MA4203: Probability II

Satvik Saha, 19MS154

Assignment I

Exercise 1 Let r > 0 and let X be any almost surely non-negative random variable. Prove the following.

(a)

$$E(X) = \int_0^\infty P(X > x) \, dx.$$

(b)

$$\sum_{n=1}^{\infty} P(X \ge n) \le E(X) \le 1 + \sum_{n=1}^{\infty} P(X \ge n).$$

(c)

$$E(X^r) = r \int_0^\infty x^{r-1} P(X > x) \, dx.$$

(d)

$$A\sum_{n=1}^{\infty} n^{r-1} P(X \ge n) \le E(X^r) \le 1 + B\sum_{n=1}^{\infty} n^{r-1} P(X \ge n).$$

(e) Let g be a non-negative strictly increasing differentiable function. Then,

$$E(g(X)) = g(0) + \int_0^\infty g'(x) P(X > x) \, dx.$$

Hence,

$$E(g(X)) < \infty \iff \sum_{n=1}^{\infty} g'(n) P(X > n) < \infty.$$

(f)

$$E(\log^+ X) < \infty \iff \sum_{n=1}^{\infty} n^{-1} P(X > n) < \infty.$$

(g) For p > 1,

$$E((\log^+ X)^p) < \infty \iff \sum_{n=1}^{\infty} n^{-1} (\log x)^{p-1} P(X > n) < \infty.$$

(h) For p > 0 and r > 1,

$$E(X^{r}(\log^{+} X)^{p}) < \infty \iff \sum_{n=1}^{\infty} n^{r-1}(\log x)^{p} P(X > n) < \infty.$$

(i)

$$E(\log^+\log^+X) < \infty \iff \sum_{n=1}^\infty n^{-1}(\log n)^{-1}P(X>n) < \infty.$$

May 1, 2023

Solution.

(a) Let F be the cdf of X. Then, Tonelli's Theorem gives

$$\begin{split} E(X) &= \int_0^\infty x \, dF(x) = \int_0^\infty \int_0^x dt \, dF(x) \\ &= \int_0^\infty \int_0^\infty \chi_{(0,x)}(t) \, dt \, dF(x) \\ &= \int_0^\infty \int_0^\infty \chi_{(t,\infty)}(x) \, dF(x) \, dt \\ &= \int_0^\infty 1 - F(t) \, dt \\ &= \int_0^\infty P(X > t) \, dt. \end{split}$$

(b) Note that if $n \leq x < n+1$, then

$$P(X < n) \le P(X \le x) \le P(X < n+1), \qquad P(X \ge n+1) \le P(X > x) \le P(X \ge n).$$

Integrating from n to n + 1 and summing, we have

$$\sum_{n=0}^{\infty} P(X \ge n+1) \le E(X) \le \sum_{n=0}^{\infty} P(X \ge n) = P(X \ge 0) + \sum_{n=1}^{\infty} P(X \ge n).$$

Thus,

$$\sum_{n=1}^{\infty} P(X \ge n) \le E(X) \le 1 + \sum_{n=1}^{\infty} P(X \ge n).$$

(c) Using the substitution $x \mapsto u^r$,

$$E(X^{r}) = \int_{0}^{\infty} P(X^{r} > x) \, dx = \int_{0}^{\infty} P(X > x^{1/r}) \, dx = \int_{0}^{\infty} P(X > u) \, ru^{r-1} \, du.$$

(d) Check that each

$$rn^{r-1} < (n+1)^r - n^r < r(n+1)^{r-1}$$

To see this, note that $(n+1)^r - n^r = rx^{r-1}$ for some $x \in (n, n+1)$ by the Mean Value Theorem. Furthermore,

$$(n+1)^{r-1} = \left(\frac{n+1}{n}\right)^{r-1} n^{r-1} \le r2^{r-1}n^{r-1},$$

and

$$rn^{r-1} = \left(\frac{n}{n+1}\right)^{r-1} (n+1)^{r-1} \ge r2^{-(r-1)}(n+1)^{r-1}.$$

Thus, we have

$$r2^{-(r-1)}(n+1)^{r-1} < (n+1)^r - n^r < r2^{r-1}n^{r-1}.$$

Now,

$$E(X^{r}) = \int_{0}^{\infty} rx^{r-1} P(X > x) \, dx = \sum_{n=0}^{\infty} \int_{n}^{n+1} rx^{r-1} P(X > x) \, dx.$$

