# Statistical Depth Functions

Satvik Saha Supervised by Dr. Anirvan Chakraborty 17 May, 2024

Department of Mathematics and Statistics, Indian Institute of Science Education and Research, Kolkata

- 1. Depth Functions for Functional Data
- 2. Outlier Detection for Functional Data
- 3. Local Depth Functions
- 4. Concluding Remarks

# A depth function quantifies how central a point $x \in \mathcal{X}$ is with respect to a distribution *F*.

This induces a *center-outwards* ordering on the space  $\mathcal{X}$ .

We want  $D: \mathbb{R}^d \times \mathscr{F} \to \mathbb{R}$  to be bounded, non-negative, continuous, and satisfy the following properties.

- P1. Affine invariance:  $D(Ax + b, F_{Ax+b}) = D(x, F_X)$ .
- P2. Maximality at centre:  $D(\theta, F_X) = \sup_{\mathbf{x} \in \mathbb{R}^d} D(\mathbf{x}, F)$ .
- P3. Monotonicity along rays:  $D(\mathbf{x}, F) \leq D(\theta + \alpha(\mathbf{x} \theta), F)$ .
- P4. Vanish at infinity:  $D(x, F) \rightarrow 0$  as  $||x|| \rightarrow \infty$ .

Zuo, Y., & Serfling, R. (2000) General notions of statistical depth function

# The DD classifier



# Depth Functions for Functional Data



#### NIR spectra of gasoline samples

Let  $\mathfrak{X}$  be a class of functions of the form  $\mathbf{x} \colon [0,1] \to \mathbb{R}^d$ , equipped with a norm  $\|\cdot\|$ . We typically choose  $L^2[0,1]$  or  $\mathcal{C}[0,1]$ .

We want to generalize the Zuo-Serfling properties (P1-4) in this setting, for depth functions  $D: \mathscr{X} \times \mathscr{F} \to \mathbb{R}$ .

Gijbels, I., & Nagy, S. (2017) On a General Definition of Depth for Functional Data



Statistical Depth Functions

 $\square$ Depth Functions in Banach spaces  ${\mathscr X}$ 



Gijbels, I., & Nagy, S. (2017) On a General Definition of Depth for Functional Data

Properties *P*3 (Monotonicity along rays) and *P*4 (Vanish at infinity) carry over naturally.

P0. Non-degeneracy:  $\inf_{x \in \mathcal{X}} D(x, F) < \sup_{x \in \mathcal{X}} D(x, F)$ .

The naïve generalization of the halfspace/Tukey depth

$$D_H(\mathbf{x},F) = \inf_{\mathbf{v}\in\mathscr{X}^*} P_{\mathbf{X}\sim F}(\mathbf{v}^*(\mathbf{X}) \leq \mathbf{v}^*(\mathbf{x})),$$

is degenerate for a wide class of distributions  $\mathscr{F}$ . For instance,  $\mathscr{X} = \mathcal{C}[0, 1]$ , Gaussian processes with positive definite covariance kernels.

Chakraborty, A., & and Chaudhuri, P. (2014) On data depth in infinite dimensional spaces



Statistical Depth Functions

└─Non-degeneracy

#### Non-degeneracy

P0. Non-degeneracy:  $\inf_{x \in \mathcal{X}} D(x, F) < \sup_{x \in \mathcal{X}} D(x, F)$ .

The naïve generalization of the halfspace/Tukey depth

 $D_{H}(\mathbf{x}, F) = \inf_{\mathbf{x} \in T^{*}} P_{X \sim F}(\mathbf{v}^{*}(X) \leq \mathbf{v}^{*}(\mathbf{x})),$ 

is degenerate for a wide class of distributions  $\mathscr{F}$ . For instance,  $\mathscr{X} = C[0, 1]$ , Gaussian processes with positive definite covariance kernels.

