the form

D
(2)
F (x, FX) =

∫
[0,1]

D((x(t), x′(t))⊤, F(X(t),X′(t))⊤) w(t) dt. (3.3.1)

This naturally extends to D
(J)
F , taking derivatives of order 0, . . . , J−1. Nagy et al.

(2017) point out several difficulties with this formulation, primarily the assump-
tion of differentiability and the errors introduced when approximating derivatives.
They make the notion of a J-th order shape outlier more precise as follows.

Definition 3.3.1. If there exists t ∈ [0, 1]J such that (x(t1), . . . ,x(tJ))
⊤ is out-

lying with respect to F(X(t1),...,X(tJ ))⊤ , then we say that x is a J-th order outlier
with respect to FX .

With this, the J-th order extension of Fraiman Muniz depth (Definition 3.1.3)
is well equipped to detect J-th order outliers. Nagy et al. (2017) show that this
depth DJ

F incorporates information about the J-th order derivatives of the curves
(along with potentially additional information about its shape), which makes its
performance comparable to or even better than D

(J)
F . They supply a simple algo-

rithm based on DJ
F values for identifying J-th order outliers. A similar argument

can be made for the J-th order extension of the infimal depth (Definition 3.1.4).

3.3.1 Outliergrams

Arribas-Gil and Romo (2014) combined the notions of the modified epigraph index
(MEI) and the modified band depth (MBD), proposing the outliergram as a tool
for detecting shape outliers. They show that for a sample {xi}ni=1, each

MBD(xi) = DMB(xi, F̂n) ≤ a0 + a1MEI(xi) + a2n
2MEI(xi)

2 (3.3.2)
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Figure 3.3: Outliergram for the NMR spectra of 40 wine samples. The three purple
curves have been identified as shape outliers, as they fall outside the orange ribbon in the
outliergram. Although the red curves lie on the orange parabola, they have low MBD
and extreme MEI values, indicating that they lie above or below the main mass of curves.

where a0 = a2 = −2/n(n− 1) and a1 = 2(n+ 1)/(n− 1). The distance

di = a0 + a1MEI(xi) + a2n
2MEI(xi)−MBD(xi) (3.3.3)

is indicative of the outlyingness of xi. Arribas-Gil and Romo (2014) consider shape
outlying curves as those for which di ≥ d∗ = Q3 +1.5 IQR, where Q3 and IQR are
the third quartile and the interquartile range of {di}ni=1 respectively.

Definition 3.3.2 (Outliergram). The outliergram for a dataset D = {xi}ni=1 is
the graph

{(MEI(xi, F̂n), MBD(xi, F̂n)) : 1 ≤ i ≤ n}. (3.3.4)

Shape outliers are curves xi such that (MEIi,MBDi) falls outside a ribbon of height
d∗ under the parabola a0 + a1MEI+a2n

2MEI2.

Figure 3.3 illustrates the use of the outliergram. We have also highlighted curves
with fairly low or high MEI values as shift outliers; a low MEI value indicates that
the curve lies above the main mass of curves, and a high MEI indicates that it lies
below.

3.3.2 Centrality-Stability diagrams

In their discussion of methods of functional outlier detection, Hubert et al. (2015)
proposed the centrality-stability diagram, where both the ‘centrality’ of a curve
(measured by depth) and its variability in cross-sectional outlyingness over time
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Figure 3.4: Outlyingness heatmap for the NMR spectra of 40 wine samples. The
extreme curve #37 has been zeroed out in the second diagram to better illustrate the
variation in outlyingness for the remaining curves.
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Figure 3.5: Centrality-Stability diagram for the NMR spectra of 40 wine samples.
The red curves are seen to deviate in terms of centrality, indicated by the fact that the
corresponding points in the centrality-stability diagram fall towards the right. The purple
curves deviate in terms of stability, with the green curve showing extreme deviation.
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are accounted for. A deviation in centrality may point towards a shift outlier,
while a deviation in stability may point towards an isolated or shape outlier.

Hubert et al. (2015) begin by choosing a multivariate depth function of the form
D′(x(t), FX(t)) = (1 + O(x(t)))−1, where O( · ) is an outlyingness function. The
Mahalanobis, projection, and Oja depths clearly fit this description. Here, for the
purposes of computation in the univariate case, we choose

O(x(t)) =
|x(t)−med(X(t)|

MAD(X(t))
, (3.3.5)

instead of using the skew-adjusted version; the differences are minor enough for us
to ignore. The variation in O(x( · )) over time for different curves, in the form of
an outlyingess heatmap, is quite revealing; Figure 3.4 shows that curves may have
large outlyingness for short or long intervals.

