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MA4203: Probability II

Satvik Saha, 19MS154 May 1, 2023

Assignment I

Exercise 1 Let r > 0 and let X be any almost surely non-negative random variable. Prove the
following.

(a)

E(X) =

∫ ∞

0

P (X > x) dx.

(b)
∞∑

n=1

P (X ≥ n) ≤ E(X) ≤ 1 +

∞∑
n=1

P (X ≥ n).

(c)

E(Xr) = r

∫ ∞

0

xr−1P (X > x) dx.

(d)

A

∞∑
n=1

nr−1P (X ≥ n) ≤ E(Xr) ≤ 1 +B

∞∑
n=1

nr−1P (X ≥ n).

(e) Let g be a non-negative strictly increasing differentiable function. Then,

E(g(X)) = g(0) +

∫ ∞

0

g′(x)P (X > x) dx.

Hence,

E(g(X)) < ∞ ⇐⇒
∞∑

n=1

g′(n)P (X > n) < ∞.

(f)

E(log+ X) < ∞ ⇐⇒
∞∑

n=1

n−1P (X > n) < ∞.

(g) For p > 1,

E((log+ X)p) < ∞ ⇐⇒
∞∑

n=1

n−1(log x)p−1P (X > n) < ∞.

(h) For p > 0 and r > 1,

E(Xr(log+ X)p) < ∞ ⇐⇒
∞∑

n=1

nr−1(log x)pP (X > n) < ∞.

(i)

E(log+ log+ X) < ∞ ⇐⇒
∞∑

n=1

n−1(log n)−1P (X > n) < ∞.
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Solution.

(a) Let F be the cdf of X. Then, Tonelli’s Theorem gives

E(X) =

∫ ∞

0

x dF (x) =

∫ ∞

0

∫ x

0

dt dF (x)

=

∫ ∞

0

∫ ∞

0

χ(0,x)(t) dt dF (x)

=

∫ ∞

0

∫ ∞

0

χ(t,∞)(x) dF (x) dt

=

∫ ∞

0

1− F (t) dt

=

∫ ∞

0

P (X > t) dt.

(b) Note that if n ≤ x < n+ 1, then

P (X < n) ≤ P (X ≤ x) ≤ P (X < n+ 1), P (X ≥ n+ 1) ≤ P (X > x) ≤ P (X ≥ n).

Integrating from n to n+ 1 and summing, we have

∞∑
n=0

P (X ≥ n+ 1) ≤ E(X) ≤
∞∑

n=0

P (X ≥ n) = P (X ≥ 0) +

∞∑
n=1

P (X ≥ n).

Thus,
∞∑

n=1

P (X ≥ n) ≤ E(X) ≤ 1 +

∞∑
n=1

P (X ≥ n).

(c) Using the substitution x 7→ ur,

E(Xr) =

∫ ∞

0

P (Xr > x) dx =

∫ ∞

0

P (X > x1/r) dx =

∫ ∞

0

P (X > u) rur−1 du.

(d) Check that each
rnr−1 < (n+ 1)r − nr < r(n+ 1)r−1.

To see this, note that (n+ 1)r − nr = rxr−1 for some x ∈ (n, n+ 1) by the Mean Value Theorem.
Furthermore,

(n+ 1)r−1 =

(
n+ 1

n

)r−1

nr−1 ≤ r2r−1nr−1,

and

rnr−1 =

(
n

n+ 1

)r−1

(n+ 1)r−1 ≥ r2−(r−1)(n+ 1)r−1.

Thus, we have
r2−(r−1)(n+ 1)r−1 < (n+ 1)r − nr < r2r−1nr−1.

Now,

E(Xr) =

∫ ∞

0

rxr−1P (X > x) dx =

∞∑
n=0

∫ n+1

n

rxr−1P (X > x) dx.

Thus,
∞∑

n=0

P (X ≥ n+ 1)

∫ n+1

n

rxr−1 dx ≤ E(Xr) ≤
∞∑

n=0

P (X ≥ n)

∫ n+1

n

rxr−1 dx,

so
∞∑

n=0

P (X ≥ n+ 1)[(n+ 1)r − nr] ≤ E(Xr) ≤
∞∑

n=0

P (X ≥ n)[(n+ 1)r − nr].
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Using the established inequality and re-indexing,

∞∑
n=0

P (X ≥ n+ 1) · r2−(r−1)(n+ 1)r−1 ≤ E(Xr) ≤ 1 +

∞∑
n=1

P (X ≥ n) · r2r−1nr−1,

r2−(r−1)
∞∑

n=1

nr−1P (X ≥ n) ≤ E(Xr) ≤ 1 + r2r−1
∞∑

n=1

nr−1P (X ≥ n).

(e) Calculate

E(g(X)) =

∫ ∞

0

g(x) dF (x)

=

∫ ∞

0

(g(0) + g(x)− g(0)) dF (x)

= g(0) +

∫ ∞

0

∫ x

0

g′(t) dt dF (x)

= g(0) +

∫ ∞

0

∫ ∞

t

g′(t) dF (x) dt

= g(0) +

∫ ∞

0

g′(t)(1− F (t)) dt

= g(0) +

∫ ∞

0

g′(t)P (X > t) dt.

We now impose the condition that there exist constants A,B such that for x ∈ [n, n+1], sufficiently
large n,

Ag′(n+ 1) ≤ g′(x) ≤ B g′(n).

Then, E(g(X)) < ∞ if and only if the following integral is finite.∫ ∞

0

g′(x)P (X > x) dx =

∞∑
n=0

∫ n+1

n

g′(x)P (X > x) dx.

Now,

∞∑
n=0

Ag′(n+ 1)P (X > n+ 1) ≤
∞∑

n=0

∫ n+1

n

g′(x)P (X > x) dx ≤
∞∑

n=0

Bg′(n)P (X > n),

hence

A

∞∑
n=1

g′(n)P (X > n) ≤
∫ ∞

0

g′(x)P (X > x) dx ≤ Bg′(0) +B

∞∑
n=1

g′(n)P (X > n).

Thus, E(g(X)) < ∞ if and only if
∑∞

n=1 g
′(n)P (X > n) < ∞.

Remark. Instead of starting at 0, we may have to truncate the integral/sum.

(f) Note that

E(g(X)) =

∫ ∞

0

g(x) dF (x) =

∫ M

0

g(x) dF (x) +

∫ ∞

M

g(x) dF (x),

the first part being finite, so we need only check the criterion for g and for the sum described in the
previous part on (M,∞) and for n > M . Here, g = log+, which is non-negative, strictly increasing,
and differentiable on (1,∞), with g′(x) = 1/x. Now, for x ∈ [n, n+ 1], we have

1

n+ 1
≤ 1

x
≤ 1

n
.