Chaktaborty, A., & and Chaudhuri, P. (2014) On data depth in infinite dimensional spaces

## This also applies to the functional analogue of the projection depth.

## The functional analogue of the spatial depth

$$D_{Sp}(\mathbf{x},F) = 1 - \left\| \mathbb{E}_{\mathbf{X}\sim F} \left[ \frac{\mathbf{x} - \mathbf{X}}{\|\mathbf{x} - \mathbf{X}\|_2} \right] \right\|_2,$$

does not suffer from degeneracy.

Chakraborty, A., & and Chaudhuri, P. (2014) The spatial distribution in infinite dimensional spaces and related quantiles and depths

P1S. Scalar-affine invariance: For  $a, b \in \mathbb{R}$  with a non-zero and  $\mathbf{x} \in \mathcal{X}$ ,

$$D(a\mathbf{x}+b,F_{a\mathbf{X}+b})=D(\mathbf{x},F_{\mathbf{X}}).$$

P1F. Function-affine invariance: For  $a, b, x \in \mathcal{X}$ , with  $ax \in \mathcal{X}$ ,

$$D(ax+b,F_{aX+b})=D(x,F_X).$$

We say that  $F_X$  is symmetric about  $\theta \in \mathfrak{X}$  if for all  $\varphi \in \mathfrak{X}^*$ , we have  $\varphi(X)$  symmetric about  $\varphi(\theta)$ .

- P2C. Maximality at center of central symmetry: For  $F \in \mathcal{X}$ centrally symmetric about  $\theta \in \mathcal{X}$ ,  $D(\theta, F) = \sup_{\mathbf{x} \in \mathcal{X}} D(\mathbf{x}, F)$ .
- P2H. Maximality at center of halfspace symmetry: For  $F \in \mathcal{X}$ halfspace symmetric about  $\theta \in \mathcal{X}$ ,  $D(\theta, F) = \sup_{x \in \mathcal{X}} D(x, F)$ .

$$D_{FM}(\mathbf{x}, F_{\mathbf{X}}) = \int_{[0,1]} D(\mathbf{x}(t), F_{\mathbf{X}(t)}) w(t) dt.$$

$$D_{Inf}(\mathbf{x}, F_{\mathbf{X}}) = \inf_{t \in [0,1]} D(\mathbf{x}(t), F_{\mathbf{X}(t)}).$$

Fraiman, R., & and Muniz, G. (2001) Trimmed means for functional data Mosler, K. (2013) Depth Statistics

$$D_{FM}^{j}(\mathbf{x}, F_{\mathbf{X}}) = \int_{[0,1]^{j}} D((\mathbf{x}(t_{1}), \dots, \mathbf{x}(t_{j}))^{\top}, F_{(\mathbf{X}(t_{1}), \dots, \mathbf{X}(t_{j}))^{\top}}) w(t) dt.$$

$$D_{lnf}^{j}(\mathbf{x}, F_{\mathbf{X}}) = \inf_{t \in [0,1]^{j}} D((\mathbf{x}(t_{1}), \dots, \mathbf{x}(t_{j}))^{\top}, F_{(\mathbf{X}(t_{1}), \dots, \mathbf{X}(t_{j}))^{\top}}).$$

Nagy, S., Gijbels, I., & and Hlubinka, D. (2017) Depth-Based Recognition of Shape Outlying Functions



These J-th order depths carry information about the derivatives of the curves, of orders  $0, \ldots, J - 1$ .

## The Band Depth

$$D^{J}_{B}(\boldsymbol{x},F) = \sum_{j=2}^{J} P_{\boldsymbol{X}_{i}^{\text{iid}} \in F}(\boldsymbol{x} \in \text{conv}(\boldsymbol{X}_{1},\ldots,\boldsymbol{X}_{j})).$$

This is the proportion of *j*-tuples of curves, for  $2 \le j \le J$ , which *completely* envelope **x**.

The band depth becomes degenerate for  $\mathscr{X} = \mathcal{C}[0, 1]$ , Feller processes X (e.g. Brownian motion) with  $P(X_0 = 0) = 1$  and each  $X_t$  for t > 1 non-atomic and symmetric about 0.

