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A two-sample testing problem
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An Introduction to Statistical Depth Functions

A two-sample testing problem

The figure illustrates the distribution of sepal widths from two species

(‘versicolor’ and ‘virginica’), from the ‘Iris’ dataset in R.



Wilcoxon rank sum test

Given two random samples X1, . . . , Xm and Y1, . . . , Yn, construct

W =
∑
j

r(Yj, DF ∪ DG), r(Y,D) =
∑
Z∈D

1(Z ≤ Y).

This is distribution free under the null hypothesis that both

samples have the same underlying distribution.
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An Introduction to Statistical Depth Functions

A two-sample testing problem

Wilcoxon rank sum test

The two-sided Wilcoxon rank sum test gives a p-value of 0.005, hence

we reject the null hypothesis that the true location shift is zero.
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A generalization for multivariate data

Given multivariate data, we wish to construct

W∗ =
∑
j

r(Yj, DF ∪ DG), r∗(Y,D) =
∑
Z∈D

1(Z ?? Y).

Furthermore, we want W∗ to be able to detect differences in

location and scale between F and G.

Liu, R.Y., & Singh, K. (1993) A Quality Index Based on Data Depth and

Multivariate Rank Tests.
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An Introduction to Statistical Depth Functions

A two-sample testing problem

The red lines are spatial depth contours, drawn with reference to the

‘versicolor’ data.



How do we quantify this notion of centrality?
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Depth Functions



Depth Functions

A depth function quantifies how central a point x is with

respect to a distribution F.

Points which are more central are said to be deeper.

This framework allows many rank based nonparametric

techniques to be translated to a broader class of data, e.g.

multivariate and functional data.
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Depth Functions

Depth Functions

• Depth induces a center-outwards ordering of points.

• Contrast with the notion of rank which gives a lowest-highest

ordering in the univariate setting.



Some applications of depth functions

1. Inference procedures

• Hypothesis tests

• Rank tests

• Multivariate quantiles

• Confidence regions

2. Exploratory data analysis

3. Classification and clustering

4. Outlier detection

8



Some applications of depth functions

1. Inference procedures

• Hypothesis tests

• Rank tests

• Multivariate quantiles

• Confidence regions

2. Exploratory data analysis

3. Classification and clustering

4. Outlier detection

2
0
2
3
-1
2-
11

An Introduction to Statistical Depth Functions

Depth Functions

Some applications of depth functions

• Hypothesis tests – Two sample quality index

• Exploratory data analysis – D-D plots



Depth Functions in Rp

Let D : Rp × F → R be bounded, non-negative, continuous,

and satisfy the following properties.

1. Affine invariance: D(Ax + b, FAx+b) = D(x, FX).

2. Maximality at centre: D(θ, FX) = supx∈Rp D(x, F).

3. Monotonicity along rays: D(x, F) ≤ D(θ + α(x − θ), F).

4. Vanish at infinity: D(x, F) → 0 as ‖x‖ → ∞.

Zuo, Y., & Serfling, R. (2000) General notions of statistical depth function
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Depth contours

The region of depth d is defined by

R(d, F) = {x ∈ Rp | D(x, F) ≥ d}.

The boundary ∂R(d, F) is called the contour of depth d.

Define

R(x, F) = P(D(Y, F) ≥ D(x, F) | Y ∼ F).

Then, as long as D(·, F) is continuous, the probability integral

transform gives

R(X, F) ∼ Uniform[0, 1].

Liu, R.Y., Parelius, J.M, & Singh, K. (1999) Multivariate analysis by data depth:

descriptive statistics, graphics and inference
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Depth contours
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Depth Functions

Depth contours

• Depth contours are analogous to univariate quantiles.

• Sample points ordered with respect to their corresponding

R(Xj, F̂n) are analogous to order statistics.

• The distribution-free nature of R(X, F) is analogous to how

F(X) ∼ Uniform[0, 1].



Mahalanobis depth

Produces elliptic contours, using the first two moments of the

given distribution.

DMh(x, F) =
1

1+ (x − µ)Σ−1(x − µ)
.

A robust version can be obtained by using MCD estimators.
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Halfspace/Tukey depth

Given a point x ∈ Rp, examine all hyperplanes through x, and

find the halfspace with the least probability.