With this, the desired follows via the criterion in the previous part.
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(g) Putting g = (log+)p, we have g non-negative, strictly increasing, differentiable on (2,∞), with
g′(x) = px−1(log x)p−1. For x ∈ [n, n+ 1], we have

log x ≤ log(n+ 1) < log(n2) = 2 log n,

and
log x > log n =

1

2
log n2 >

1

2
log(n+ 1).

Thus,
2−(p−1)(n+ 1)−1(log(n+ 1))p−1 ≤ x−1(log x)p−1 ≤ 2p−1n−1(log n)p−1.

Again, the desired criterion follows.

(h) Precisely the same calculations as in (c) show that if there exist constants A,B and a map h : N → R
such that for all x ∈ [n, n+ 1],

Ah(n+ 1) ≤ g′(x) ≤ B h(n),

then

E(g(x)) < ∞ ⇐⇒
∞∑

n=1

h(n)P (X > n) < ∞.

Putting g(x) = xr(log+ x)p, we have g non-negative, strictly increasing, differentiable on (1,∞),
with g′(x) = xr−1(log x)p−1[r log x+ 1]. For sufficiently large n

r log x ≤ r log x+ 1 ≤ 2r log x, rxr−1(log x)p ≤ g′(x) ≤ 2rxr−1(log x)p.

for x ∈ [n, n+ 1]. Thus,

r · 2−(r−1)(n+ 1)r−1 · 2−p(log(n+ 1))p ≤ g′(x) ≤ 2r · 2r−1nr−1 · 2p(log n)p.

Thus, putting h(n) = nr−1(log n)p gives the desired criterion.

(i) Putting g = log+ log+, we have g non-negative, strictly increasing, differentiable on (e,∞), with
g′(x) = x−1(log x)−1. Also, for x ∈ [n, n+ 1], we have

(n+ 1)−1(log(n+ 1))−1 ≤ g′(x) ≤ n−1(log n)−1.

The desired criterion follows.

Exercise 2 Let {Xn} be a sequence of pairwise independent and identically distributed random vari-
ables.

(a) Show that Xn/n → 0 almost surely if and only if E(|X1|) < ∞.

(b) Show that |Xn|1/n → 1 almost surely if and only if E(log+ |X1|) < ∞.

Solution.

(a)

Xn/n
as−→ 0 ⇐⇒

∞∑
n=1

P (|Xn/n| > ϵ) < ∞ for all ϵ > 0 (Borel-Cantelli)

⇐⇒
∞∑

n=1

P (|Xn/ϵ| > n) < ∞ for all ϵ > 0

⇐⇒
∞∑

n=1

P (|X1/ϵ| > n) < ∞ for all ϵ > 0 (Identical distributions)

⇐⇒ E(|X1/ϵ|) < ∞ for all ϵ > 0

⇐⇒ E(|X1|) < ∞.

Remark. Pairwise independence is only needed for the forward implication in the first step.
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(b) Note that (log+ |Xn|)/n
as−→ 0 if and only if E(log+ |X1|) < ∞ by the previous part. By the contin-

uous mapping theorem, |Xn|1/n
as−→ 1 gives (log+ |Xn|)/n

as−→ 0. Conversely, (log+ |Xn|)/n
as−→ 0

means that (log+ |Xn(ω)|)/n → 0 for all ω ∈ A with P (A = 1). Thus, |Xn(ω)|/n → 0 for those
ω ∈ A where |Xn(ω)| > 1; for the remaining ω, we already have |Xn(ω)|/n ≤ 1/n → 0.

Exercise 3 Let {Xn} be a sequence of identically distributed variables, and let Mn = max{|X1|, . . . , |Xn|}.

(a) If E(|X1|) < ∞, show that Mn/n → 0 almost surely.

(b) If E(|X1|α) < ∞ for some α ∈ (0,∞), then show that Mn/n
1/α → 0 almost surely.

(c) If {Xn} is also independent, then show that Mn/n
1/α → 0 almost surely implies that E(|X1|α) <

∞.

Solution.

(a) We have E(|X1|) < ∞ =⇒ Xn/n
as−→ 0, hence there exists A ⊆ Ω with P (A) = 1 such that

Xn(ω)/n → 0 for all ω ∈ A. Set xn = Xn(ω), mn = Mn(ω), and let ϵ > 0, whence there exists
N ∈ N such that for all n > N , we have |xn|/n < ϵ. Now, observe that for all n > N ,

mn

n
≤ max{|x1|, . . . , |xN |}

n
+max

{
|xN+1|
N + 1

, . . . ,
|xn|
n

}
.

This is because either mn ∈ {|x1|, . . . , |xN |}, or mn = |xk| for some N < k ≤ n, so mn/n ≤ |xk|/k.
Note that as n → ∞, the first term vanishes and the second term is always bounded by ϵ. Thus,
mn/n → 0, hence Mn/n

as−→ 0.

(b) We have E(|X1|α) < ∞ =⇒ Mα
n /n

as−→ 0. By the continuous mapping theorem, Mn/n
1/α as−→ 0.

(c) We have Mn/n
1/α as−→ 0 =⇒ |Xn|/n1/α as−→ 0, as |Xn| ≤ Mn. By the continuous mapping

theorem, |Xn|α/n
as−→ 0. Thus, the previous exercise gives E(|X1|α) < ∞.

Exercise 4 Let {An} be a sequence of independent events with all P (An) < 1. Show that

P (lim sup
n→∞

An) = 1 ⇐⇒ P

( ∞⋃
n=1

An

)
= 1.

Solution. We have

P (lim sup
n→∞

An) = 1 ⇐⇒ P

( ∞⋂
k=1

∞⋃
n=k

An

)
= 1 =⇒ P

( ∞⋃
n=1

An

)
= 1.

For the reverse implication, it suffices to show that for all k ≥ 1, we have

P

( ∞⋃
n=k

An

)
= 1,

which is equivalent to

P

( ∞⋂
n=k

Ac
n

)
= 0 ⇐⇒

∞∏
n=k

P (Ac
n) = 0.

But this follows immediately since it holds for k = 1; each P (Ac
n) > 0 means that this term can be

cancelled from the product yielding the equality for all k > 1.
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Exercise 5 Let {Xn} be a sequence of independent random variables such that for n ≥ 1, we have
P (Xn = 1) = n−1 = 1− P (Xn = 0). Show that Xn converges to 0 in probability but not almost surely.