Thus,

 \mathbf{SO}

$$\sum_{n=0}^{\infty} P(X \ge n+1) \int_{n}^{n+1} rx^{r-1} \, dx \le E(X^{r}) \le \sum_{n=0}^{\infty} P(X \ge n) \int_{n}^{n+1} rx^{r-1} \, dx,$$
$$\sum_{n=0}^{\infty} P(X \ge n+1)[(n+1)^{r} - n^{r}] \le E(X^{r}) \le \sum_{n=0}^{\infty} P(X \ge n)[(n+1)^{r} - n^{r}].$$

Using the established inequality and re-indexing,

$$\sum_{n=0}^{\infty} P(X \ge n+1) \cdot r2^{-(r-1)}(n+1)^{r-1} \le E(X^r) \le 1 + \sum_{n=1}^{\infty} P(X \ge n) \cdot r2^{r-1}n^{r-1},$$
$$r2^{-(r-1)} \sum_{n=1}^{\infty} n^{r-1} P(X \ge n) \le E(X^r) \le 1 + r2^{r-1} \sum_{n=1}^{\infty} n^{r-1} P(X \ge n).$$

(e) Calculate

$$\begin{split} E(g(X)) &= \int_0^\infty g(x) \, dF(x) \\ &= \int_0^\infty (g(0) + g(x) - g(0)) \, dF(x) \\ &= g(0) + \int_0^\infty \int_0^x g'(t) \, dt \, dF(x) \\ &= g(0) + \int_0^\infty \int_t^\infty g'(t) \, dF(x) \, dt \\ &= g(0) + \int_0^\infty g'(t)(1 - F(t)) \, dt \\ &= g(0) + \int_0^\infty g'(t) P(X > t) \, dt. \end{split}$$

We now impose the condition that there exist constants A, B such that for $x \in [n, n+1]$, sufficiently large n,

$$A g'(n+1) \le g'(x) \le B g'(n).$$

Then, $E(g(X)) < \infty$ if and only if the following integral is finite.

$$\int_0^\infty g'(x) P(X > x) \, dx = \sum_{n=0}^\infty \int_n^{n+1} g'(x) P(X > x) \, dx.$$

Now,

$$\sum_{n=0}^{\infty} Ag'(n+1)P(X > n+1) \le \sum_{n=0}^{\infty} \int_{n}^{n+1} g'(x)P(X > x) \, dx \le \sum_{n=0}^{\infty} Bg'(n)P(X > n),$$

hence

$$A\sum_{n=1}^{\infty} g'(n)P(X>n) \le \int_0^{\infty} g'(x)P(X>x) \, dx \le Bg'(0) + B\sum_{n=1}^{\infty} g'(n)P(X>n).$$

Thus, $E(g(X)) < \infty$ if and only if $\sum_{n=1}^{\infty} g'(n) P(X > n) < \infty$.

Remark. Instead of starting at 0, we may have to truncate the integral/sum.

(f) Note that

$$E(g(X)) = \int_0^\infty g(x) \, dF(x) = \int_0^M g(x) \, dF(x) + \int_M^\infty g(x) \, dF(x),$$

the first part being finite, so we need only check the criterion for g and for the sum described in the previous part on (M, ∞) and for n > M. Here, $g = \log^+$, which is non-negative, strictly increasing, and differentiable on $(1, \infty)$, with g'(x) = 1/x. Now, for $x \in [n, n + 1]$, we have

$$\frac{1}{n+1} \le \frac{1}{x} \le \frac{1}{n}.$$

With this, the desired follows via the criterion in the previous part.

(g) Putting $g = (\log^+)^p$, we have g non-negative, strictly increasing, differentiable on $(2, \infty)$, with $g'(x) = px^{-1}(\log x)^{p-1}$. For $x \in [n, n+1]$, we have

$$\log x \le \log(n+1) < \log(n^2) = 2\log n,$$

and

$$\log x > \log n = \frac{1}{2}\log n^2 > \frac{1}{2}\log(n+1).$$

Thus,

$$2^{-(p-1)}(n+1)^{-1}(\log(n+1))^{p-1} \le x^{-1}(\log x)^{p-1} \le 2^{p-1}n^{-1}(\log n)^{p-1}.$$

Again, the desired criterion follows.

