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Depth Functions

A depth function quantifies how central a point x ∈ X is with

respect to a distribution F.

This induces a center-outwards ordering on the space X.
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Depth Functions in Rd

We want D : Rd × F → R to be bounded, non-negative,

continuous, and satisfy the following properties.

P1. Affine invariance: D(Ax + b, FAx+b) = D(x, FX).

P2. Maximality at centre: D(θ, FX) = supx∈Rd D(x, F).

P3. Monotonicity along rays: D(x, F) ≤ D(θ + α(x − θ), F).

P4. Vanish at infinity: D(x, F) → 0 as ‖x‖ → ∞.

Zuo, Y., & Serfling, R. (2000) General notions of statistical depth function
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Depth Functions for Functional Data
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Depth Functions in Banach spacesX

Let X be a class of functions of the form x : [0, 1] → Rd,

equipped with a norm ‖ · ‖. We typically choose L2[0, 1] or

C[0, 1].

We want to generalize the Zuo-Serfling properties (P1-4) in this

setting, for depth functions D : X × F → R.

Gijbels, I., & Nagy, S. (2017) On a General Definition of Depth for Functional

Data
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Depth Functions in Banach spaces X

Properties P3 (Monotonicity along rays) and P4 (Vanish at infinity)

carry over naturally.



Non-degeneracy

P0. Non-degeneracy: infx∈X D(x, F) < supx∈X D(x, F).

The naïve generalization of the halfspace/Tukey depth

DH(x, F) = inf
v∈X∗

PX∼F(v
∗(X) ≤ v∗(x)),

is degenerate for a wide class of distributions F. For instance,

X = C[0, 1], Gaussian processes with positive definite

covariance kernels.

Chakraborty, A., & and Chaudhuri, P. (2014) On data depth in infinite

dimensional spaces
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Non-degeneracy

This also applies to the functional analogue of the projection depth.



Non-degeneracy

The functional analogue of the spatial depth

DSp(x, F) = 1−
∥∥∥∥EX∼F

[
x − X

‖x − X‖2

]∥∥∥∥
2

,

does not suffer from degeneracy.

Chakraborty, A., & and Chaudhuri, P. (2014) The spatial distribution in

infinite dimensional spaces and related quantiles and depths
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Affine Invariance

P1S. Scalar-affine invariance: For a,b ∈ R with a non-zero and

x ∈ X,

D(ax + b, FaX+b) = D(x, FX).

P1F. Function-affine invariance: For a,b, x ∈ X, with ax ∈ X,

D(ax + b, FaX+b) = D(x, FX).
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Maximality at Center

We say that FX is symmetric about θ ∈ X if for all ϕ ∈ X∗, we

have ϕ(X) symmetric about ϕ(θ).

P2C. Maximality at center of central symmetry: For F ∈ X

centrally symmetric about θ ∈ X, D(θ, F) = supx∈X D(x, F).

P2H. Maximality at center of halfspace symmetry: For F ∈ X

halfspace symmetric about θ ∈ X, D(θ, F) = supx∈X D(x, F).
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The Integrated and Infimal Depths

DFM(x, FX) =

∫
[0,1]

D(x(t), FX(t)) w(t) dt.

DInf (x, FX) = inf
t∈[0,1]

D(x(t), FX(t)).

Fraiman, R., & and Muniz, G. (2001) Trimmed means for functional data

Mosler, K. (2013) Depth Statistics
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The J-th order Integrated and Infimal Depths

DJ
FM(x, FX) =

∫
[0,1]J

D((x(t1), . . . , x(tJ))
>, F(X(t1),...,X(tJ))>) w(t) dt.

DJ
Inf

(x, FX) = inf
t∈[0,1]J

D((x(t1), . . . , x(tJ))
>, F(X(t1),...,X(tJ))>).

Nagy, S., Gijbels, I., & and Hlubinka, D. (2017) Depth-Based Recognition of

Shape Outlying Functions
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The J-th order Integrated and Infimal Depths

These J-th order depths carry information about the derivatives of the

curves, of orders 0, . . . , J− 1.



The Band Depth

DJ
B(x, F) =

J∑
j=2

P
Xi

iid∼F
(x ∈ conv(X1, . . . , Xj)).

This is the proportion of j-tuples of curves, for 2 ≤ j ≤ J, which

completely envelope x.

The band depth becomes degenerate for X = C[0, 1], Feller
processes X (e.g. Brownian motion) with P(X0 = 0) = 1 and

each Xt for t > 1 non-atomic and symmetric about 0.