Solution. Note that for ϵ > 0, we have P (|Xn| > ϵ) ≤ 1/n → 0. Thus, Xn
p−→ 0.

By the Borel-Cantelli Lemmas, Xn
as−→ 0 is equivalent to

∑∞
n=1 P (|Xn| > ϵ) < ∞ for all ϵ > 0. However,

this is false; putting ϵ = 1/2, the latter sum is
∑∞

n=1 1/n = ∞.

Exercise 6 Let {Xn} be a sequence of independent and identically distributed exponential random
variables with density f(x) = e−xχ(0,∞)(x). Define

Yn = max
1≤i≤n

Xi.

(a) Show that
∞∑

n=1

P (Xn > ϵ log n)

converges if ϵ > 1 and diverges if 0 < ϵ ≤ 1.

(b) Show that lim supXn/ log n = 1 almost surely.

(c) Show that lim infXn/ log n = 0 almost surely.

(d) Show that [Xn > ϵ log n i.o.] ⇐⇒ [Yn > ϵ log n i.o.], and hence lim supYn/n = 1 almost surely.

Solution.

(a) Calculate

P (Xn > ϵ log n) =

∫ ∞

ϵ logn

e−x dx =
1

nϵ
.

Thus
∞∑

n=1

P (Xn > ϵ log n) =

∞∑
n=1

1

nϵ

converges precisely when ϵ > 1, and diverges when 0 < ϵ ≤ 1.

(b) Putting ϵ = 1, we have

∞∑
n=1

P (Xn > log n) = ∞ ⇐⇒ P (Xn/ log n > 1 i.o.) = 1 (Borel-Cantelli)

=⇒ P (lim supXn/ log n ≥ 1) = 1

⇐⇒ lim supXn/ log n = 1 almost surely.

The second implication follows from the fact that there is a probability one set A such that for
ω ∈ A, we have Xn(ω)/ log n > 1 infinitely often, i.e. there is a subsequence {nk} such that all
Xnk

(ω)/ log nk > 1.

Next, for ϵ > 1, we have

∞∑
n=1

P (Xn > ϵ log n) < ∞ ⇐⇒ P (Xn/ log n > ϵ i.o.) = 0 (Borel-Cantelli)

⇐⇒ P (Xn/ log n ≤ ϵ eventually) = 1

=⇒ P (lim supXn/ log n ≤ ϵ) = 1

⇐⇒ lim supXn/ log n ≤ ϵ almost surely.

The third implication follows from the fact that there is a probability one set Aϵ such that for
ω ∈ Aϵ, we have Xnk

(ω)/ log nk ≤ ϵ for all sufficiently large nk, for all subsequences {nk}. Since

6



all A1+1/k have probability one, their intersection has probability one by continuity from above,
yielding

lim supXn/ log n ≤ 1 almost surely.

Combining the two parts gives the desired result.

(c) Note that for all 0 < ϵ < 1,

∞∑
n=1

P (Xn < ϵ log n) =

∞∑
n=1

1− 1

ϵ
= ∞ ⇐⇒ P (Xn/ log n < ϵ i.o.) = 1

=⇒ P (lim infXn/ log n ≤ ϵ) = 1.

Putting ϵ = 1/k → 0, continuity from above gives

lim infXn/ log n = 0.

(d) It is equivalent to show that

A = [Xn ≤ ϵ log n eventually] ⇐⇒ [Yn ≤ ϵ log n eventually] = B.

Since Xn ≤ Yn, we have ω ∈ B =⇒ Yn(ω) ≤ ϵ log n for n ≥ Nϵ, hence Xn(ω ≤ ϵ log n) for n ≥ Nϵ

=⇒ ω ∈ A.

Next, let ω ∈ A, and let N ∈ N such that for all n > N , we have Xn(ω) ≤ ϵ log n. Then,

Yn(ω)

log n
≤ max{X1(ω), . . . , XN (ω)}

log n
+max

{
XN+1(ω)

log(N + 1)
, . . . ,

Xn(ω)

log n

}
.

The second term is bounded by ϵ, while the first vanishes as n → ∞. Thus, Yn(ω)/ log n ≤ 2ϵ
eventually, so ω ∈ B.

We have shown that A = B; repeating the proof of (b) with Xn > ϵ log n i.o. replaced with
Yn > ϵ log n i.o. proves that lim supYn/ log n = 1 almost surely.

Exercise 7 Show that for any given sequence of random variables {Xn}, there exists a (deterministic)
real sequence {an} such that Xn/an

as−→ 0.

Solution. Note that for any fixed Xn, we have P (|Xn| > M) → 0 as M → ∞. Thus, for each n ∈ N, we
can pick numbers Mn such that

P (|Xn| > Mn) <
1

2n
.

Set an = nMn. Then for ϵ > 0,

∞∑
n=1

P (|Xn/an| > ϵ) =

∞∑
n=1

P (|Xn| > ϵnMn).

Let N ∈ N such that Nϵ > 1. Then the tail of the above series is
∞∑

n=N

P (|Xn| > ϵnMn) ≤
∞∑

n=N

P (|Xn| > Mn) =

∞∑
n=N

1

2n
< ∞.

Exercise 8 Let {Xn} be a sequence of independent random variables such that

P (Xn = 2) = P (Xn = nβ) = an, P (Xn = an) = 1− 2an,

for some an ∈ (0, 1/3) and β ∈ R. Show that
∑∞

n=1 Xn converges if and only if
∑∞

n=1 an < ∞.

Solution. Define Yn = Xnχ[|Xn|≤A] for A > 0. First, suppose that β > 0, whence nβ → ∞. Thus,
putting A = 3, for sufficiently large n, we have

E(Yn) = 2an + an(1− 2an) = 3an − 2a2n < 3an,
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using a2n ≥ 0. Also,

V (Yn) < E(Y 2
n ) = 4an + a2n(1− 2an) = 4an − a2n + 2a3n < 6an,

using a3n < an. Finally,
P (|Xn| > 3) = an.

Thus, if
∑∞

n=1 an < ∞, we have
∑∞

n=1 P (|Xn| > 3) < ∞,
∑∞

n=1 E(Yn) < ∞,
∑∞

n=1 V (Yn) < ∞, whence
Kolmogorov’s Three Series Theorem gives the convergence of

∑∞
n=1 Xn. Conversely, the convergence of∑∞

n=1 Xn gives the convergence of
∑∞

n=N P (|Xn| > 3) =
∑∞

n=N an.