López Pintado, S., & Romo, J. (2009) On the concept of depth for functional data

## Define the enveloping time

$$\mathsf{ET}(\mathbf{x}; \mathbf{x}_1, \dots, \mathbf{x}_j) = m_1(\{t \in [0, 1] : \mathbf{x}(t) \in \mathsf{conv}(\mathbf{x}_1(t), \dots, \mathbf{x}_j(t))\})$$

## The modified band depth is defined as

$$D_{\text{MBD}}(\boldsymbol{x},F) = \sum_{j=2}^{J} \mathbb{E}_{\boldsymbol{X}_{j} \stackrel{\text{iid}}{\sim} F} \left[ \text{ET}(\boldsymbol{x}; \boldsymbol{X}_{1}, \dots, \boldsymbol{X}_{j}) \right].$$

We say that y is in the hypograph (resp. epigraph) of x, denoted  $y \in H_x$  (resp.  $E_x$ ), if  $y(t) \le x(t)$  (resp.  $\ge$ ) for all  $t \in [0, 1]$ .

The half-region depth is defined as

 $D_{HR}(\mathbf{x},F) = \min \left\{ P_F(H_{\mathbf{x}}), P_F(E_{\mathbf{x}}) \right\}.$ 

This suffers from the same degeneracy problems as the band depth.

López Pintado, S., & Romo, J. (2011) A half-region depth for functional data

Define the Modified Hypograph (MHI) and Epigraph (MEI) Indices as

$$MHI_F(x) = \mathbb{E}_{X \in F}[m_1\{t \in [0, 1] : x(t) \ge X(t)\}],$$
  
$$MEI_F(x) = \mathbb{E}_{X \in F}[m_1\{t \in [0, 1] : x(t) \le X(t)\}].$$

The modified half-region depth is defined as

 $D_{MHR}(\mathbf{x}, F) = \min \{ MHI_F(\mathbf{x}), MEI_F(\mathbf{x}) \}.$ 

Suppose that  $X \sim F_X$  is not observed on the entire interval [0, 1], but rather on some random compact subinterval  $O \sim Q$  (independent of X).

Given a dataset  $\mathcal{D} = \{(X_i, O_i)\}_{i=1}^n$  where  $(X_i, O_i) \stackrel{\text{iid}}{\sim} F_X \times Q$ , we keep track of the indices observed at time  $t \in [0, 1]$  as  $\mathcal{J}(t) = \{j : t \in O_j\}$ , as well as their number  $q(t) = |\mathcal{J}(t)|$ .

We may define a depth function in this setting via

$$D_{POIFD}((\mathbf{x}, o), F_{\mathbf{x}} \times Q) = \int_{o} D(\mathbf{x}(t), F_{\mathbf{x}(t)}) w_{o}(t) dt,$$

where  $w_o(t) = q(t) / \int_0 q(t) dt$ .

Elías, A., Jiménez, R., Paganoni, A. M., & Sangalli, L. M. (2023) Integrated depths for partially observed functional data

Given (*X*, *O*), can we estimate *X* on  $M = [0, 1] \setminus O$ ?

We may search for a reconstruction operator  $\mathcal{R}: L^2(O) \to L^2(M)$ that minimizes the mean integrated prediction squared error loss  $\mathbb{E}[||X_M - \mathcal{R}(X_O)||^2]$ . In this setup, the best predictor is the conditional expectation  $\mathbb{E}[X_M | X_O]$ .

We may also search for a continuous linear reconstruction operator  $\mathcal{A}$ , by estimating terms of the Karhunen-Loéve expansion of X.

Kneip, A., & Liebl, D. (2020) On the optimal reconstruction of partially observed functional data

Another approach is to take a convex linear combination of curves from a suitable curve envelope with indices  $\mathcal{I}$ .

The enveloping curves  $\mathscr{I}$  may be chosen so that (X, O) is as deep as possible inside the curve envelope.

Additionally, we want  $\mathscr{I}$  to envelope (X, O) for as long as possible (in the sense of the enveloping time ET), and contain as many near curves (in an appropriately modified norm  $\|\cdot\|'$ ) to (X, O) as possible.