(h) Precisely the same calculations as in (c) show that if there exist constants A, B and a map $h: \mathbb{N} \to \mathbb{R}$ such that for all $x \in [n, n+1]$,

$$A h(n+1) \le g'(x) \le B h(n),$$

then

$$E(g(x)) < \infty \iff \sum_{n=1}^{\infty} h(n)P(X > n) < \infty.$$

Putting $g(x) = x^r (\log^+ x)^p$, we have g non-negative, strictly increasing, differentiable on $(1, \infty)$, with $g'(x) = x^{r-1} (\log x)^{p-1} [r \log x + 1]$. For sufficiently large n

$$r \log x \le r \log x + 1 \le 2r \log x, \qquad r x^{r-1} (\log x)^p \le g'(x) \le 2r x^{r-1} (\log x)^p.$$

for $x \in [n, n+1]$. Thus,

$$r \cdot 2^{-(r-1)}(n+1)^{r-1} \cdot 2^{-p} (\log(n+1))^p \le g'(x) \le 2r \cdot 2^{r-1}n^{r-1} \cdot 2^p (\log n)^p.$$

Thus, putting $h(n) = n^{r-1} (\log n)^p$ gives the desired criterion.

(i) Putting $g = \log^+ \log^+$, we have g non-negative, strictly increasing, differentiable on (e, ∞) , with $g'(x) = x^{-1} (\log x)^{-1}$. Also, for $x \in [n, n + 1]$, we have

$$(n+1)^{-1}(\log(n+1))^{-1} \le g'(x) \le n^{-1}(\log n)^{-1}$$

The desired criterion follows.

Exercise 2 Let $\{X_n\}$ be a sequence of pairwise independent and identically distributed random variables.

- (a) Show that $X_n/n \to 0$ almost surely if and only if $E(|X_1|) < \infty$.
- (b) Show that $|X_n|^{1/n} \to 1$ almost surely if and only if $E(\log^+ |X_1|) < \infty$.

Solution.

(a)

$$\begin{split} X_n/n \xrightarrow{as} 0 &\iff \sum_{n=1}^{\infty} P(|X_n/n| > \epsilon) < \infty \text{ for all } \epsilon > 0 \qquad (\text{Borel-Cantelli}) \\ &\iff \sum_{n=1}^{\infty} P(|X_n/\epsilon| > n) < \infty \text{ for all } \epsilon > 0 \\ &\iff \sum_{n=1}^{\infty} P(|X_1/\epsilon| > n) < \infty \text{ for all } \epsilon > 0 \qquad (\text{Identical distributions}) \\ &\iff E(|X_1/\epsilon|) < \infty \text{ for all } \epsilon > 0 \\ &\iff E(|X_1|) < \infty. \end{split}$$

Remark. Pairwise independence is only needed for the forward implication in the first step.

(b) Note that $(\log^+ |X_n|)/n \xrightarrow{as} 0$ if and only if $E(\log^+ |X_1|) < \infty$ by the previous part. By the continuous mapping theorem, $|X_n|^{1/n} \xrightarrow{as} 1$ gives $(\log^+ |X_n|)/n \xrightarrow{as} 0$. Conversely, $(\log^+ |X_n|)/n \xrightarrow{as} 0$ means that $(\log^+ |X_n(\omega)|)/n \to 0$ for all $\omega \in A$ with P(A = 1). Thus, $|X_n(\omega)|/n \to 0$ for those $\omega \in A$ where $|X_n(\omega)| > 1$; for the remaining ω , we already have $|X_n(\omega)|/n \le 1/n \to 0$.

Exercise 3 Let $\{X_n\}$ be a sequence of identically distributed variables, and let $M_n = \max\{|X_1|, \ldots, |X_n|\}$.

- (a) If $E(|X_1|) < \infty$, show that $M_n/n \to 0$ almost surely.
- (b) If $E(|X_1|^{\alpha}) < \infty$ for some $\alpha \in (0, \infty)$, then show that $M_n/n^{1/\alpha} \to 0$ almost surely.
- (c) If $\{X_n\}$ is also independent, then show that $M_n/n^{1/\alpha} \to 0$ almost surely implies that $E(|X_1|^{\alpha}) < \infty$.

Solution.