Next, suppose that β ≤ 0. Thus, putting A = 1, for sufficiently large n, we have nβ ≤ 1, hence

E(Yn) = nβan + an(1− 2an) = nβan + an − 2a2n < 2an.

Also,
V (Yn) < E(Y 2

n ) = n2βan + a2n(1− 2an) = n2βan + a2n − 2a3n < 2an,

using a2n < an. Finally,
P (|Xn| > 1) = an.

Using precisely the same argument as before,
∑∞

n=1 Xn converges almost surely if and only if
∑∞

n=1 an
converges.

Exercise 9 Let {Xn} be a sequence of independent random variables such that E(Xn) = 0, E(X2
n) =

σ2. Define s2n =
∑n

k=1 σ
2
k → ∞. Show that for any a > 1/2,

Yn =
1

sn(log s2n)
a

n∑
k=1

Xk
as−→ 0.

Solution. Set
Zn =

Xn

sn(log s2n)
a
.

Without loss of generality, let s1 > 1. Then,

∞∑
n=1

V (Zn) =

∞∑
n=1

σ2
n

s2n(log s
2
n)

2a

=

∞∑
n=1

s2n − s2n−1

s2n(log s
2
n)

2a

≤
∞∑

n=1

∫ s2n

snn−1

dx

x(log x)2a

=

∞∑
n=1

− 1

(2a− 1) log(x)2a−1

∣∣∣s2n
s2n−1

=
1

2a− 1

∞∑
n=1

1

(log s2n−1)
2a−1

− 1

(log s2n)
2a−1

< ∞.

Thus,
∑∞

n=1 Zn converges in L2, hence in probability, hence almost surely by Levy’s Theorem. Finally,
Kronecker’s Lemma gives

Yn =
1

sn(log s2n)
a

n∑
k=1

Zksk(log s
2
k)

a as−→ 0.
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Exercise 10 Let f be a bounded measurable function on [0, 1] that is continuous at 1/2. Evaluate

lim
n→∞

∫ 1

0

∫ 1

0

· · ·
∫ 1

0

f

(
x1 + · · ·+ xn

n

)
dx1 dx2 · · · dxn.

Solution. Let Un be independent and identically distributed random variables, having uniform distri-
bution on [0, 1]. Then, the given integral is simply E(f(Ūn)), where Ūn = (U1 + · · · + Un)/n. Since
E(|U1|) < ∞, Kolmogorov’s Strong Law of Large Numbers gives Ūn → E(U1) = 1/2. Since f is continu-
ous at 1/2, we have f(Ūn) → f(1/2). Finally, f is bounded, so the desired limit is f(1/2) by Lebesgue’s
dominated convergence theorem.

Exercise 11 Let {Xn} be a sequence of independent and identically distributed random variables.
Investigate the almost sure convergence/divergence of the series

∑∞
n=1 Xn.

Solution. Kolmogorov’s Three-Series Theorem says that if
∑∞

n=1 Xn converges almost surely, then for
all A > 0,

∞∑
n=1

P (|X1| > A) =

∞∑
n=1

P (|Xn| > A) < ∞.

This sum is finite precisely when P (|X1| > A) = 0 for all A > 0. Thus, the series
∑∞

n=1 Xn converges
almost surely only when each Xn is a degenerate random variable with P (Xn = 0) = 1.

Exercise 12 Let {Xn} be a sequence of independent random variables with E(Xn) = 0 and E(X2
n) =

σ2
n < ∞. Suppose that

∑∞
n=1 σ

2
n/b

2
n < ∞ for some positive sequence {bn} which increases to ∞. Show

that b−1
n

∑n
i=1 Xi

as−→ 0.

Solution. By Kronecker’s Lemma, it is enough to show that
∑∞

n=1 Xn/bn converges almost surely. By
Levy’s Theorem, it is equivalent to show that this converges in probability. This it is enough to show
convergence in L2, whence is it enough to show that the sum of variances

∑∞
n=1 V (Xn/bn) is finite. This

is precisely
∑∞

n=1 σ
2
n/b

2
n < ∞ as given.

Exercise 13 Let {Xn} be a sequence of independent random variables with each Xn ∼ N(µn, σ
2
n).

Show that
∑∞

n=1 Xn converges almost surely if and only if both
∑∞

n=1 µn and
∑∞

n=1 σ
2
n converge.

Solution. (⇐) We have
∑∞

n=1 V (Xn − µn) =
∑∞

n=1 σ
2
n < ∞, hence

∑∞
n=1(Xn − µn) converges almost

surely. Using
∑∞

n=1 µn < ∞, we have
∑∞

n=1 Xn < ∞ almost surely.

(⇒) First, suppose that all µn = 0. Since
∑∞

n=1 Xn converges almost surely, Kolmogorov’s Three-Series
Theorem gives

∞∑
n=1

P (|Xn/σn| > A/σn) =

∞∑
n=1

P (|Xn| > A) < ∞

for all A > 0; fix A = 1. Now, Zn = Xn/σn are independent and identically distributed standard normal
random variables. Thus, P (|Zn| > A/σn) → 0 forces σn → 0. We also have

∞∑
n=1

σ2
nE(Z2

nχ|Zn|≤A/σn
) =

∞∑
n=1

E(X2
nχ|Xn|≤A) =

∞∑
n=1

V (Xnχ|Xn|≤A) < ∞

Now, A/σn → ∞, so there exists N ∈ N such that A/σn ≥ 1 for all n ≥ N . Then,

E(Z2
nχ|Zn|≤A/σn

) ≥ E(Z2
nχ|Zn|≤1) = K > 0.

This immediately gives
∞∑

n=N

Kσ2
n ≤

∞∑
n=N

σ2
nE(Z2

nχ|Zn|≥A/σn
) < ∞,

hence
∑∞

n=1 σ
2
n < ∞.
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Returning to the general case, write

Sn =

n∑
i=1

Xi ∼ N(mn, s
2
n), mn =

n∑
i=1

µi, s2n =

n∑
i=1

σ2
i .

Since Sn converges almost surely to some random variable Y , it also does so in distribution, hence the
characteristic functions ϕSn

(t) → ϕY (t) for all t ∈ R. Now,

ϕSn(t) = eitmn−t2s2n/2, e−t2s2n/2 = |ϕSn(t)| → |ϕY (t)|.

Since ϕY (0) = 1, the continuity of ϕY gives ϕY > 0 on some neighbourhood of 0. There, applying
logarithms gives

−1

2
t2s2n → log |ϕY (t)|.