Corresponding to D′, we have an integrated Fraiman-Muniz depth

DF (x, F ) =

∫
[0,1]

(1 +O(x(t)))−1 dt. (3.3.6)

However, a spike in outlyingess over a short time interval, such as in curve #37 in
Figure 3.4, may potentially be ‘washed out’ in this averaging. With this, we seek
a method of detecting sharp bursts in outlyingness. Note that by setting

M̃O(x, F ) =

∫
[0,1]

O(x(t)) dt, (3.3.7)

Cauchy-Schwarz gives us the relation

DF (x, F ) · (1 + M̃O(x, F )) ≥ 1. (3.3.8)

Equality is achieved only when O(x( · )) remains constant over time. Any sudden
variation in outlyingness over time will be detected by the stability deviation

∆S(x, F ) = (1 + M̃O(x, F ))− 1

DF (x, F )
, (3.3.9)

the difference between the arithmetic and harmonic means of 1+O(x( · )). Defining
the centrality deviation simply as ∆C(x, F ) = 1−DF (x, F ), we have our centrality-
stability diagram.

Definition 3.3.3 (Centrality-Stability diagram). The centrality-stability diagram
for a dataset D = {xi}ni=1 is the graph

{(∆C(xi, F̂n), ∆S(xi, F̂n)) : 1 ≤ i ≤ n}. (3.3.10)

Remark. We make a distinction between MO from Definition 3.2.3 and M̃O; the
outlyingness O( · ) used in the latter is real and positive.

Figure 3.5 illustrates the use of the centrality-stability diagram as a summary of
the outlyingness heatmap from Figure 3.4. This time, the isolated outlier curve
#37 is well separated from the shift and shape outliers, unlike in the outliergram
in Figure 3.3.
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Figure 3.6: MO-VO diagram for the NMR spectra of 40 wine samples. We plot |MO |
rather than MO here for better comparison with the centrality stability diagram in Fig-
ure 3.5; nevertheless, the signed MO values would reveal whether the shift outliers lie
above or below the main mass of curves.

3.3.3 MO-VO diagrams

We observe that the MO-VO diagram from Dai and Genton (2018) neatly falls
under a general category of centrality-stability diagrams. The quantity MO(x, F )
may indeed be treated as a measure of deviation from centrality of x. Again,
VO(x, F ) being the variance of O(t), may be treated as a measure of deviation
from stability, since it captures the variability of outlyingness over time and is
sensitive to changes over short intervals.

Definition 3.3.4 (MO-VO diagram). The MO-VO diagram for a dataset D =
{xi}ni=1 is the graph

{(MO(xi, F̂n), VO(xi, F̂n)) : 1 ≤ i ≤ n}. (3.3.11)

For the purposes of computation in the univariate case, we use the directional
outlyingess function

O(x(t)) =
x(t)−med(X(t))

MAD(X(t))
. (3.3.12)

Figure 3.6 illustrates the use of the MO-VO diagram. Note the similarities with
the centrality-stability diagram from Figure 3.5.

We demonstrate all of the above diagnostic tools on a different dataset in Fig-
ures 3.8 and 3.7.

42



Chapter 3. Functional Data

0.0

0.2

0.4

0.6

1100 1200 1300 1400 1500
Wavelength

Re
sp

on
se

Data

25

26

36 37

38

39

0.0

0.2

0.4

0.25 0.50 0.75
MEI

M
B

D

Outliergram

25

26

3637

3839

0.1

1.0

10.0

0.2 0.3 0.4 0.5 0.6
Centrality deviation

St
ab

ili
ty

 d
ev

ia
ti

on

Centrality-Stability diagram

25

26

36

37
38

39

0.1

1.0

10.0

100.0

0.0 2.5 5.0 7.5 10.0 12.5
|MO|

VO

MO-VO diagram

Figure 3.7: Outliergram, centrality-stability, and MO-VO diagrams for the NIR spectra
of 39 gasoline samples, from the R package rrcov. The six purple curves #25, 26, 36-39
correspond to samples containing added alcohol. While the outliergram does not clearly
identify these outliers, the centrality-stability and MO-VO diagrams show a marked
separation from the main curves. Indeed, there is no cutoff d∗ defining the lower boundary
of the orange ribbon in the outliergram which properly excludes the six outliers.
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Figure 3.8: Outlyingness heatmap for the NIR spectra of 39 gasoline samples. The
outlying curves have been zeroed out in the second diagram.

