Statistical Depth Functions

Satvik Saha Supervised by Dr. Anirvan Chakraborty 17 May, 2024

Department of Mathematics and Statistics, Indian Institute of Science Education and Research, Kolkata

- 1. [Depth Functions for Functional Data](#page-5-0)
- 2. [Outlier Detection for Functional Data](#page-25-0)
- 3. [Local Depth Functions](#page-44-0)
- 4. [Concluding Remarks](#page-59-0)

A *depth function* quantifies how *central* a point $x \in \mathcal{X}$ is with respect to a distribution *F*.

This induces a *center-outwards* ordering on the space X.

We want $D\colon \mathbb{R}^d \times \mathscr{F} \to \mathbb{R}$ to be bounded, non-negative, continuous, and satisfy the following properties.

- P1. Affine invariance: $D(Ax + b, F_{Ax+b}) = D(x, F_x)$.
- P2. Maximality at centre: $D(\theta, F_X) = \sup_{x \in \mathbb{R}^d} D(x, F)$.
- P3. Monotonicity along rays: $D(x, F) \leq D(\theta + \alpha(x \theta), F)$.
- P4. Vanish at infinity: $D(x, F) \rightarrow 0$ as $||x|| \rightarrow \infty$.

Zuo, Y., & Serfling, R. (2000) General notions of statistical depth function

The DD classifier

[Depth Functions for Functional Data](#page-5-0)

NIR spectra of gasoline samples

Let $\mathscr X$ be a class of functions of the form $\mathsf x\colon [0,1]\to\mathbb R^d,$ equipped with a norm $\|\cdot\|$. We typically choose *L*²[0,1] or $C[0, 1]$.

We want to generalize the Zuo-Serfling properties (P1-4) in this setting, for depth functions $D: \mathcal{X} \times \mathcal{F} \to \mathbb{R}$.

Gijbels, I., & Nagy, S. (2017) On a General Definition of Depth for Functional Data

[Statistical Depth Functions](#page-0-0) [Depth Functions for Functional Data](#page-5-0)

 \Box Depth Functions in Banach spaces $\mathfrak X$

Properties *P*3 (Monotonicity along rays) and *P*4 (Vanish at infinity) carry over naturally.

P0. Non-degeneracy: $\inf_{x \in \mathcal{X}} D(x, F) < \sup_{x \in \mathcal{X}} D(x, F)$.

The naïve generalization of the halfspace/Tukey depth

$$
D_H(x, F) = \inf_{v \in \mathcal{X}^*} P_{X \sim F}(v^*(X) \leq v^*(x)),
$$

is degenerate for a wide class of distributions $\mathcal F$. For instance, $\mathcal{X} = \mathcal{C}[0, 1]$, Gaussian processes with positive definite covariance kernels.

Chakraborty, A., & and Chaudhuri, P. (2014) On data depth in infinite dimensional spaces

Non-degeneracy

P0. Non-degeneracy: inf_{*x*∈X}</sub> $D(x, F)$ < sup_r∈x $D(x, F)$.

The naïve generalization of the halfspace/Tukey depth

*D*_H(*x*, *F*) = $\inf_{w \in X^*} P_{X \sim F}(v^*(X) \le v^*(x)),$

is degenerate for a wide class of distributions \mathcal{F} . For instance, $\mathcal{X} = \mathcal{C}[0, 1]$, Gaussian processes with positive definite covariance kernels. $\mathcal{X} = \mathcal{C}[0, 1]$. Gaussian processes with positive definite

Chakraborty, A., & and Chaudhuri, P. (2014) On data depth in infinite dimensional spaces

This also applies to the functional analogue of the projection depth.

The functional analogue of the spatial depth

$$
D_{Sp}(x, F) = 1 - \left\| \mathbb{E}_{X \sim F} \left[\frac{x - X}{\|x - X\|_2} \right] \right\|_2,
$$

does not suffer from degeneracy.