Fixing one such t ̸= 0, we have s2n → −2 log |ϕY (t)|/t2, hence
∑∞

n=1 σ
2
n converges, say to s2. Thus,

eitmn → et
2s2/2ϕY (t)

for all t ∈ R. This forces the convergence of mn, hence of
∑∞

n=1 µn.

To justify the last step, suppose that the sequences {e−itαn} converge for all t ∈ R. Then, we have each
eit(αn−αm) → 1. It is enough to show that αn − αm → 0, whence {αn} is Cauchy, hence convergent.
Thus, suppose that eitβk → 1 for all t ∈ R. Also suppose that all βk ̸= 0; we show that βk → 0 (we can
re-insert any 0 values after initially removing them). Then, the dominated convergence theorem gives∫ 1

0

eitβk dt →
∫ 1

0

dt = 1,

while ∫ 1

0

eitβk dt =
1

iβk
(eiβk − 1).

Thus, the following limit exists, and is given by

lim
n→∞

βk = lim
n→∞

−i(eiβk − 1) = 0.

10



Assignment II

Exercise 1 Suppose that {xn}n≥1 is a sequence of real numbers. Define a sequence of random variables
{Xn}n≥1 as follows: P (Xn = xn) = 1 for each n ≥ 1.

(a) Show that if xn → x, then Xn converges weakly to X, where P (X = x) = 1.

(b) Show that if Xn converges weakly to X as above, then xn → x.

(c) Show that if Xn converges weakly to a random variable Y , then P (Y = x) = 1 for some x ∈ R.

Solution.

(a) Note that for any continuous bounded function f , we have

E(f(Xn)) = f(xn) → f(x) = E(f(X)),

hence Xn
d−→ X.

(b) Note that for all y ̸= x, we have FXn
(y) → FX(y). This means that FXn

(y) → 0 when y < x,
and FXn

(y) → 1 when y > x. But FXn
only takes values in {0, 1}; thus, for any ϵ > 0, there

exists sufficiently large N such that FXn(x− ϵ) = 0 and FXn(x+ ϵ) = 1 for all n ≥ N . Since each
xn = inf{y : FXn(y) = 1}, we must have x− ϵ ≤ xn ≤ x+ ϵ for all n ≥ N . Thus, xn → x.

(c) Note that for y not in the set of (countably many) discontinuities of Y , we have FXn
(y) → F (y);

since FXn
only takes values in {0, 1}, this means that the limit function Fy must only take values

in {0, 1}. The gaps at the point of discontinuity can be filled in by right continuity of FY ; for any
such point of discontinuity y, one can always find a sequence {yk} decreasing to y that misses all
discontinuity points of FY , hence FY (yn) → FY (y).

Set x = inf{y : FY (y) = 1}. Then, FY (y) = 0 for all y < x, and FY (y) = 1 for all y > x by
construction, thus P (Y = x) = 1 (right continuity).

Exercise 2 Let X and Y be two real random variables. Show that P (X = Y ) = 1 if and only if
E(f(X)) = E(f(Y )) for all f : R → R which are bounded and uniformly continuous. Hence or otherwise,
show that a sequence of probability measures cannot converge weakly to two different limits.

Solution. (⇒) This follows immediately from the fact that X and Y are identically distributed.

(⇐) Let a, b be continuity points of both FX , FY , with −∞ < a < b < ∞. Pick a sequence δk decreasing
to 0, and define the functions

hk(x) =



0, if x ∈ (−∞, a− δk],

(x− (a− δk))/δk, if x ∈ [a− δk, a],

1, if x ∈ [a, b],

((b+ δk)− x)/δk, if x ∈ [b, b+ δk],

0, if x ∈ [b+ δk,∞).

Such hk ∈ CB(R) approximate χ(a,b] from above. Now, each hk is bounded and uniformly continuous,
so

FX(b)− FX(a) = E(χ(a,b](X)) ≤ E(hk(X)) = E(hk(Y )).

By the Dominated Convergence Theorem, taking limits as k → ∞ gives

FX(b)− FX(a) ≤ E(χ[a,b](Y )) = E(χ(a,b](Y )) = FY (b)− FY (a).

The reverse inequality holds by symmetry, hence

FX(b)− FX(a) = FY (b)− FY (a).
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Taking the limit a → −∞, we have FX(b) = FY (b) for all common continuity points b. Thus, X and Y
are identically distributed.

With this, we see that if Xn
d−→ X,Y , then for all f ∈ CB(R), we have E(f(Xn)) → E(f(X)),

E(f(Xn)) → E(f(Y )). Thus, E(f(X)) = E(f(Y )) for all f ∈ CB(R), whence X and Y are identically
distributed.

Exercise 3

(a) Show that for any real random variable X and any proper open subset U of R, we have

P (X ∈ U) = sup{P (X ∈ K) : K ⊆ U is compact}.

(b) Show that

Xn
d−→ X ⇐⇒ lim inf P (Xn ∈ U) ≥ P (X ∈ U) for any open U ⊆ R.

(c) Show that

Xn
d−→ X ⇐⇒ lim supP (Xn ∈ F ) ≤ P (X ∈ F ) for any closed F ⊆ R.

Solution.

(a) We use the property of inner regularity of probability measures,

P (X ∈ U) = sup{P (X ∈ F ) : F ⊆ U is closed}.

Given ϵ > 0, find N > 0 such that P (X ∈ U \ [−N,N ]) < ϵ/2; this is possible, since this
probability converges to zero as N → ∞ by continuity from above. Via inner regularity, find closed
F ⊆ U ∩ [−N,N ] such that P (X ∈ U ∩ [−N,N ]) − P (X ∈ F ) < ϵ/2. Note that F ⊆ [−N,N ],
hence F is compact. Also,

P (X ∈ U)− P (X ∈ F ) ≤ P (X ∈ U \ [−N,N ]) + P (X ∈ U ∩ [−N,N ])− P (X ∈ F )

< ϵ/2 + ϵ/2 = ϵ.

(b) (⇒) Note that E(f(Xn)) → E(f(X)) for all continuous and bounded functions f . Let U ⊆ R be
open. For any compact set K ⊆ U , use Urysohn’s Lemma to find f ∈ Cc(R) such that 0 ≤ f ≤ 1,
f(K) = 1, and supp(f) ⊆ U . Thus,

P (Xn ∈ U) = E(χU (Xn)) ≥ E(f(Xn)).

As n → ∞,
lim inf
n→∞

P (Xn ∈ U) ≥ E(f(X)) ≥ E(χK(X)) = P (X ∈ K).