DH(x, F) = inf
v∈Rp\{0}

P( v>X ≤ v>x︸ ︷︷ ︸
X is in a halfspace

through x

).
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Spatial depth

Examine the average of unit vectors pointing out of x.

DSp(x, F) = 1−
∥∥∥E[ X − x

‖X − x‖︸ ︷︷ ︸
unit vector
from x to X

]∥∥∥.

Spatial depth is not always monotonic with respect to the

deepest point.

Nagy., S. (2017) Monotonicity properties of spatial depth
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Simplicial depth

Examine the probability of x being contained in a random

simplex.

DS(x, F) = P(x ∈ simplex[X1, . . . , Xp+1] | Xi
iid∼ F).
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Projection depth

Examine the maximum outlyingness of x with respect to

projections.

DP(x, F) =

(
1+ sup

‖v‖=1

v>x − µ(v>X)

σ(v>X)

)−1

, X ∼ F.

A robust version can be defined as

D∗
P(x, F) =

(
1+ sup

‖v‖=1

v>x −median(v>X)

MAD(v>X)

)−1

, X ∼ F,

MAD(Y) = median(|Y −median(Y)|).
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Why not use likelihood contours?

The ‘Curse of Dimensionality’.
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Depth Functions

Additionally, consider a uniform distribution, say on a unit ball. This

has non-trivial depth contours, but no proper density contours.



The Depth-Depth plot



Depth-Depth plots

Let F,G be two distributions on Rp, and let D be a depth

function. We construct the D-D plot

DD(F,G) = {(D(x, F), D(x,G)) : x ∈ Rp}.

Given data DF ,DG, we may instead look at the D-D plot

DD(F̂m, Ĝn) =
{(

D(x, F̂m), D(x, Ĝn)
)
: x ∈ DF ∪ DG

}
.

Liu, R.Y., Parelius, J.M, & Singh, K. (1999) Multivariate analysis by data depth:

descriptive statistics, graphics and inference
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The Depth-Depth plot

Depth-Depth plots

• The area of DD(F,G) can serve as an affine-invariant measure of

the discrepancy between F and G.

• The D-D plot gives an `-variate visualization of ` groups of data

regardless of what the original data looks like (multivariate,

functional).
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The Depth-Depth plot

Identical distributions

Both groups from standard normal distributions.



Location difference
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The Depth-Depth plot

Location difference

Means shifted to (−1, 0)> and (1, 0)>.



Scale difference
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Scale difference
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The Depth-Depth plot

Scale difference

Covariances I2 and 4I2.
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The Depth-Depth plot

Scale difference

Covariances [
1 −0.5

−0.5 1

]
and

[
1 0.5

0.5 1

]
.



Location and scale difference
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Location and scale difference
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The Depth-Depth plot

Location and scale difference

• Means (−1, 0)> and (1, 0)>.

• Covariances I2 and 9I2.
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The Depth-Depth plot

D-D plot indicative of location difference.
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The Depth-Depth plot

Data has been shifted so that the locations coincide.



Depth based classification



Maximum depth classifiers

Given a point x ∈ Rp, assign it to the class with respect to

which it has maximum depth. In other words, choose

k̂(x) = argmax
j

D(x, F̂j).

Under certain conditions, this asymptotically performs on par

with the Bayes classifier.

Ghosh, A.K., & Chaudhuri, P. (2005) On maximum depth and related

classifiers
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Depth based classification

Maximum depth classifiers

Maximum depth classification corresponds to using the x = y line to

separate points in the D-D plot.
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Depth based classification

• This figure illustrates maximum depth classification on the

same multivariate data shown earlier, using spatial depth.

• The depth contours are learned from training data.

• The black curve denotes the learned decision boundary.

• Classification accuracies hover around 70%.



Relative data depth

The relative data depth

ReD(x) = D(x, F̂
k̂(x)

)− max
j 6=k̂(x)

D(x, F̂j)

gives a measure of confidence in the classification of x.

Jörnsten, R. (2004) Clustering and classification based on the L1 data depth
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Depth based classification

Relative data depth

• This can be used to identify and remove ‘noisy’ examples from

the training set.