Chakraborty, A., & and Chaudhuri, P. (2014) The spatial distribution in infinite dimensional spaces and related quantiles and depths

P1S. Scalar-affine invariance: For *a*, *b* ∈ ℝ with *a* non-zero and $x \in \mathcal{X}$,

$$
D(ax + b, F_{aX+b}) = D(x, F_X).
$$

P1F. Function-affine invariance: For $a, b, x \in \mathcal{X}$, with $ax \in \mathcal{X}$,

$$
D(ax + b, F_{aX+b}) = D(x, F_X).
$$

We say that F_{X} is symmetric about $\boldsymbol{\theta} \in \mathcal{X}$ if for all $\varphi \in \mathcal{X}^*$, we have $\varphi(X)$ symmetric about $\varphi(\boldsymbol{\theta})$.

- P2C. Maximality at center of central symmetry: For $F \in \mathcal{X}$ centrally symmetric about $\theta \in \mathcal{X}$, $D(\theta, F) = \sup_{x \in \mathcal{X}} D(x, F)$.
- P2H. Maximality at center of halfspace symmetry: For $F \in \mathcal{X}$ halfspace symmetric about $\theta \in \mathcal{X}$, $D(\theta, F) = \sup_{x \in \mathcal{X}} D(x, F)$.

$$
D_{FM}(x, F_X) = \int_{[0,1]} D(x(t), F_{X(t)}) w(t) dt.
$$

$$
D_{Inf}(x, F_X) = \inf_{t \in [0,1]} D(x(t), F_{X(t)}).
$$

Fraiman, R., & and Muniz, G. (2001) Trimmed means for functional data Mosler, K. (2013) Depth Statistics

$$
D_{FM}^J(x, F_X) = \int_{[0,1]^J} D((x(t_1), \ldots, x(t_J))^T, F_{(X(t_1), \ldots, X(t_J))^T}) w(t) dt.
$$

$$
D_{inf}^j(x, F_X) = \inf_{t \in [0,1]^j} D((x(t_1), \ldots, x(t_j))^{\top}, F_{(X(t_1), \ldots, X(t_j))^{\top}}).
$$

Nagy, S., Gijbels, I., & and Hlubinka, D. (2017) Depth-Based Recognition of Shape Outlying Functions

These *J*-th order depths carry information about the derivatives of the curves, of orders 0, . . . , *J* − 1.

The Band Depth

$$
D_B^j(x, F) = \sum_{j=2}^J P_{X_j \stackrel{\text{iid}}{\sim} F}(x \in \text{conv}(X_1, \ldots, X_j)).
$$

This is the proportion of *j*-tuples of curves, for $2 < j < J$, which *completely* envelope *x*.

The band depth becomes degenerate for $\mathcal{X} = \mathcal{C}[0, 1]$, Feller processes *X* (e.g. Brownian motion) with $P(X_0 = 0) = 1$ and each X_t for $t > 1$ non-atomic and symmetric about 0.

López Pintado, S., & Romo, J. (2009) On the concept of depth for functional data

Define the *enveloping time*

$$
ET(x; x_1, \ldots, x_j) = m_1(\{t \in [0, 1] : x(t) \in conv(x_1(t), \ldots, x_j(t))\})
$$

The modified band depth is defined as

$$
D_{\text{MBD}}(x, F) = \sum_{j=2}^{J} \mathbb{E}_{X_j^{\text{iid}} F} \left[\text{ET}(x; X_1, \dots, X_j) \right].
$$

We say that *y* is in the hypograph (resp. epigraph) of *x*, denoted *y* ∈ *H_x* (resp. *E_x*), if *y*(*t*) ≤ *x*(*t*) (resp. ≥) for all *t* ∈ [0, 1].

The half-region depth is defined as

 $D_{HR}(x, F) = \min \{ P_F(H_x), P_F(E_x) \}.$

This suffers from the same degeneracy problems as the band depth.

López Pintado, S., & Romo, J. (2011) A half-region depth for functional data

Define the Modified Hypograph (MHI) and Epigraph (MEI) Indices as

$$
MHI_{F}(x) = \mathbb{E}_{X \in F}[m_{1}\{t \in [0,1]: x(t) \geq X(t)\}],
$$

$$
MEI_{F}(x) = \mathbb{E}_{X \in F}[m_{1}\{t \in [0,1]: x(t) \leq X(t)\}].
$$

The modified half-region depth is defined as

 $D_{MHR}(x, F) = \min \{ MHI_F(x), MEI_F(x) \}$.

Suppose that *X* ∼ *F^X* is not observed on the entire interval [0, 1], but rather on some random compact subinterval *O* ∼ *Q* (independent of *X*).