Elías, A., Jiménez, R., & Shang, H. L. (2023) Depth-based reconstruction method for incomplete functional data

# **Outlier Detection for Functional Data**

Given data  $\mathcal{D} = \{\mathbf{x}_i\}_{i=1}^n$ , we may extract ranks  $r_i = R(\mathbf{x}_i, \hat{F}_n)$ .

For instance, we may choose

$$R(\mathbf{x},\hat{F}_n) = \frac{1}{n}\sum_{i=1}^n \mathbf{1}(D(\mathbf{x}_i,\hat{F}_n) \leq D(\mathbf{x},\hat{F}_n)).$$

Declare those  $x_i$  with unusually high ranks  $r_i$  as outliers, say greater than a cutoff  $Q_3 + 1.5 \,\text{IQR}$ .

### NMR spectra of wine samples



A curve  $x : [0, 1] \to \mathbb{R}$  may exhibit outlying behaviour within a body of curves in many ways.

- Isolated outlier: Significant deviation over a short interval.
- Persistent outlier: Deviation over a large/entire interval.
  - · Shape
  - Shift
  - Amplitude

Hubert, M., Rousseeuw, P. J., & Segaert, P. (2015) Multivariate functional outlier detection



Statistical Depth Functions

└─Functional Outliers



For a shape outlier, the slices x(t) may all seem inconspicuous in the marginals  $F_{X(t)}$ .

# One way of incorporating shape information of a curve x is to bundle it with its derivatives $x^{(j)}$ .

$$\int_{[0,1]} D((\mathbf{x}^{(0)}(t),\ldots,\mathbf{x}^{(j)}(t))^{\top},F_{(\mathbf{X}^{(0)}(t),\ldots,\mathbf{X}^{(j)}(t))^{\top}}) w(t) dt.$$



Statistical Depth Functions

└─Shape Outliers and Derivatives

Shape Outliers and Derivatives

One way of incorporating shape information of a curve x is to bundle it with its derivatives  $x^{(i)}$ .

 $\int_{U_{1,m}} D((\mathbf{x}^{(0)}(t), \dots, \mathbf{x}^{(j)}(t))^{\top}, F_{[\mathbf{x}^{(j)}(t), \dots, \mathbf{x}^{(j)}(t)]^{\top}}) w(t) dt$ 

This suffers from errors in approximating derivatives, and the assumption of differentiability in the first place.

We say that a curve  $\mathbf{x}$  is a *J*-th order outlier with respect to  $F_{\mathbf{X}}$  if there exists  $\mathbf{t} \in [0, 1]^J$  such that the vector  $(\mathbf{x}(t_1), \dots, \mathbf{x}(t_J))^\top$  is outlying with respect to  $F_{(\mathbf{X}(t_1),\dots, \mathbf{X}(t_J))^\top}$ .

$$D_{FM}^{J}(\mathbf{x}, F_{\mathbf{X}}) = \int_{[0,1]^{J}} D((\mathbf{x}(t_{1}), \dots, \mathbf{x}(t_{J}))^{\top}, F_{(\mathbf{X}(t_{1}), \dots, \mathbf{X}(t_{J}))^{\top}}) w(t) dt.$$

Nagy, S., Gijbels, I., & and Hlubinka, D. (2017) Depth-Based Recognition of Shape Outlying Functions

# Statistical Depth Functions

2024-05-17

Shape Outliers and the *J*-th order Integrated Depth

| Shape Outliers and the /-th order Integrated Depth                                                                                                                                                                                           |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| We say that a curve <b>x</b> is a J-th order outlier with respect to $F_X$ if there exists $t \in [0, 1]$ such that the vector $(\mathbf{x}(t_1), \ldots, \mathbf{x}(t_j))^{\top}$ is outlying with respect to $F_{(X T), \ldots, X(t_j)}$ . |  |
| $D^{\dagger}_{2M}(\mathbf{x},F_{\mathbf{X}}) = \int_{[2,1]^{2}} D((\mathbf{x}(t_{1}),\ldots,\mathbf{x}(t_{j}))^{\top},F_{\{\mathbf{X}(t_{1}),\ldots,\mathbf{X}(t_{j})\}^{\top}}) w(\mathbf{t}) d\mathbf{t}.$                                 |  |