• This can also be used as a measure of dissimilarity in clustering,

with an objective function

1

N

∑
k

∑
xi∈C(k)

ReD(xi).
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Depth based classification

This illustrates that the maximum depth classifier may not always be

appropriate.



Depth-Depth classifiers

Given data DF ,DG, look at the D-D plot

DD(F̂m, Ĝn) =
{(

D(xi, F̂m), D(xi, Ĝn)
)
: xi ∈ DF ∪ DG

}
,

and find a function φ which separates points from the two

classes.

For x ∈ Rp, check which region the point (D(x, F̂m), D(x, Ĝn))

lies in, and assign it to the corresponding class.

Li, J., Cuestas-Albertos, J.A., & Liu, R.Y. (2012) DD-Classifier: Nonparametric

Classification Procedure Based on DD-Plot
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Depth based classification

Depth-Depth classifiers

• The D-D plot converts the `-class classification problem to one

in a `-variate setting, regardless of what the original data looks

like (multivariate, functional).

• The separating function φ is approximated by searching in a

class of functions Γ, for instance, the family of increasing

functions, or the family of polynomials.

• The two class DD classifier is easily extended to ` groups, in the

form of the DDG classifier. The data transformed via

x 7→ (D(x, F̂1), . . . ,D(x, F̂`))

can be classified using any existing multivariate classifier (LDA,

kNN, GLM, etc).
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Depth based classification

• The figure on the left shows the D-D plot for the training data.

• The figure on the right shows the locations of points (originally

taken from a grid in the real data space) in the D-D plot. They

are coloured according to the class predicted by the DD

classifier, using polynomial boundaries.

• In this instance, the classification rule agrees closely with the

maximum depth classifier rule. This is illustrated by the

decision boundary in the D-D plot almost coinciding with the

diagonal.
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Depth based classification

• The figure on the left shows the predictions for the testing data

on the D-D plot.

• The figure on the right shows the predictions for the testing

data in the original space.

• The black curve denotes the decision boundary.

• Classification accuracies hover aruond 70%.



Elliptic distributions

Suppose that the underlying population distributions are

elliptic, i.e. their density functions are of the form

Ci|Σi|−1/2 hi

(
(x − µi)

>Σ−1
i
(x − µi)

)
for strictly decreasing functions hi. Then, the Mahalanobis,

simplicial, and projection depths D(·, Fi) are strictly increasing

functions of the respective densities.

Thus, the Bayes rule involves comparing φ(D(x, F)) and D(x,G)

for some strictly increasing function φ.

Li, J., Cuestas-Albertos, J.A., & Liu, R.Y. (2012) DD-Classifier: Nonparametric

Classification Procedure Based on DD-Plot
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Integrated, infimal, and random projection depths

Dint(X, FX) =

∫
T

D(X(t), FX(t))w(t) dt.

Dinf (X, FX) = inf
t∈T

D(X(t), FX(t)).

DRP(X, FX) = inf
φ
D(〈X, φ〉, F〈X,φ〉).

Gijbels, I., & Nagy, S. (2017) On a General Definition of Depth for Functional

Data
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Outlyingness matrices

Given a random p-variate function X, define a pointwise

outlyingness function as

O(X(t), FX(t)) =

[
1

D(X(t), FX(t))
− 1

]
· v(t).

With this, define

MO(X, FX) =

∫
T

O(X(t), FX(t))w(t) dt,

VO(X, FX) =

∫
T

‖O(X(t), FX(t))−MO(X, FX)‖2 w(t) dt.

Dai, W., & Genton, M.G. (2018) An outlyingness matrix for multivariate

functional data classification
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Outlyingness matrices

Furthermore, denoting

Õ(X(t), FX(t)) = O(X(t), FX(t))−MO(X, FX),

define the variational outlyingness matrix

VOM(X, FX) =

∫
T

Õ(X(t), FX(t)) Õ(X(t), FX(t))
> w(t) dt.

Use either the feature vector (MO>, VO)> or ‖VOM‖ for

classification.
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Phonemes in digitized speech
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Depth functions for Functional Data

Phonemes in digitized speech

• This figure illustrated periodograms obtained from digitized

speech.

• Different groups correspond to the pronunciation of different

phonemes.

• The thicker lines denote the median curves from the

corresponding group.

• This data is available as ‘phoneme data’ from the fds package

in R.