Given a dataset $\mathcal{D} = \{ (X_i, O_i) \}_{i=1}^n$ where $(X_i, O_i) \stackrel{\text{iid}}{\sim} F_X \times Q$, we keep track of the indices observed at time $t \in [0, 1]$ as $\mathscr{J}(t) = \{j : t \in O_i\}$, as well as their number $q(t) = |\mathscr{J}(t)|$.

We may define a depth function in this setting via

$$
D_{POIFD}((x, o), F_X \times Q) = \int_o D(x(t), F_{X(t)}) w_o(t) dt,
$$

where $w_o(t) = q(t) / \int_0^t q(t) dt$.

Elías, A., Jiménez, R., Paganoni, A. M., & Sangalli, L. M. (2023) Integrated depths for partially observed functional data

Given $(X, 0)$, can we estimate X on $M = [0, 1] \setminus O$?

We may search for a reconstruction operator $\mathcal{R}\colon\mathsf{L}^2(\mathsf{O})\to\mathsf{L}^2(\mathsf{M})$ that minimizes the mean integrated prediction squared error $\mathbb{E}[\|X_M - \mathcal{R}(X_O)\|^2].$ In this setup, the best predictor is the conditional expectation $\mathbb{E}[X_{M} | X_{O}]$.

We may also search for a continuous linear reconstruction operator \mathcal{A} , by estimating terms of the Karhunen-Loéve expansion of *X*.

Kneip, A., & Liebl, D. (2020) On the optimal reconstruction of partially observed functional data

Another approach is to take a convex linear combination of curves from a suitable curve envelope with indices \mathcal{I} .

The enveloping curves $\mathcal I$ may be chosen so that (X, O) is as deep as possible inside the curve envelope.

Additionally, we want $\mathcal I$ to envelope (X, O) for as long as possible (in the sense of the enveloping time ET), and contain as many near curves (in an appropriately modified norm $\|\cdot\|'$) to (*X*,*O*) as possible.

Elías, A., Jiménez, R., & Shang, H. L. (2023) Depth-based reconstruction method for incomplete functional data

[Outlier Detection for Functional Data](#page-25-0)

Given data $\mathcal{D} = {\mathbf{x}_i}_{i=1}^n$, we may extract ranks $r_i = R(\mathbf{x}_i, \hat{F}_n)$.

For instance, we may choose

$$
R(x,\hat{F}_n) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}(D(x_i,\hat{F}_n) \leq D(x,\hat{F}_n)).
$$

Declare those *xⁱ* with unusually high ranks *rⁱ* as outliers, say greater than a cutoff $Q_3 + 1.5$ IQR.

NMR spectra of wine samples

A curve $x: [0, 1] \to \mathbb{R}$ may exhibit outlying behaviour within a body of curves in many ways.

- Isolated outlier: Significant deviation over a short interval.
- Persistent outlier: Deviation over a large/entire interval.
	- Shape
	- Shift
	- Amplitude

Hubert, M., Rousseeuw, P. J., & Segaert, P. (2015) Multivariate functional outlier detection

[Statistical Depth Functions](#page-0-0) Loutlier Detection for Functional Data

Functional Outliers

For a shape outlier, the slices *x*(*t*) may all seem inconspicuous in the marginals *FX*(*t*) .

One way of incorporating shape information of a curve *x* is to bundle it with its derivatives *x* (*j*) .

$$
\int_{[0,1]} D((\mathbf{x}^{(0)}(t),\ldots,\mathbf{x}^{(j)}(t))^\top, F_{(\mathbf{X}^{(0)}(t),\ldots,\mathbf{X}^{(j)}(t))^\top}) w(t) dt.
$$

(*J*) \blacksquare *Dutlier Detection for Functional Data*
 $\frac{d\sigma}{d\sigma}$
 \blacksquare Shape Outliers and Derivatives [Statistical Depth Functions](#page-0-0)

└ Shape Outliers and Derivatives

Shape Outliers and Derivatives

One way of incorporating shape information of a curve x is to (*j*) .

 $\int_{[0,1]} D((\mathbf{x}^{(0)}(t),\ldots,\mathbf{x}^{(j)}(t))^{\top}, F_{(\mathbf{X}^{(0)}(t),\ldots,\mathbf{X}^{(j)})}$

This suffers from errors in approximating derivatives, and the assumption of differentiability in the first place.