3.4 Partially observed functional data

Consider the setting where the stochastic process X of continuous functions is not
observed on the entire interval [0, 1], but rather on a random subset O ⊆ [0, 1].
Then, a dataset of partially observed curves is of the form D = {(Xi, Oi)}ni=1,
where Xi

iid∼ FX , Oi
iid∼ Q where Q generates random compact subsets of [0, 1],

independent of Xi. In other words, (Xi, Oi)
iid∼ FX × Q. This setup is known as

the ‘missing completely at random’ assumption (Kraus, 2015).

We set J(t) = {j : t ∈ Oj} to keep track of which curves Xi have been observed
at time t. Furthermore, denote q(t) = |J(t)| as the number of curves Xi observed
at time t.

Elías, Jiménez, Paganoni, and Sangalli (2023) propose the following modification
of the Fraiman-Muniz depth for partially observed data.

Definition 3.4.1 (Partially observed integrated functional depth). Let D be a
d-variate depth function. The Partially Observed Integrated Functional Depth
(POIFD) is defined as

DPOIFD((x, o), FX ×Q) =

∫
o

D(x(t), FX(t)) wo(t) dt, (3.4.1)

where wo(t) = q(t)/
∫
o
q(t) dt.

We can now proceed with tasks such as classification, outlier detection, etc. on
our partially observed dataset, via depth based procedures using POIFD values.
Another natural problem is one of curve reconstruction: given a partially observed
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curve (X, O), can we estimate X on M = [0, 1] \O? For instance, we may search
for a reconstruction operator R : L2(O) → L2(M) that minimizes the mean in-
tegrated prediction squared error E [∥XM −R(XO)∥2]. Here, XO denotes the
curve X restricted to O, and similarly for XM . The best predictor in this sense
is the conditional expectation E[XM |XO], which is in general a non-linear opera-
tor. Thus, Kraus (2015) and Kneip and Liebl (2020) search for continuous linear
operators A, using methods based on estimating terms of the Karhunen-Loéve
expansion of X.

Elías, Jiménez, and Shang (2023) offer a depth based solution to the reconstruction
problem, adapted from a similar algorithm for time-series forecasting (Elías et al.,
2022). The main idea involves selecting a collection of curves, with indices I, which
best envelope (X, O), then taking a weighted linear combination. In particular,
they suggest

X̂(t) =

∑
i∈I(t) wiXi(t)∑

i∈I(t) wi

, wi = exp

(
−θ

∥(X, O)− (Xi, Oi)∥
δ

)
, (3.4.2)

where I(t) = I ∩J(t) = {i ∈ I : t ∈ Oi} and δ = mini∈I ∥(X, O) − (Xi, Oi)∥.
Here, θ is a tuning parameter, perhaps chosen by minimizing the mean squared
error on (X, O). Furthermore, we have denoted

∥(X, O)− (X ′, O′)∥ =
1

m(O ∩O′)

(∫
O∩O′

∥X(t)−X ′(t)∥2 dt
)1/2

. (3.4.3)

Choosing the best envelope I involves both depth and distance. Elías, Jiménez,
and Shang (2023) use the following three criteria to devise an algorithm that
iteratively selects I.

1. (X, O) should be as deep as possible in the collection of curves {(X, O)} ∪
{(Xi, Oi)}i∈I, in the sense of POIFD.

2. (X, O) should be enveloped by {(Xi, Oi)}i∈I as much as possible, i.e. we
want to maximize the enveloping time ET((X, O); {Xi, Oi}i∈I).

3. {(Xi, Oi)}i∈I should contain as many near curves to (X, O) as possible, in
the sense of the distance 3.4.3.
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Local Depth

The depth functions which we’ve encountered so far are well suited for unimodal,
symmetric distributions. For instance, depth functions like the halfspace and Ma-
halanobis depths behave especially well with elliptical distributions: the depth and
density contours coincide. These depth functions always produce convex, nested
contours; the Zuo-Serfling property P3 also forces star-shaped central regions. As
a result, they may fail to capture the structure of distributions which are not
convexly supported (Figure 4.1), or those with multiple modes (Figure 4.2).