(a) We have $E(|X_1|) < \infty \implies X_n/n \xrightarrow{as} 0$, hence there exists $A \subseteq \Omega$ with P(A) = 1 such that $X_n(\omega)/n \to 0$ for all $\omega \in A$. Set $x_n = X_n(\omega)$, $m_n = M_n(\omega)$, and let $\epsilon > 0$, whence there exists $N \in \mathbb{N}$ such that for all n > N, we have $|x_n|/n < \epsilon$. Now, observe that for all n > N,

$$\frac{m_n}{n} \le \frac{\max\{|x_1|, \dots, |x_N|\}}{n} + \max\left\{\frac{|x_{N+1}|}{N+1}, \dots, \frac{|x_n|}{n}\right\}$$

This is because either $m_n \in \{|x_1|, \ldots, |x_N|\}$, or $m_n = |x_k|$ for some $N < k \le n$, so $m_n/n \le |x_k|/k$. Note that as $n \to \infty$, the first term vanishes and the second term is always bounded by ϵ . Thus, $m_n/n \to 0$, hence $M_n/n \xrightarrow{as} 0$.

- (b) We have $E(|X_1|^{\alpha}) < \infty \implies M_n^{\alpha}/n \xrightarrow{as} 0$. By the continuous mapping theorem, $M_n/n^{1/\alpha} \xrightarrow{as} 0$.
- (c) We have $M_n/n^{1/\alpha} \xrightarrow{as} 0 \implies |X_n|/n^{1/\alpha} \xrightarrow{as} 0$, as $|X_n| \le M_n$. By the continuous mapping theorem, $|X_n|^{\alpha}/n \xrightarrow{as} 0$. Thus, the previous exercise gives $E(|X_1|^{\alpha}) < \infty$.

Exercise 4 Let $\{A_n\}$ be a sequence of independent events with all $P(A_n) < 1$. Show that

$$P(\limsup_{n \to \infty} A_n) = 1 \iff P\left(\bigcup_{n=1}^{\infty} A_n\right) = 1.$$

Solution. We have

$$P(\limsup_{n \to \infty} A_n) = 1 \iff P\left(\bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} A_n\right) = 1 \implies P\left(\bigcup_{n=1}^{\infty} A_n\right) = 1.$$

For the reverse implication, it suffices to show that for all $k \ge 1$, we have

$$P\left(\bigcup_{n=k}^{\infty} A_n\right) = 1,$$

which is equivalent to

$$P\left(\bigcap_{n=k}^{\infty} A_n^c\right) = 0 \iff \prod_{n=k}^{\infty} P(A_n^c) = 0.$$

But this follows immediately since it holds for k = 1; each $P(A_n^c) > 0$ means that this term can be cancelled from the product yielding the equality for all k > 1.

Exercise 5 Let $\{X_n\}$ be a sequence of independent random variables such that for $n \ge 1$, we have $P(X_n = 1) = n^{-1} = 1 - P(X_n = 0)$. Show that X_n converges to 0 in probability but not almost surely.

Solution. Note that for $\epsilon > 0$, we have $P(|X_n| > \epsilon) \le 1/n \to 0$. Thus, $X_n \xrightarrow{p} 0$.

By the Borel-Cantelli Lemmas, $X_n \xrightarrow{as} 0$ is equivalent to $\sum_{n=1}^{\infty} P(|X_n| > \epsilon) < \infty$ for all $\epsilon > 0$. However, this is false; putting $\epsilon = 1/2$, the latter sum is $\sum_{n=1}^{\infty} 1/n = \infty$.

Exercise 6 Let $\{X_n\}$ be a sequence of independent and identically distributed exponential random variables with density $f(x) = e^{-x}\chi_{(0,\infty)}(x)$. Define

$$Y_n = \max_{1 \le i \le n} X_i.$$

(a) Show that

$$\sum_{n=1}^{\infty} P(X_n > \epsilon \log n)$$

converges if $\epsilon > 1$ and diverges if $0 < \epsilon \le 1$.

(b) Show that $\limsup X_n / \log n = 1$ almost surely.

- (c) Show that $\liminf X_n / \log n = 0$ almost surely.
- (d) Show that $[X_n > \epsilon \log n \text{ i.o.}] \iff [Y_n > \epsilon \log n \text{ i.o.}]$, and hence $\limsup Y_n/n = 1$ almost surely.

Solution.

(a) Calculate

$$P(X_n > \epsilon \log n) = \int_{\epsilon \log n}^{\infty} e^{-x} dx = \frac{1}{n^{\epsilon}}$$

Thus

$$\sum_{n=1}^\infty P(X_n > \epsilon \log n) = \sum_{n=1}^\infty \frac{1}{n^\epsilon}$$

converges precisely when $\epsilon > 1$, and diverges when $0 < \epsilon \leq 1$.