López Pintado, S., & Romo, J. (2009) On the concept of depth for functional

data
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The Modified Band Depth

Define the enveloping time

ET(x; x1, . . . , xj) = m1({t ∈ [0, 1] : x(t) ∈ conv(x1(t), . . . , xj(t))})

The modified band depth is defined as

DMBD(x, F) =
J∑

j=2

E
Xi

iid∼F

[
ET(x; X1, . . . , Xj)

]
.
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The Half-Region Depth

We say that y is in the hypograph (resp. epigraph) of x, denoted

y ∈ Hx (resp. Ex), if y(t) ≤ x(t) (resp. ≥) for all t ∈ [0, 1].

The half-region depth is defined as

DHR(x, F) = min {PF(Hx), PF(Ex)} .

This suffers from the same degeneracy problems as the band

depth.

López Pintado, S., & Romo, J. (2011) A half-region depth for functional data
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The Modified Half-Region Depth

Define the Modified Hypograph (MHI) and Epigraph (MEI)

Indices as

MHIF(x) = EX∈F[m1{t ∈ [0, 1] : x(t) ≥ X(t)}],
MEIF(x) = EX∈F[m1{t ∈ [0, 1] : x(t) ≤ X(t)}].

The modified half-region depth is defined as

DMHR(x, F) = min {MHIF(x), MEIF(x)} .
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Partially Observed Functional Data

Suppose that X ∼ FX is not observed on the entire interval

[0, 1], but rather on some random compact subinterval O ∼ Q

(independent of X).

Given a dataset D = {(Xi,Oi)}ni=1
where (Xi,Oi)

iid∼ FX × Q, we

keep track of the indices observed at time t ∈ [0, 1] as

J(t) = {j : t ∈ Oj}, as well as their number q(t) = |J(t)|.
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The Partially Observed Integrated Functional Depth (POIFD)

We may define a depth function in this setting via

DPOIFD((x,o), FX × Q) =

∫
o

D(x(t), FX(t)) wo(t) dt,

where wo(t) = q(t)/
∫
0
q(t) dt.

Elías, A., Jiménez, R., Paganoni, A. M., & Sangalli, L. M. (2023) Integrated

depths for partially observed functional data
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The Functional Reconstruction Problem

Given (X,O), can we estimate X on M = [0, 1] \ O?

We may search for a reconstruction operator R : L2(O) → L2(M)

that minimizes the mean integrated prediction squared error

loss E[‖XM −R(XO)‖2]. In this setup, the best predictor is the

conditional expectation E[XM | XO].

We may also search for a continuous linear reconstruction

operator A, by estimating terms of the Karhunen-Loéve

expansion of X.

Kneip, A., & Liebl, D. (2020) On the optimal reconstruction of partially

observed functional data
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The Functional Reconstruction Problem

Another approach is to take a convex linear combination of

curves from a suitable curve envelope with indices I.

The enveloping curves I may be chosen so that (X,O) is as

deep as possible inside the curve envelope.

Additionally, we want I to envelope (X,O) for as long as

possible (in the sense of the enveloping time ET), and contain

as many near curves (in an appropriately modified norm ‖ · ‖′)
to (X,O) as possible.

Elías, A., Jiménez, R., & Shang, H. L. (2023) Depth-based reconstruction

method for incomplete functional data
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Outlier Detection for Functional Data



A Naïve Outlier Detection Scheme

Given data D = {xi}ni=1
, we may extract ranks ri = R(xi, F̂n).

For instance, we may choose

R(x, F̂n) =
1

n

n∑
i=1

1(D(xi, F̂n) ≤ D(x, F̂n)).

Declare those xi with unusually high ranks ri as outliers, say

greater than a cutoff Q3 + 1.5 IQR.

21
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Functional Outliers

A curve x : [0, 1] → R may exhibit outlying behaviour within a

body of curves in many ways.

• Isolated outlier: Significant deviation over a short interval.

• Persistent outlier: Deviation over a large/entire interval.

• Shape

• Shift

• Amplitude

Hubert, M., Rousseeuw, P. J., & Segaert, P. (2015) Multivariate functional

outlier detection
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Functional Outliers

For a shape outlier, the slices x(t) may all seem inconspicuous in the

marginals FX(t).



Shape Outliers and Derivatives

One way of incorporating shape information of a curve x is to

bundle it with its derivatives x(j).

∫
[0,1]

D((x(0)(t), . . . , x(J)(t))>, F(X(0)(t),...,X(J)(t))>) w(t) dt.
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Shape Outliers and Derivatives

This suffers from errors in approximating derivatives, and the assump-

tion of differentiability in the first place.



Shape Outliers and the J-th order Integrated Depth

We say that a curve x is a J-th order outlier with respect to FX if

there exists t ∈ [0, 1]J such that the vector (x(t1), . . . , x(tJ))
> is

outlying with respect to F(X(t1),...,X(tJ))> .

DJ
FM(x, FX) =

∫
[0,1]J

D((x(t1), . . . , x(tJ))
>, F(X(t1),...,X(tJ))>) w(t) dt.