Taking a supremum over all such K, and using the previous exercise gives

lim inf
n→∞

P (Xn ∈ U) ≥ P (X ∈ U).

(⇐) Let x be a continuity point of X. Considering the open sets (−∞, x) and (x,∞), we have

lim inf
n→∞

P (Xn < x) ≥ P (X < x), lim inf
n→∞

P (Xn > x) ≥ P (X > x).

The latter gives

lim sup
n→∞

P (Xn ≤ x) = 1− lim inf
n→∞

P (Xn > x) ≤ 1− P (X > x) = P (X ≤ x).
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This gives

P (X ≤ x) = P (X < x)

≤ lim inf
n→∞

P (Xn < x)

≤ lim inf
n→∞

P (Xn ≤ x)

≤ lim sup
n→∞

P (Xn ≤ x)

≤ P (X ≤ x).

Thus, P (Xn ≤ x) → P (X ≤ x), i.e. Xn
d−→ X.

(c) The conditions
lim inf P (Xn ∈ U) ≥ P (X ∈ U) for any open U ⊆ R,

lim supP (Xn ∈ F ) ≤ P (X ∈ F ) for any closed F ⊆ R,

are equivalent, since

lim inf P (Xn ∈ U) = 1− lim supP (Xn ∈ U c), lim supP (Xn ∈ F ) = 1− lim inf P (Xn ∈ F c),

and
P (X ∈ U) = 1− P (X ∈ U c), P (X ∈ F ) = 1− P (X ∈ F c).

Exercise 4 Let A be a π-system of subsets of R. Suppose that A has the property that any open
subset of R is a countable union of sets from A. For a collection of real random variables {Xn}n≥1 and
X, show that P (Xn ∈ A) → P (X ∈ A) for every A ∈ A implies that Xn

d−→ X.

Solution. We use the criterion from 3(b); let U ⊆ R be open. Then, write

U =

∞⋃
n=1

An, UN =

N⋃
n=1

An

where An ∈ A. Then, the Inclusion-Exclusion Principle gives

P (Xn ∈ UN ) =
∑

∅̸=J⊆{1,...,N}

(−1)|J|+1P

Xn ∈
⋂
j∈J

Aj

 .

Taking the limit n → ∞, we have

lim
n→∞

P (Xn ∈ UN ) =
∑

∅̸=J⊆{1,...,N}

(−1)|J|+1P

X ∈
⋂
j∈J

Aj

 = P (X ∈ UN ).

Since each P (Xn ∈ U) ≥ P (Xn ∈ UN ),

lim inf
n→∞

P (Xn ∈ U) ≥ P (X ∈ UN ),

so taking the limit N → ∞ and using continuity from below,

lim inf
n→∞

P (Xn ∈ U) ≥ P (X ∈ U).

Exercise 5 Let {Xn}n≥1 be i.i.d. real random variables defined from a probability space (Ω,F , P )

having a common cdf F . Define the empirical cdf F̂n corresponding to the observations (X1, . . . , Xn) as

F̂n(ω, x) =
1

n

n∑
i=1

χ(Xi(ω)≤x),

where ω ∈ Ω and x ∈ R.
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(a) Prove that F̂n(·, x) is a real-valued random variable for each x ∈ R.

(b) Prove that F̂n(ω, ·) is a valid cdf for each ω ∈ Ω.

(c) Show that F̂n(·, ·)
d−→ F as n → ∞ almost surely, i.e.

P ({ω : lim
n→∞

F̂n(ω, x) = F (x) for every x ∈ C(F )}) = 1.

Solution.

(a) Note that each of the terms Yi = χ[Xi≤x] is a real-valued random variable; since Xi : Ω → R is
measurable, the set [Xi ≤ x] = X−1

i (−∞, x] is measurable, whence the indicator function Yi on
this set is also measurable. Thus, F̂n(·, x) : Ω → R is measurable, being a scaled finite sum of
measurable functions. This means that F̂n(·, x) is a random variable for each x ∈ R.

(b) It is enough to check that given ω ∈ Ω, the map F̂n(ω, ·) is non-decreasing, right continuous,
limx→−∞ F̂n(ω, x) = 0, and limx→∞ F̂n(ω, x) = 1.

Denote Xi(ω) = yj , where the indices j are arranged such that y1 ≤ · · · ≤ yn. Then,

F̂ (ω, x) =



0 if x ∈ (−∞, y1),

1/n if x ∈ [y1, y2),
...

...
k/n if x ∈ [yk, yk+1),
...

...
1 if x ∈ [yn,∞).

All four properties follow immediately.

(c) For fixed x, the random variable Yi = χ[Xi≤x] has expectation F (x), which is also the absolute
expectation. Since all Xi are independent, so are all Yi, whence the Strong Law of Large Numbers
gives

F̂n(·, x) =
1

n

n∑
i=1

Yi
as−→ E(Y1) = F (x).

Note that the (countable) collection A of all intervals of the form (qi, q
′
i) for qi, q′i ∈ Q forms a basis

of the standard topology on R. Now, for each x ∈ C(F ),

P (F̂n(·, x) < q′i) → P (F (x) < q′i), P (F̂n(·, x) ≤ qi) → P (F (x) ≤ qi),

since F̂n(·, x)
as−→ F (x) implies F̂n(·, x)

d−→ F (x). Thus,

P (F̂n(·, x) ∈ A) → P (F (x) ∈ A)

for every A ∈ A, whence A is a π-system as described in the previous exercise. Thus, F̂ (·, x) d−→
F (x) for all x ∈ C(F ), hence F̂ (·, ·) d−→ F almost surely.
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Assignment III

Exercise 1 Let X be a random variable with characteristic function ϕX . Show that the following are
equivalent.

(a) |ϕX(t0)| = 1 for some t0 ̸= 0.

(b) There exists a, h ∈ R with h ̸= 0 such that

P (X ∈ {a+ kh : k ∈ Z}) = 1.

Solution. (⇐) Check that

ϕX(2π/h) = E(e2πiX/h) =
∑
k∈Z

e2πi(a+kh)/hP (X = a+ kh) = e2πia/h
∑
k∈Z

P (X = a+ kh) = e2πia/h.

(⇒) Let |ϕX(t0)| = 1 for some t0 ̸= 0. Then, write ϕX(t0) = e2πiα, and set h = 2π/t0, a = αh = 2πα/t0.
Now,

1 = e−2πiαϕX(t0)

= e−2πiα

∫
R
eit0x dF (x)

= e−2πia/h

∫
R
e2πix/h dF (x)

=

∫
R
e2πi(x−a)/h dF (x),

so ∫
R
1− e2πi(x−a)/h dF (x) = 0.