(b) Putting $\epsilon = 1$, we have

$$\sum_{n=1}^{\infty} P(X_n > \log n) = \infty \iff P(X_n / \log n > 1 \text{ i.o.}) = 1$$
(Borel-Cantelli)
$$\implies P(\limsup X_n / \log n \ge 1) = 1$$

$$\iff \limsup X_n / \log n = 1 \text{ almost surely.}$$

The second implication follows from the fact that there is a probability one set A such that for $\omega \in A$, we have $X_n(\omega)/\log n > 1$ infinitely often, i.e. there is a subsequence $\{n_k\}$ such that all $X_{n_k}(\omega)/\log n_k > 1$.

Next, for $\epsilon > 1$, we have

$$\sum_{n=1}^{\infty} P(X_n > \epsilon \log n) < \infty \iff P(X_n / \log n > \epsilon \text{ i.o.}) = 0 \quad (\text{Borel-Cantelli})$$
$$\iff P(X_n / \log n \le \epsilon \text{ eventually}) = 1$$
$$\implies P(\limsup X_n / \log n \le \epsilon) = 1$$
$$\iff \limsup X_n / \log n \le \epsilon \text{ almost surely.}$$

The third implication follows from the fact that there is a probability one set A_{ϵ} such that for $\omega \in A_{\epsilon}$, we have $X_{n_k}(\omega)/\log n_k \leq \epsilon$ for all sufficiently large n_k , for all subsequences $\{n_k\}$. Since

all $A_{1+1/k}$ have probability one, their intersection has probability one by continuity from above, yielding

 $\limsup X_n / \log n \le 1 \text{ almost surely.}$

Combining the two parts gives the desired result.

(c) Note that for all $0 < \epsilon < 1$,

$$\sum_{n=1}^{\infty} P(X_n < \epsilon \log n) = \sum_{n=1}^{\infty} 1 - \frac{1}{\epsilon} = \infty \iff P(X_n / \log n < \epsilon \text{ i.o.}) = 1$$
$$\implies P(\liminf X_n / \log n \le \epsilon) = 1.$$

Putting $\epsilon = 1/k \to 0$, continuity from above gives

$$\liminf X_n / \log n = 0.$$

(d) It is equivalent to show that

$$A = [X_n \le \epsilon \log n \text{ eventually}] \iff [Y_n \le \epsilon \log n \text{ eventually}] = B$$

Since $X_n \leq Y_n$, we have $\omega \in B \implies Y_n(\omega) \leq \epsilon \log n$ for $n \geq N_{\epsilon}$, hence $X_n(\omega \leq \epsilon \log n)$ for $n \geq N_{\epsilon}$ $\implies \omega \in A$.

Next, let $\omega \in A$, and let $N \in \mathbb{N}$ such that for all n > N, we have $X_n(\omega) \leq \epsilon \log n$. Then,

$$\frac{Y_n(\omega)}{\log n} \le \frac{\max\{X_1(\omega), \dots, X_N(\omega)\}}{\log n} + \max\left\{\frac{X_{N+1}(\omega)}{\log(N+1)}, \dots, \frac{X_n(\omega)}{\log n}\right\}$$

The second term is bounded by ϵ , while the first vanishes as $n \to \infty$. Thus, $Y_n(\omega)/\log n \leq 2\epsilon$ eventually, so $\omega \in B$.

We have shown that A = B; repeating the proof of (b) with $X_n > \epsilon \log n$ i.o. replaced with $Y_n > \epsilon \log n$ i.o. proves that $\limsup Y_n / \log n = 1$ almost surely.

Exercise 7 Show that for any given sequence of random variables $\{X_n\}$, there exists a (deterministic) real sequence $\{a_n\}$ such that $X_n/a_n \xrightarrow{as} 0$.

Solution. Note that for any fixed X_n , we have $P(|X_n| > M) \to 0$ as $M \to \infty$. Thus, for each $n \in \mathbb{N}$, we can pick numbers M_n such that

$$P(|X_n| > M_n) < \frac{1}{2^n}.$$

Set $a_n = nM_n$. Then for $\epsilon > 0$,

$$\sum_{n=1}^{\infty} P(|X_n/a_n| > \epsilon) = \sum_{n=1}^{\infty} P(|X_n| > \epsilon n M_n)$$

Let $N \in \mathbb{N}$ such that $N\epsilon > 1$. Then the tail of the above series is

$$\sum_{n=N}^{\infty} P(|X_n| > \epsilon n M_n) \le \sum_{n=N}^{\infty} P(|X_n| > M_n) = \sum_{n=N}^{\infty} \frac{1}{2^n} < \infty.$$

Exercise 8 Let $\{X_n\}$ be a sequence of independent random variables such that

$$P(X_n = 2) = P(X_n = n^\beta) = a_n, \qquad P(X_n = a_n) = 1 - 2a_n,$$

for some $a_n \in (0, 1/3)$ and $\beta \in \mathbb{R}$. Show that $\sum_{n=1}^{\infty} X_n$ converges if and only if $\sum_{n=1}^{\infty} a_n < \infty$.