Remedying this requires moving away from the global structure to local structures
of distributions. One formulation of such a local depth is due to Agostinelli and
Romanazzi (2011), where the halfspace and simplicial depths are modified so as to
capture only local information around a given point x ∈ Rd. The local halfspace
depth is obtained not by considering halfspaces containing x as in 2.1.1, but rather
cuboidal slabs; similarly, the local simplicial depth is defined by restricting the
volumes of the random simplices under consideration in 2.1.8.

In this chapter, we focus on the definition of local depth and local depth neigh-
bourhoods proposed by Paindaveine and Van Bever (2013). This allows the con-
struction of a local counterpart of any existing global depth function (multivariate,
functional, or otherwise), giving it a distinct advantage over the previous treat-
ment.

4.1 Local depth regions

Given a distribution FX , we may define a symmetrized distribution about a point
x ∈ X as

Fx
X =

1

2
FX +

1

2
F2x−X . (4.1.1)

With this, x becomes the point of central symmetry, hence the deepest point in
Fx
X with respect to a depth function D that obeys P2. Thus, the β-th central

regions of Fx
X behave like neighbourhoods of x.
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Figure 4.1: Depth contours with respect to a ‘banana-shaped’ distribution. Observe
that the spatial depth contours fail to adequately capture the curved shape of the data
cloud, in contrast with the local spatial depth (with β = 0.2) contours.

Definition 4.1.1 (Paindaveine and Van Bever, 2013). The probability-β depth-
based neighbourhood of x with respect to the distribution F is defined as

Nx
β (F ) = CFx(β), (4.1.2)

i.e. the β-th central region of F symmetrized about x.

When working with a sample D = {Xi}ni=1 from F , we may obtain the β depth-
based neighbourhood of x by first computing the reflected sample D′ = {2x −
Xi}ni=1, then arranging the elements of the symmetrized sample Dx = D ∪ D′ in
descending order by their empirical depth values and choosing the first β propor-
tion of elements. The neighbourhood Nx

β (F̂n) is the convex hull of these elements.

Definition 4.1.2 (Paindaveine and Van Bever, 2013). Let D be a depth function,
and let Fx

β denote the distribution F conditional on the neighbourhood Nx
β (F ).

The corresponding local depth function at locality level β ∈ (0, 1] is defined as

LDβ(x, F ) = D(x, Fx
β ) (4.1.3)

Again, when working with a sample D = {Xi}ni=1, we obtain LDβ(x, F̂n) by
arranging the elements of D in descending order by their empirical depth values
in the symmetrized sample Dx, choosing the first β proportion of elements, and
computing the depth of x with respect to these elements.
Remark. When β = 1, the local depth LD1 reduces to the original global depth
D.
Remark. The notions of depth based neighbourhoods and local depth make sense
for any distribution F on a space X as long as the process of symmetrization
around x ∈ X can be achieved.
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Figure 4.2: Depth contours with respect to a bimodal distribution. Although the local
spatial depth contours capture the two modes correctly, it erroneously ascribes high depth
values to a region in between them.

4.2 Regression based on local depth

Definition 4.2.1. Let D be a depth function, and let F̃x
β denote the symmetrized

distribution Fx conditional on the neighbourhood Nx
β (F ). Given x ∈ X, we may

define a local depth kernel at locality level β centered at x as

Kx
β : N

x
β (F ) → R, z 7→ D(z, F̃x

β ). (4.2.1)

This naturally extends to a map X → R as Kx
β (z) = 0 for z /∈ Nx

β (F ).

Note that F̃x
β is angularly symmetric about x. As a result, Kx

β is maximized at
and decreases away from x, for reasonably well behaved depth functions (P2 and
P3 for multivariate depth functions).

With this, we propose the (linear) estimator

ŷβ(x) =
∑
i

wi(x)yi, wi(x) =
Kx

β (xi)∑
j K

x
β (xj)

. (4.2.2)

The locality level β ∈ (0, 1] is a tuning parameter which may be chosen via methods
such as cross-validation.