This is possible only when e2πi(x−a)/h = 1 almost everywhere with respect to F , i.e. when (X−a)/h ∈ Z
almost surely.

To see this, note that the above equation forces∫
R
1− cos(2π(x− a)/h) dF (x) = 0,

hence ∫
R
sin2(π(x− a)/h) dF (x) = 0.

Exercise 2 Let F be a cdf on R with pdf f and c.f. ϕX . Show that

lim
|t|→∞

|ϕX(t)| = 0.

Solution. First, suppose that f ∈ Cc(R). Then, note that the substitution x 7→ x+ π/t gives

ϕX(t) =
1

2π

∫
R
f(x)eitx dx =

1

2π

∫
R
f(x+ π/t)eitxeiπ dx.

Taking averages,

ϕX(t) =
1

2π

∫
R
[f(x)− f(x+ π/t)]eitx dt,

so
|ϕX(t)| ≤ 1

2π

∫
R
|f(x)− f(x+ π/t)| dx.
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Note that as |t| → ∞, we have |f(x) − f(x + π/t)| → 0; also, for |t| > 1, the latter has compact hence
bounded support. Thus, the Bounded Convergence Theorem gives

lim
|t|→∞

|ϕX(t)| = 0.

Next, if f /∈ Cc(R), use the density of Cc(R) in L1(R) to find g ∈ Cc(R) such that ∥f − g∥1 < ϵ. Then,
separate

ϕX(t) =
1

2π

∫
R
[f(x)− g(x)]eitx dx+

1

2π

∫
R
g(x)eitx dx,

hence
|ϕX(t)| ≤ 1

2π
∥f(x)− g(x)∥1 +

1

2π
|
∫
R
g(x)eitx dx|.

The first term is less than ϵ/2π, and the second vanishes in the limit |t| → ∞ by the previous argument.
Since ϵ > 0 is arbitrary, we have

lim
|t|→∞

|ϕX(t)| = 0.

Exercise 3 Let X and Y be i.i.d. random variables with cdf F and c.f. ϕ. Show that

P (X = Y ) = lim
T→∞

1

2T

∫ T

−T

|ϕ(t)|2 dt.

Hence or otherwise, show that F is continuous if and only if the above limit equals zero.

Solution. Set Z = X−Y , and note that the independence of X,Y , followed by their identical distribution
gives

ϕZ(t) = ϕX−Y (t) = ϕX(t)ϕ−Y (t) = ϕ(t)ϕ(t) = |ϕ(t)|2.

Thus, the inversion formulae give

P (X = Y ) = P (Z = 0) = lim
T→∞

1

2T

∫ T

−T

ϕZ(t) dt = lim
T→∞

1

2T

∫ T

−T

|ϕ(t)|2 dt.

We show that F is continuous if and only if P (X = Y ) = 0. To see this, note that P (X = Y ) =
P ((X,Y ) ∈ ∆), where ∆ = {(x, x) : x ∈ R}. Thus,

P (X = Y ) =

∫∫
∆

dFX,Y (x, y) =

∫
R

∫
{x=y}

dF (x) dF (y).

If F is continuous, the inner integral is always zero, hence P (X = Y ) = 0. Conversely, if P (X = a) =
p > 0 for some a ∈ R, then P (X = Y ) ≥ P ((X,Y ) = (a, a)) = p2 > 0.

Exercise 4 Let {Fn} and F be cdfs on R with corresponding c.f.’s given by {ϕn} and ϕ. Suppose that
Fn

d−→ F .

(a) Give an example to show that ϕn may not converge to ϕ uniformly on the entire real line.

(b) Suppose that Fn and F have pdfs given by fn and f . If fn converges to f almost surely, then show
that ϕn converges to ϕ uniformly on R.

Solution.

(a) Let Fn ∼ N(0, 1/n), whence ϕn(t) = e−t2/2n. As n → ∞, we have ϕn → 1, hence Fn
d−→ F

where F is the cdf of a degenerate distribution with full mass at 0. However, ϕn does not converge
uniformly to 1 on R. Note that ϕn(

√
2n) = e−1, hence

∥ϕn − 1∥ = sup
t∈R

|ϕn(t)− 1| ≥ |e−1 − 1| ̸→ 0.
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(b) Write

ϕn(t)− ϕ(t) =
1

2π

∫
R
(fn(x)− f(x))eitx dx,

hence
|ϕn(t)− ϕ(t)| ≤ 1

2π

∫
R
|fn(x)− f(x)| dx.

As n → ∞, the right hand side (which is independent of t) converges to zero by the Dominated
Convergence Theorem, since fn → f almost surely, and∫

R
|fn(x)− f(x)| dx = 2

∫
R
(f(x)− fn(x))

+ dx,

with (f − fn)
+ dominated by f which is integrable on R.

Exercise 5 Let ϕX be the c.f. of a random variable X on R. Suppose that |ϕX(t)| = |ϕX(αt)| = 1 for
some non-zero t ∈ R, and some irrational α ∈ R. Show that there exists c ∈ R such that P (X = c) = 1.

Solution. From Exercise 1, we find that X must be supported on

S = {a+ kh : k ∈ Z} ∩ {a/α+ kh/α : k ∈ Z},

where h = 2π/t, a = βh, ϕX(t) = e2πiβ . Any element x ∈ S must look like

x = (β + k)h = (β + ℓ)h/α

for k, ℓ ∈ Z. Thus,

α =
β + ℓ

β + k
.

If we had x′ ∈ S with x′ ̸= x, then we could write

α =
β + ℓ′

β + k′

for k′, ℓ′ ∈ Z, k′ ̸= k, ℓ′ ̸= ℓ. Thus,

α =
β + ℓ

β + k
=

β + ℓ′

β + k′
=

(β + ℓ)− (β + ℓ′)

(β + k)− (β + k′)
=

ℓ− ℓ′

k − k′,

contradicting the irrationality of α. Thus, S contains at most one element; it must contain at least one
element since P (X ∈ S) = 1.

Exercise 6 Let {Xn} and X be a collection of random variables with corresponding c.f.’s {ϕn} and ϕ.
Suppose that ϕn ∈ L1(R) for each n ≥ 1, and ϕn converges in L1(R) to ϕ. Show that

sup
B∈BR

|P (Xn ∈ B)− P (X ∈ B)| → 0.