We say that a curve *x* is a *J*-th order outlier with respect to *F^X* if there exists $\pmb{t} \in [0,1]^J$ such that the vector $(\pmb{x}(t_1), \ldots, \pmb{x}(t_J))^{\top}$ is outlying with respect to $F_{(X(t_1),...,X(t_l))^\top}$.

$$
D_{FM}^J(x, F_X) = \int_{[0,1]^J} D((x(t_1), \ldots, x(t_J))^{\top}, F_{(X(t_1), \ldots, X(t_J))^{\top}}) w(t) dt.
$$

Nagy, S., Gijbels, I., & and Hlubinka, D. (2017) Depth-Based Recognition of Shape Outlying Functions

[Statistical Depth Functions](#page-0-0) [Outlier Detection for Functional Data](#page-25-0)

2024-05-17

- Shape Outliers and the *J*-th order Integrated Depth
- Shape Outliers and the *^J*-th order Integrated Depth We say that a curve *^x* is a *^J*-th order outlier with respect to *^F^X* if We say that a curve x is a *J*-th order outlier with respect to F_X if there exists $\mathbf{t} \in [0, 1]^j$ such that the vector $(x(t_1), \ldots, x(t_j))^{\top}$ is outlying with respect to $F_{(X(t_1), \ldots, X(t_j))})^{\top}$. $D_{\text{FM}}^{\dagger}(\mathbf{x},F_{\mathbf{X}}) = \int_{\{0,1\}^{\dagger}} D\big((\mathbf{x}(t_1),\ldots,\mathbf{x}(t_j))^\top, F_{\{X(t_1),\ldots,X(t_j)\}^\top}\big) \, w(\mathbf{t}) \, d\mathbf{t}.$ [0,1]

Nagy, S., Gijbels, I., & and Hlubinka, D. (2017) Depth-Based Recognition of

- This process looks at points of the form $(x(t), x(t + h), \dots)$, thus encoding information about the derivatives.
- One may choose the weight function *w*(·) to put emphasis on the diagonal.

Consider an outlyingness function *O*(*x*(*t*)) which measures the outlyingness of *x*(*t*) with respect to *FX*(*t*) . For instance, we may choose

$$
O(x(t)) = \frac{x(t) - \text{med}(X(t))}{\text{MAD}(X(t))}.
$$

Then, we may define a depth function

$$
D(x, F_X) = \int_{[0,1]} (1 + |O(x(t))|)^{-1} dt.
$$

Hubert, M., Rousseeuw, P. J., & Segaert, P. (2015) Multivariate functional outlier detection

Define

$$
\widetilde{MO}(x,F_X)=\int_{[0,1]}|O(x(t))|dt
$$

Then, Cauchy-Schwarz gives

$$
D(x, F_X) \cdot (1 + \widetilde{MO}(x, F_X)) \geq 1,
$$

with equality when $O(x(\cdot))$ remains constant over time.

Any sudden deviation in outlyingness will be detected by the *stability deviation*

$$
\Delta S = (1 + \widetilde{MO}(x, F)) - \frac{1}{D(x, F)}.
$$

The *centrality deviation* is measured as

$$
\Delta C = 1 - D(x, F).
$$

Centrality-Stability diagram

We may measure the variability in outlyingness over time more simply via

$$
MO(x, F) = \int_{[0,1]} O(x(t)) dt,
$$

\n
$$
VO(x, F) = \int_{[0,1]} ||O(x(t)) - MO(x, F)||^2 dt.
$$

Dai, W., & Genton, M. G. (2018) An outlyingness matrix for multivariate functional data classification

Given a dataset of curves $\mathcal{D} = {\mathbf{x}_i}_{i=1}^n$, the distances

$$
d_i = a_0 + a_1 \text{MEI}(x_i) + a_2 n^2 \text{MEI}(x_i)^2 - \text{MBD}(x_i),
$$

where $a_0 = a_2 = -2/n(n + 1)$, $a_1 = 2(n + 1)/(n - 1)$, are indicative of shape outlyingness.