Negg, S., Gijbels, I., & and Hlabinka, D. (2017) Depth-Based Recognition of Shape Outlying Functions

- This process looks at points of the form (x(t), x(t+h), ...), thus encoding information about the derivatives.
- One may choose the weight function  $w(\cdot)$  to put emphasis on the diagonal.

Consider an outlyingness function  $O(\mathbf{x}(t))$  which measures the outlyingness of  $\mathbf{x}(t)$  with respect to  $F_{\mathbf{X}(t)}$ . For instance, we may choose

$$O(\mathbf{x}(t)) = \frac{\mathbf{x}(t) - \mathsf{med}(\mathbf{X}(t))}{\mathsf{MAD}(\mathbf{X}(t))}.$$

Then, we may define a depth function

$$D(\mathbf{x},F_{\mathbf{X}}) = \int_{[0,1]} (1+|O(\mathbf{x}(t))|)^{-1} dt.$$

Hubert, M., Rousseeuw, P. J., & Segaert, P. (2015) Multivariate functional outlier detection



# Define

$$\widetilde{MO}(\mathbf{x}, F_{\mathbf{X}}) = \int_{[0,1]} |O(\mathbf{x}(t))| \, dt$$

Then, Cauchy-Schwarz gives

$$D(\mathbf{x}, F_{\mathbf{X}}) \cdot (1 + \widetilde{MO}(\mathbf{x}, F_{\mathbf{X}})) \geq 1,$$

with equality when  $O(\mathbf{x}(\cdot))$  remains constant over time.

Any sudden deviation in outlyingness will be detected by the *stability deviation* 

$$\Delta S = (1 + \widetilde{MO}(\mathbf{x}, F)) - \frac{1}{D(\mathbf{x}, F)}.$$

The centrality deviation is measured as

$$\Delta C = 1 - D(\mathbf{X}, F).$$



Centrality-Stability diagram

We may measure the variability in outlyingness over time more simply via

$$MO(x, F) = \int_{[0,1]} O(x(t)) dt,$$
  

$$VO(x, F) = \int_{[0,1]} \|O(x(t)) - MO(x, F)\|^2 dt.$$

Dai, W., & Genton, M. G. (2018) An outlyingness matrix for multivariate functional data classification



Given a dataset of curves  $\mathcal{D} = \{\mathbf{x}_i\}_{i=1}^n$ , the distances

$$d_i = a_0 + a_1 \operatorname{MEI}(\mathbf{x}_i) + a_2 n^2 \operatorname{MEI}(\mathbf{x}_i)^2 - \operatorname{MBD}(\mathbf{x}_i),$$

where  $a_0 = a_2 = -2/n(n + 1)$ ,  $a_1 = 2(n + 1)/(n - 1)$ , are indicative of shape outlyingness.

Thus, one may declare  $x_i$  as an outlier if  $d_i$  exceeds a cutoff such as  $Q_3 + 1.5 IQR$ .

Arribas-Gil, A., & Romo, J. (2014). Shape outlier detection and visualization for functional data: the outliergram

Statistical Depth Functions 2024-05-17 Outlier Detection for Functional Data

└─The Outliergram

The numbers  $d_i$  are always positive!

#### The Outliergram

Given a dataset of curves  $\mathcal{D} = {x_i}_{i=1}^n$  the distances

 $d_i = a_0 + a_1 \operatorname{MEI}(\mathbf{x}_i) + a_2 a^2 \operatorname{MEI}(\mathbf{x}_i)^2 - \operatorname{MED}(\mathbf{x}_i),$ 

where  $a_2 = a_2 = -2/n(n + 1)$ ,  $a_1 = 2(n + 1)/(n - 1)$ , are indicative of shape outlyingness.