Solution. Note that ϕ ∈ L1(R); thus, {Xn} and X admit density functions fn and f . By Scheffe’s
Theorem, it is now enough to show that fn → f almost everywhere. To do so, use the inversion formula

fn(x)− f(x) =
1

2π

∫
R
(ϕn(t)− ϕ(t))e−itx dt,

hence
|fn(x)− f(x)| ≤ 1

2π
∥ϕn − ϕ∥1 → 0.
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Exercise 7 Let {Ui}i≥1 be i.i.d. random variables with distribution P (U1 = ±1) = 1/2. Define
Xn =

∑n
i=1 Ui/2

i.

(a) Find the c.f. of Xn.

(b) Show that limn→∞ Xn exists almost surely, and denote it by X. Show that the c.f. of X is given
by ϕX(t) = sin(t)/t.

Solution.

(a) Calculate

ϕU1
(t) = E(eitU1) =

1

2
eit +

1

2
e−it = cos(t).

Thus, using independence,

ϕXn
(t) =

n∏
i=1

ϕUi/2i(t) =

n∏
i=1

ϕU1
(t/2i) =

n∏
i=1

cos(t/2i).

Multiplying and dividing by sin(t/2i) and using the identity 2 sin(x) cos(x) = sin(2x), we can
simplify this (for t ̸= 0) to

ϕXn
(t) =

sin(t)

2n sin(t/2n)
.

(b) Note that

lim
n→∞

Xn = lim
n→∞

n∑
i=1

Ui/2
i

is an infinite sum of centred random variables; it is enough to check that the following limit is
finite.

lim
n→∞

n∑
i=1

V (Ui/2
i) = lim

n→∞

n∑
i=1

1/4

22i
=

1/4

1− 1/4
=

1

3
.

Thus, Xn converges almost surely, say Xn
as−→ X. This means that Xn

d−→ X, hence ϕXn
→ ϕX .

Calculate
lim
n→∞

ϕXn
(t) = lim

n→∞

sin(t)

2n sin(t/2n)
= lim

n→∞

sin(t)

t
· t/2n

sin(t/2n)
=

sin(t)

t
.

This is precisely the c.f. of a U(−1, 1) random variable.

Exercise 8 Let {Xn} be a sequence of independent random variables with P (X = ±1) = 1/2−1/2
√
n

and P (X = ±n2) = 1/2
√
n for each n ≥ 1. Find constants {an} ⊆ (0,∞) and {bn} ⊆ R such that

a−1
n

∑n
j=1(Xn − bn) converges weakly to N(0, 1).

Solution. Note that E(Xj) = 0; set

σ2
j = V (Xj) = 1− 1√

n
+

n4

√
n
, s2n =

n∑
j=1

σ2
j .

We claim that an = sn, bn = 0 gives the desired result, via the Lindeberg-Levy Central Limit Theorem.
Check that σ2

j increases to ∞, hence
max1≤j≤n σ

2
j

s2n
=

σ2
n

s2n
.

Now,
n7/2 ≤ σ2

n ≤ 1 + n7/2,

hence
n∑

j=1

j7/2 ≤ s2n ≤ n+

n∑
j=1

j7/2

18



Also, ∫ j

j−1

x7/2 dx ≤ j7/2 ≤
∫ j+1

j

x7/2 dx,

so
2

9
n9/2 ≤

∫ n

0

x7/2 dx ≤ s2n ≤
∫ n+1

1

x7/2 dx =
2

9
(n+ 1)9/2.

Thus,
max1≤j≤n σ

2
j

s2n
=

σ2
n

s2n
≤ 1 + n7/2

2n9/2/9
→ 0.

Next, we verify the Lyapunov condition for δ = 2. Check that

E(X4
j ) = 1− 1√

n
+

n8

√
n
≤ 1 + n15/2,

hence
n∑

j=1

E(X4
j ) ≤ n+

n∑
j=1

n15/2 ≤ n+

∫ n+1

1

n15/2 = n+
2

17
n17/2.

Thus, ∑n
j=1 E(X4

j )

s4n
≤ n+ 2n17/2/17

4n9/81
→ 0.

Lindeberg-Levy now gives

s−1
n

n∑
j=1

Xj
d−→ N(0, 1).

Exercise 9 Let {Xn} be a sequence of random variables. Let

Sn =

n∑
j=1

Xj , s2n =

n∑
j=1

E(X2
j ) < ∞.

If s2n → ∞, then show that the following are equivalent.

lim
n→∞

s−2
n

n∑
j=1

E(X2
j χ|Xj |>ϵsn) = 0 for all ϵ > 0,

lim
n→∞

s−2
n

n∑
j=1

E(X2
j χ|Xj |>ϵsj ) = 0 for all ϵ > 0,

Solution. (⇐) Each sum in the second expression has more terms than in the first, since |Xj | > ϵsn =⇒
|Xj | > ϵsj . Thus, the first expression is sandwiched between zero and the second expression, hence must
also be zero in the limit.

(⇒) Check that for any δ > 0, we have ∑
j:sj<δsn

E(X2
j ) < δ2s2n.

This is clear, since sj increases to sn; if j′(n) is the largest j such that sj < δsn, then the sum is over
precisely 1, 2, . . . , j′(n), hence is equal to s2j′(n). But s2j′(n) < δ2s2n by construction.

Let ϵ > 0; for each δ > 0, we have

s−2
n

n∑
j=1

E(X2
j χ|Xj |>δϵsn) → 0.
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Now,

s−2
n

n∑
j=1

E(X2
j χ|Xj |>ϵsj ) = s−2

n

n∑
j=1

E(X2
j χ|Xj |>ϵsj (χ|Xj |>δϵsn + χ|Xj |≤δϵsn))

= s−2
n

n∑
j=1

E(X2
j χ|Xj |>ϵsjχ|Xj |>δϵsn) + s−2

n

n∑
j=1

E(X2
j χ|Xj |>ϵsjχ|Xj |≤δϵsn)

≤ s−2
n

n∑
j=1

E(X2
j χ|Xj |>δϵsn) + s−2

n

n∑
j=1

E(X2
j χδϵsn≥|Xj |>ϵsj )

≤ s−2
n

n∑
j=1

E(X2
j χ|Xj |>δϵsn) + s−2

n

n∑
j=1

E(X2
j χδsn>sj )

< s−2
n

n∑
j=1

E(X2
j χ|Xj |>δϵsn) + δ2

Taking the limit as n → ∞, the first term vanishes. Since δ > 0 is arbitrary, the limit must be zero.
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