Thus, one may declare *xⁱ* as an outlier if *dⁱ* exceeds a cutoff such as $Q_3 + 1.5$ **IQR.**

Arribas-Gil, A., & Romo, J. (2014). Shape outlier detection and visualization for functional data: the outliergram

2024-05-17 [Statistical Depth Functions](#page-0-0) Loutlier Detection for Functional Data

The Outliergram

The numbers d_i are always positive!

The Outliergram

Given a dataset of curves $\mathcal{D} = \{ \mathbf{x}_i \}_{i=1}^n$, the distances

*d*_{*i*} = *a*₁ + *a*₁ MEI(*x*_i) + *a*₂*n*² MEI(*x*_i)² − MBD(*x*_i),

 $a_1 = a_2 + a_1$ mest₍*x*) $+ a_2 n$ mest₍*x*) $-$ mest(*x*),
where $a_3 = a_2 = -2/n(n+1), a_1 = 2(n+1)/(n-1),$ are
indicative of shape outlyingness. Thus, one may declare *^xⁱ* as an outlier if *^dⁱ* exceeds a cutoff

such as *^Q*³ ⁺ ¹.⁵ IQR.

Arribas-Gil, A., & Romo, J. (2014). Shape outlier detection and visualization for functional data: the outliergram

[Local Depth Functions](#page-44-0)

We say that a distribution *F* is elliptical if it admits a density of the form

$$
f_X(x) = c|\Sigma|^{-1/2}h\left((x-\mu)^{\top}\Sigma^{-1}(x-\mu)\right)
$$

for some strictly decreasing function *h*. Write $F \in Ell(h; \mu, \Sigma)$.

An affine invariant depth function continuous in *x* uniquely determines *F* within Ell(*h*; ·, ·). The depth and density contours coincide.

[Statistical Depth Functions](#page-0-0) **└ [Local Depth Functions](#page-44-0)**

 \Box Elliptical Distributions

Elliptical Distributions

We say that a distribution *^F* is elliptical if it admits a density of the form

*f*_{*X*}(*x*) = *c*|Σ|^{−1/2}*h* ((*x* − μ)^{\top}Σ^{−1}(*x* − μ))

for some strictly decreasing function *^h*. Write *^F* [∈] Ell(*h*; ^µ, Σ).

An affine invariant depth function continuous in *^x* uniquely determines *^F* within Ell(*h*; ·, ·). The depth and density contours coincide.

- The whitened random variable *Z* = Σ[−]1/² (*X* − µ) has density $f_Z(z) \propto h(\|z\|^2)$.
- The halfspace, simplicial, projection depths satisfy this property.
- In general, depths such as the halfspace depth always produce convex central regions.

Spatial depth

Local spatial depth, β = 0.2

x

Given $x \in \mathcal{X}$, we may symmetrize F_x as

$$
F_X^x = \frac{1}{2}F_X + \frac{1}{2}F_{2x-X}.
$$

The probability-β depth-based neighbourhood of *x* in *F^X* is $\sinh(y)$ the β -th central region of $F_{\bf X}^{\bf x}$. This is denoted by $N_{\beta}^{\bf x}(F_{\bf X}).$

Paindaveine, D., & Van Bever, G. (2013) From depth to local depth: A focus on centrality

Let $F^{\mathbf{x}}_{\beta}$ denote the distribution $F_{\mathbf{X}}$ conditioned on $N^{\mathbf{x}}_{\beta}(F_{\mathbf{X}})$.

The local depth function at locality level $\beta \in (0, 1]$ is defined as

 $LD(x, F_X) = D(x, F_\beta^X).$

When $\beta = 1$, we have $LD_1 = D$.

Spatial depth

Local spatial depth, β = 0.2

x

Let $F^{\mathbf{x}}_{\beta}$ denote the distribution $F^{\mathbf{x}}_{\mathbf{x}}$ conditioned on $N^{\mathbf{x}}_{\beta}(F_{\mathbf{x}})$. Note that this is angularly symmetric about *x*.

Given $x \in \mathcal{X}$, we may define a local depth kernel, centered at x, via

$$
K_{\beta}^{\mathsf{x}}\colon \mathsf{N}_{\beta}^{\mathsf{x}}(F_{\mathsf{X}})\to \mathbb{R}, \qquad \mathsf{z}\mapsto D(\mathsf{z},\widetilde{F}_{\beta}^{\mathsf{x}}).
$$

Extend this to \mathcal{X} by setting $K^{\mathsf{x}}_{\beta}(\cdot) = 0$ outside $N^{\mathsf{x}}_{\beta}(F_{\mathsf{x}})$.