Thus, one may declare x<sub>i</sub> as an outlier if d<sub>i</sub> exceeds a cutoff such as Q1 + 1.5 IQR.



# Local Depth Functions

We say that a distribution *F* is elliptical if it admits a density of the form

$$f_X(\mathbf{x}) = c |\Sigma|^{-1/2} h\left( (\mathbf{x} - \boldsymbol{\mu})^\top \Sigma^{-1} (\mathbf{x} - \boldsymbol{\mu}) \right)$$

for some strictly decreasing function *h*. Write  $F \in EII(h; \mu, \Sigma)$ .

An affine invariant depth function continuous in  $\mathbf{x}$  uniquely determines F within EII( $h; \cdot, \cdot$ ). The depth and density contours coincide.

2024-05-17

Statistical Depth Functions

LElliptical Distributions

Elliptical Distributions

We say that a distribution F is elliptical if it admits a density of the form

 $f_X(\mathbf{x}) = c |\Sigma|^{-1/2} h\left( (\mathbf{x} - \boldsymbol{\mu})^\top \Sigma^{-1} (\mathbf{x} - \boldsymbol{\mu}) \right)$ 

for some strictly decreasing function h. Write  $F \in Ell(h; \mu, \Sigma)$ .

An affine invariant depth function continuous in x uniquely determines F within EII( $h_{1:\gamma_{1}}$ ). The depth and density contours coincide.

- The whitened random variable  $Z = \Sigma^{-1/2} (X \mu)$  has density  $f_Z(z) \propto h(||z||^2)$ .
- The halfspace, simplicial, projection depths satisfy this property.
- In general, depths such as the halfspace depth always produce convex central regions.

## Spatial depth



Local spatial depth,  $\beta = 0.2$ 



х

х

Given  $x \in \mathfrak{X}$ , we may symmetrize  $F_X$  as

$$F_X^{\mathbf{x}} = \frac{1}{2}F_X + \frac{1}{2}F_{2\mathbf{x}-\mathbf{X}}.$$

The probability- $\beta$  depth-based neighbourhood of x in  $F_X$  is simply the  $\beta$ -th central region of  $F_X^x$ . This is denoted by  $N_{\beta}^x(F_X)$ .

Paindaveine, D., & Van Bever, G. (2013) From depth to local depth: A focus on centrality

Let  $F_{\beta}^{\mathbf{x}}$  denote the distribution  $F_{\mathbf{X}}$  conditioned on  $N_{\beta}^{\mathbf{x}}(F_{\mathbf{X}})$ .

The local depth function at locality level  $\beta \in (0, 1]$  is defined as

 $LD(\mathbf{x}, F_{\mathbf{X}}) = D(\mathbf{x}, F_{\beta}^{\mathbf{x}}).$ 

When  $\beta = 1$ , we have  $LD_1 = D$ .

## Spatial depth



Local spatial depth,  $\beta$  = 0.2



х

Let  $\tilde{F}_{\beta}^{\mathbf{x}}$  denote the distribution  $F_{\mathbf{X}}^{\mathbf{x}}$  conditioned on  $N_{\beta}^{\mathbf{x}}(F_{\mathbf{X}})$ . Note that this is angularly symmetric about  $\mathbf{x}$ .

Given  $x \in \mathcal{X}$ , we may define a local depth kernel, centered at x, via

$$K_{\beta}^{\mathbf{x}} \colon N_{\beta}^{\mathbf{x}}(F_{\mathbf{X}}) \to \mathbb{R}, \qquad \mathbf{z} \mapsto D(\mathbf{z}, \widetilde{F}_{\beta}^{\mathbf{x}}).$$

Extend this to  $\mathscr{X}$  by setting  $K_{\beta}^{\mathbf{x}}(\cdot) = 0$  outside  $N_{\beta}^{\mathbf{x}}(F_{\mathbf{x}})$ .