Functional → Multivariate, via random projections

Replace {X(t)}t∈T with {〈X, φj〉}`j=1
, where φ1, . . . , φ` are random

functions and

〈X, φ〉 =
∫
T

〈X(t), φ(t)〉w(t) dt.
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Phonemes in digitized speech revisited
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Phonemes in digitized speech revisited

• The random functions φ1, . . . , φ` have been generated by a

Gaussian process with an exponential covariance kernel.

• The last three methods employ the maximum depth classifier

(with the corresponding depths), applied on the transformed

data

X 7→ (〈X, φ1〉, . . . , 〈X, φ`〉) .

• The degradation in performance of the Mahalanobis classifier is

likely due to the worsening estimate of the covariance matrix as

the number of projections (hence the dimension) ` increases.



Do depth functions completely characterize

probability distributions?

Sometimes!
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This has implications in the consistency of depth based tests and clas-

sifiers, where all information about the given data/distribution is ob-

tained via depth.



Halfspace depth revisited

The halfspace depth characterizes discrete probability

distributions, i.e. if DH(·,P) = DH(·,Q) and one of P,Q is

discrete, then P = Q.

The halfspace depth also characterizes elliptic probability

distributions.

Cuesta-Albertos, J.A., & Nieto-Reyes, A. (2008) The Tukey and the random

Tukey depths characterize discrete distributions

Kong, L., & Zuo, Y. (2010) Smooth depth contours characterize the

underlying distribution
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Halfspace depth revisited

The halfspace depth characterizes distributions P in Rp with contigu-

ous support such that the depth contours for 0 < p < 1/2 are smooth

and the maximal mass of P at a hyperplane

∆(P) = supP(v>X = c) = 0.



A counterexample

Consider X ∼ P, Y ∼ Q where

ψX(t) = exp(−‖t‖1/21 ), ψY(t) = exp(−‖t‖1/2
1/2).

Observe that the marginals of X and Y are identically

distributed!

This is because they have the same characteristic function,

ψ(t) = exp(−|t|1/2).

Nagy, S. (2021) Halfspace depth does not characterize probability

distributions
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A counterexample

Next, if ψZ(t) = ψ(‖t‖α), then v>Z
d
= ‖v‖αZ1. Such distributions

are called α-symmetric.

Using this, it can be shown that

DH(x,P) = DH(x,Q) = F(−‖x‖∞),

where F is the cdf of X1.

48



A counterexample

Next, if ψZ(t) = ψ(‖t‖α), then v>Z
d
= ‖v‖αZ1. Such distributions

are called α-symmetric.

Using this, it can be shown that

DH(x,P) = DH(x,Q) = F(−‖x‖∞),

where F is the cdf of X1.

2
0
2
3
-1
2-
11

An Introduction to Statistical Depth Functions

Depth functions for Functional Data

A counterexample

• Observe that

DH(x, FZ) = inf
v 6=0

P(v>Z ≤ v>x)

= inf
v 6=0

P

(
Z1 ≤

v>x

‖v‖α

)
= P

(
Z1 ≤ inf

‖v‖α=1
v>x

)
.

• The infimum −‖x‖∞ is achieved when v = ej.

• This is easy to see when α = 1 (optimization over a convex hull).

When 0 < α ≤ 1, use ‖v‖α ≥ ‖v‖1.



Future work



Local depths

The notions of depth discussed so far work well with elliptic,

unimodal distributions, but fail to capture the natures of more

general distributions.

Agostinelli, C., & Romanazzi, M. (2011) Local depth
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Future work

Halfspace depth contours of data drawn from a ‘banana’ shaped dis-

tribution, generated by first drawing

X ∼ N (0,Σ), Σ =

[
1 0.9

0.9 1

]
,

then setting

Y =

[
aX1

X2/a+ b((aX1)
2 + a2)

]
, a = 1, b = 1.



Distribution-free procedures

Use ideas from optimal transportation to investigate more

canonical notions of depth (for instance, the

Monge-Kantorovich depth), and thereby establish procedures

independent of the underlying distributions/spaces.

Chernozhukov, V., Galichon, A., Hallin, M., & Henry, M. (2017)

Monge–Kantorovich depth, quantiles, ranks and signs
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