We propose a linear estimator of the form

$$
\hat{y}_{\beta}(x) = \sum_{i} w_i(x) y_i, \qquad w_i(x) = \frac{K_{\beta}^x(x_i)}{\sum_{j} K_{\beta}^x(x_j)}.
$$

This may be interpreted as a weighted KNN estimator, or a variable bandwidth kernel estimator.

We only have one tuning parameter $\beta \in (0, 1]$.

[Statistical Depth Functions](#page-0-0) [Local Depth Functions](#page-44-0)

The methods used are local depth based regression (black), Nadaraya-Watson kernel (red), local linear (green) and quadratic (blue).

[Concluding Remarks](#page-59-0)

- Formulation and Properties of Depth Functions
	- Multivariate Data
	- Functional Data
- Extensions of Depth Functions
	- Partially Observed Functional Data
	- Local Depth
- Applications
	- Exploratory Data Analysis
	- Testing
	- Classification
	- Clustering
	- Outlier Detection
	- Data Reconstruction
	- Regression ?

References i

- [1] Ana Arribas-Gil and Juan Romo. Shape outlier detection and visualization for functional data: the outliergram. *Biostatistics*, 15(4):603–619, 03 2014.
- [2] Anirvan Chakraborty and Probal Chaudhuri. On data depth in infinite dimensional spaces. *Annals of the Institute of Statistical Mathematics*, 66(2):303–324, 2014.
- [3] Anirvan Chakraborty and Probal Chaudhuri. The spatial distribution in infinite dimensional spaces and related quantiles and depths. *The Annals of Statistics*, 42(3):1203–1231, 2014.
- [4] Wenlin Dai and Marc G. Genton. An outlyingness matrix for multivariate functional data classification. *Statistica Sinica*, 28(4):2435–2454, 2018.
- [5] Antonio Elías, Raúl Jiménez, and Han Lin Shang. Depth-based reconstruction method for incomplete functional data. *Computational Statistics*, 38(3):1507–1535, 2023.

References ii

- [6] Antonio Elías, Raúl Jiménez, Anna M. Paganoni, and Laura M. Sangalli. Integrated depths for partially observed functional data. *Journal of Computational and Graphical Statistics*, 32(2):341–352, 2023.
- [7] Ricardo Fraiman and Graciela Muniz. Trimmed means for functional data. *Test*, 10(2):419–440, 2001.
- [8] Irène Gijbels and Stanislav Nagy. On a General Definition of Depth for Functional Data. *Statistical Science*, 32(4):630 – 639, 2017.
- [9] Mia Hubert, Peter J. Rousseeuw, and Pieter Segaert. Multivariate functional outlier detection. *Statistical Methods & Applications*, 24(2):177–202, 2015.
- [10] Alois Kneip and Dominik Liebl. On the optimal reconstruction of partially observed functional data. *The Annals of Statistics*, 28(3):1692–1717, 2020.

References iii

[11] David Kraus.

Components and completion of partially observed functional data. *Journal of the Royal Statistical Society. Series B (Statistical Methodology)*, 77(4):777–801, 2015.

[12] Sara López-Pintado and Juan Romo. On the concept of depth for functional data. *Journal of the American Statistical Association*, 104(486):718–734, 2009.

[13] Sara López-Pintado and Juan Romo. A half-region depth for functional data. *Computational Statistics & Data Analysis*, 55(4):1679–1695, 2011.

[14] Karl Mosler.

Depth Statistics, pages 17–34.

Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

[15] Stanislav Nagy, Irene Gijbels, and Daniel Hlubinka. Depth-Based Recognition of Shape Outlying Functions. *Journal of Computational and Graphical Statistics*, 26(4):883–893, 2017.

- [16] Davy Paindaveine and Germain Van Bever. From depth to local depth: A focus on centrality. *Journal of the American Statistical Association*, 108(503):1105–1119, 2013.
- [17] Yijun Zuo and Robert Serfling. General notions of statistical depth function. *The Annals of Statistics*, 28(2):461–482, 2000.