Nagy, S., Gijbels, I., & and Hlubinka, D. (2017) Depth-Based Recognition of

Shape Outlying Functions
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Shape Outliers and the J-th order Integrated

Depth

• This process looks at points of the form (x(t), x(t + h), . . . ), thus

encoding information about the derivatives.

• One may choose the weight function w(·) to put emphasis on

the diagonal.



The Centrality-Stability Scheme

Consider an outlyingness function O(x(t)) which measures the

outlyingness of x(t) with respect to FX(t). For instance, we may

choose

O(x(t)) =
x(t)−med(X(t))

MAD(X(t))
.

Then, we may define a depth function

D(x, FX) =

∫
[0,1]

(1+ |O(x(t))|)−1 dt.

Hubert, M., Rousseeuw, P. J., & Segaert, P. (2015) Multivariate functional

outlier detection
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The Centrality-Stability Scheme

Define

M̃O(x, FX) =

∫
[0,1]

|O(x(t))| dt

Then, Cauchy-Schwarz gives

D(x, FX) · (1+ M̃O(x, FX)) ≥ 1,

with equality when O(x(·)) remains constant over time.
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The Centrality-Stability scheme

Any sudden deviation in outlyingness will be detected by the

stability deviation

∆S = (1+ M̃O(x, F))− 1

D(x, F)
.

The centrality deviation is measured as

∆C = 1− D(x, F).
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The MO-VO Scheme

We may measure the variability in outlyingness over time more

simply via

MO(x, F) =

∫
[0,1]

O(x(t)) dt,

VO(x, F) =

∫
[0,1]

‖O(x(t))−MO(x, F)‖2 dt.

Dai, W., & Genton, M. G. (2018) An outlyingness matrix for multivariate

functional data classification
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The Outliergram

Given a dataset of curves D = {xi}ni=1
, the distances

di = a0 + a1MEI(xi) + a2n
2MEI(xi)

2 −MBD(xi),

where a0 = a2 = −2/n(n+ 1), a1 = 2(n+ 1)/(n− 1), are

indicative of shape outlyingness.

Thus, one may declare xi as an outlier if di exceeds a cutoff

such as Q3 + 1.5 IQR.

Arribas-Gil, A., & Romo, J. (2014). Shape outlier detection and visualization

for functional data: the outliergram
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Outlier Detection for Functional Data

The Outliergram

The numbers di are always positive!
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Local Depth Functions



Elliptical Distributions

We say that a distribution F is elliptical if it admits a density of

the form

fX(x) = c|Σ|−1/2h
(
(x − µ)>Σ−1(x − µ)

)
for some strictly decreasing function h. Write F ∈ Ell(h;µ,Σ).

An affine invariant depth function continuous in x uniquely

determines F within Ell(h; ·, ·). The depth and density contours

coincide.
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Elliptical Distributions

• The whitened random variable Z = Σ−1/2(X − µ) has density

fZ(z) ∝ h(‖z‖2).
• The halfspace, simplicial, projection depths satisfy this property.

• In general, depths such as the halfspace depth always produce

convex central regions.
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Local Depth Neighbourhoods

Given x ∈ X, we may symmetrize FX as

FxX =
1

2
FX +

1

2
F2x−X .

The probability-β depth-based neighbourhood of x in FX is

simply the β-th central region of FxX . This is denoted by Nx
β(FX).

Paindaveine, D., & Van Bever, G. (2013) From depth to local depth: A focus

on centrality
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Local Depth

Let Fxβ denote the distribution FX conditioned on Nx
β(FX).

The local depth function at locality level β ∈ (0, 1] is defined as

LD(x, FX) = D(x, Fxβ).

When β = 1, we have LD1 = D.

38
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Local Depth based Regression

Let F̃xβ denote the distribution FxX conditioned on Nx
β(FX). Note

that this is angularly symmetric about x.

Given x ∈ X, we may define a local depth kernel, centered at x,

via

Kx
β : N

x
β(FX) → R, z 7→ D(z, F̃xβ).

Extend this to X by setting Kx
β(·) = 0 outside Nx

β(FX).
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Local Depth based Regression

We propose a linear estimator of the form

ŷβ(x) =
∑
i

wi(x)yi, wi(x) =
Kx
β(xi)∑
j K

x
β(xj)

.

This may be interpreted as a weighted KNN estimator, or a

variable bandwidth kernel estimator.

We only have one tuning parameter β ∈ (0, 1].

41
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Local Depth Functions

Themethods used are local depth based regression (black), Nadaraya-

Watson kernel (red), local linear (green) and quadratic (blue).
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Concluding Remarks



• Formulation and Properties of Depth Functions

• Multivariate Data

• Functional Data

• Extensions of Depth Functions

• Partially Observed Functional Data

• Local Depth

• Applications

• Exploratory Data Analysis

• Testing

• Classification

• Clustering

• Outlier Detection

• Data Reconstruction

• Regression ?
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