The kernel function Kx
β is supported on the neighbourhood Nx

β (F ), whose shape
may vary with changing x ∈ X. Indeed, since Nx

β (F̂n) contains the β proportion
of points from {xi} ‘closest’ to x (in the sense of being more central in the sym-
metrized dataset Dx), this neighbourhood ought to be smaller when x is more
central, and larger when x has fewer points nearby. Thus, Kx

β behaves somewhat

48



Chapter 4. Local Depth

-100

-50

0

50

10 20 30 40 50
Time after impact

Ac
ce

le
ra

ti
on

Motorcycle accidents

25

50

75

5000 10000 15000 20000 25000
Average income

Pr
es

ti
ge

Pineo-Porter prestige scores

Figure 4.3: Regression curves for the cars and carData::Prestige datasets available
in R. The black curve indicates the local depth based estimate, the dashed red curve
indicates the Nadaraya-Watson kernel based estimate, and the dashed green and blue
curves indicate the local linear and quadratic estimates respectively. The locality levels
and relevant bandwidths have been obtained by leave-one-out cross validation. The local
depth based estimate is the best and second-best in terms of MSE respectively.

like a variable bandwidth or adaptive kernel, whose shape adjusts to the surround-
ing data as x varies. Furthermore, the ‘bandwidth’ of Kx

β is controlled solely by
the parameter β regardless of the dimensionality or nature of X. This stands in
contrast with more traditional kernels which often require a selection of multiple
bandwidths. For instance, a Gaussian kernel of the form

z 7→ 1∏d
i=1 hi

exp

(
−
∑
i

(xi − zi)
2

2h2
i

)
(4.2.3)

needs d parameters {hi}di=1 to be determined.

Equation 4.2.2 may also be thought of as a weighted KNN estimator, since Nx
β (F̂n)

always captures the same number of points.

When the depth function D is chosen to be affine invariant, the estimator 4.2.2 is
also affine invariant, in the sense that it is unchanged by an affine transformation
of X. This is because NAx+b

β (FAX+b) will simply be the affine image of Nx
β (FX).

The proposed estimator does however suffer from a lack of smoothness. Addition-
ally, it is fairly computationally expensive, since one must obtain the symmetrized
sample Dx for every x where the estimate is required.
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Figure 4.4: Regression curves for the Penn table dataset, avaiable as Ecdat::SumHes
in R. The covariates are GDP curves of different countries in the left column. The new
GDP curve of the indicated country is marked in black, and its β = 0.1 neighbours are
marked in orange. On the left, the estimated savings rate curve is marked in black, with
the true curve in purple. The orange response curves correspond to the orange covariates,
and their envelope is shaded in.
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Conclusion

In conclusion, we have reviewed multiple realizations of depth functions in the
multivariate and functional settings, and seen numerous applications, demonstrat-
ing the efficacy and versatility of this notion. For a majority of these tasks, we
have performed simulation studies, reproduced results, and attempted to compare
and contrast different procedures proposed in the literature. We have also tried to
draw connections between different ideas; for instance, the centrality-stability and
MO-VO diagrams for functional outlier detection (Section 3.3) largely produce
the same results, with similar aims but differing approaches. The use of ran-
dom projections in functional data classification (Section 3.2.2) draws inspiration
from the random Tukey depth (Cuesta-Albertos & Nieto-Reyes, 2008), the J-th
order depths (Nagy et al., 2017), and the Cramer-Wold device in Hilbert spaces
(Cuesta-Albertos et al., 2007). We have also attempted to propose a new method
of regression (Section 4.2) using the local depth regions of Paindaveine and Van
Bever (2013); further study into its theoretical consistency as well as results from
simulations are merited.

One area which we have not covered in much detail is regression. For instance,
Zuo (2021) gives an overview of depths used in the context of linear regression.
Chowdhury and Chaudhuri (2019) explore quantile regression for functional data
using spatial depth. This uses the language of spatial quantiles (Chakraborty &
Chaudhuri, 2014b), where the spatial u-quantile Q(u) for u ∈ B∗(0, 1) ⊂ X∗ is
the minimizer of

EX∼F [∥Q−X∥ − ∥X∥]− u(Q). (5.0.1)

Another aspect of depth which deserves a closer look is the Monge-Kantorovich
depth (Chernozhukov et al., 2017). The connection between optimal transport
theory and statistics is fairly new and exciting area for exploration, and has lead
to many applications even in fields like financial mathematics, image processing,
and machine learning.

The code used to produce this document, its figures, and results can be found in
this thesis’ GitHub repository.1

1https://github.com/sahasatvik/ms-thesis
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