We propose a linear estimator of the form

$$\hat{\mathbf{y}}_{\beta}(\mathbf{x}) = \sum_{i} w_{i}(\mathbf{x})\mathbf{y}_{i}, \qquad w_{i}(\mathbf{x}) = \frac{K_{\beta}^{*}(\mathbf{x}_{i})}{\sum_{j} K_{\beta}^{*}(\mathbf{x}_{j})}.$$

This may be interpreted as a weighted KNN estimator, or a variable bandwidth kernel estimator.

We only have one tuning parameter  $\beta \in (0, 1]$ .



Pineo-Porter prestige scores



Statistical Depth Functions



The methods used are local depth based regression (black), Nadaraya-Watson kernel (red), local linear (green) and quadratic (blue).









# **Concluding Remarks**

- Formulation and Properties of Depth Functions
  - Multivariate Data
  - Functional Data
- Extensions of Depth Functions
  - Partially Observed Functional Data
  - Local Depth
- Applications
  - Exploratory Data Analysis
  - Testing
  - Classification
  - Clustering
  - Outlier Detection
  - Data Reconstruction
  - Regression ?

# References i

- Ana Arribas-Gil and Juan Romo.
   Shape outlier detection and visualization for functional data: the outliergram. Biostatistics, 15(4):603-619, 03 2014.
- [2] Anirvan Chakraborty and Probal Chaudhuri.
   On data depth in infinite dimensional spaces.
   Annals of the Institute of Statistical Mathematics, 66(2):303–324, 2014.
- [3] Anirvan Chakraborty and Probal Chaudhuri. The spatial distribution in infinite dimensional spaces and related quantiles and depths.

The Annals of Statistics, 42(3):1203–1231, 2014.

- Wenlin Dai and Marc G. Genton.
   An outlyingness matrix for multivariate functional data classification. Statistica Sinica, 28(4):2435–2454, 2018.
- [5] Antonio Elías, Raúl Jiménez, and Han Lin Shang.
   Depth-based reconstruction method for incomplete functional data. Computational Statistics, 38(3):1507–1535, 2023.

# References ii

- [6] Antonio Elías, Raúl Jiménez, Anna M. Paganoni, and Laura M. Sangalli. Integrated depths for partially observed functional data. Journal of Computational and Graphical Statistics, 32(2):341–352, 2023.
- [7] Ricardo Fraiman and Graciela Muniz. Trimmed means for functional data. Test, 10(2):419–440, 2001.
- [8] Irène Gijbels and Stanislav Nagy.
   On a General Definition of Depth for Functional Data. Statistical Science, 32(4):630 – 639, 2017.
- [9] Mia Hubert, Peter J. Rousseeuw, and Pieter Segaert. Multivariate functional outlier detection. Statistical Methods & Applications, 24(2):177–202, 2015.
- [10] Alois Kneip and Dominik Liebl.
   On the optimal reconstruction of partially observed functional data. The Annals of Statistics, 28(3):1692–1717, 2020.

# References iii

[11] David Kraus.

**Components and completion of partially observed functional data.** *Journal of the Royal Statistical Society. Series B (Statistical Methodology)*, 77(4):777–801, 2015.

 Sara López-Pintado and Juan Romo.
 On the concept of depth for functional data. Journal of the American Statistical Association, 104(486):718–734, 2009.

[13] Sara López-Pintado and Juan Romo.
 A half-region depth for functional data.
 Computational Statistics & Data Analysis, 55(4):1679–1695, 2011.

[14] Karl Mosler.

Depth Statistics, pages 17–34.

Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

[15] Stanislav Nagy, Irene Gijbels, and Daniel Hlubinka.
 Depth-Based Recognition of Shape Outlying Functions.
 Journal of Computational and Graphical Statistics, 26(4):883–893, 2017.

- [16] Davy Paindaveine and Germain Van Bever.
   From depth to local depth: A focus on centrality. Journal of the American Statistical Association, 108(503):1105–1119, 2013.
- [17] Yijun Zuo and Robert Serfling. General notions of statistical depth function. The Annals of Statistics, 28(2):461–482, 2000.