Solution. Define $Y_n = X_n \chi_{[|X_n| \le A]}$ for A > 0. First, suppose that $\beta > 0$, whence $n^{\beta} \to \infty$. Thus, putting A = 3, for sufficiently large n, we have

$$E(Y_n) = 2a_n + a_n(1 - 2a_n) = 3a_n - 2a_n^2 < 3a_n,$$

using $a_n^2 \ge 0$. Also,

$$V(Y_n) < E(Y_n^2) = 4a_n + a_n^2(1 - 2a_n) = 4a_n - a_n^2 + 2a_n^3 < 6a_n,$$

using $a_n^3 < a_n$. Finally,

$$P(|X_n| > 3) = a_n.$$

Thus, if $\sum_{n=1}^{\infty} a_n < \infty$, we have $\sum_{n=1}^{\infty} P(|X_n| > 3) < \infty$, $\sum_{n=1}^{\infty} E(Y_n) < \infty$, $\sum_{n=1}^{\infty} V(Y_n) < \infty$, whence Kolmogorov's Three Series Theorem gives the convergence of $\sum_{n=1}^{\infty} X_n$. Conversely, the convergence of $\sum_{n=1}^{\infty} X_n$ gives the convergence of $\sum_{n=N}^{\infty} P(|X_n| > 3) = \sum_{n=N}^{\infty} a_n$.

Next, suppose that $\beta \leq 0$. Thus, putting A = 1, for sufficiently large n, we have $n^{\beta} \leq 1$, hence

$$E(Y_n) = n^{\beta}a_n + a_n(1 - 2a_n) = n^{\beta}a_n + a_n - 2a_n^2 < 2a_n.$$

Also,

$$V(Y_n) < E(Y_n^2) = n^{2\beta}a_n + a_n^2(1 - 2a_n) = n^{2\beta}a_n + a_n^2 - 2a_n^3 < 2a_n^2$$

using $a_n^2 < a_n$. Finally,

$$P(|X_n| > 1) = a_n.$$

Using precisely the same argument as before, $\sum_{n=1}^{\infty} X_n$ converges almost surely if and only if $\sum_{n=1}^{\infty} a_n$ converges.

Exercise 9 Let $\{X_n\}$ be a sequence of independent random variables such that $E(X_n) = 0$, $E(X_n^2) = \sigma^2$. Define $s_n^2 = \sum_{k=1}^n \sigma_k^2 \to \infty$. Show that for any a > 1/2,

$$Y_n = \frac{1}{s_n (\log s_n^2)^a} \sum_{k=1}^n X_k \xrightarrow{as} 0.$$

Solution. Set

$$Z_n = \frac{X_n}{s_n (\log s_n^2)^a}$$

Without loss of generality, let $s_1 > 1$. Then,

$$\sum_{n=1}^{\infty} V(Z_n) = \sum_{n=1}^{\infty} \frac{\sigma_n^2}{s_n^2 (\log s_n^2)^{2a}}$$

$$= \sum_{n=1}^{\infty} \frac{s_n^2 - s_{n-1}^2}{s_n^2 (\log s_n^2)^{2a}}$$

$$\leq \sum_{n=1}^{\infty} \int_{s_{n-1}^n}^{s_n^2} \frac{dx}{x (\log x)^{2a}}$$

$$= \sum_{n=1}^{\infty} -\frac{1}{(2a-1)\log(x)^{2a-1}} \Big|_{s_{n-1}^2}^{s_n^2}$$

$$= \frac{1}{2a-1} \sum_{n=1}^{\infty} \frac{1}{(\log s_{n-1}^2)^{2a-1}} - \frac{1}{(\log s_n^2)^{2a-1}} < \infty$$

Thus, $\sum_{n=1}^{\infty} Z_n$ converges in L_2 , hence in probability, hence almost surely by Levy's Theorem. Finally, Kronecker's Lemma gives

$$Y_n = \frac{1}{s_n (\log s_n^2)^a} \sum_{k=1}^n Z_k s_k (\log s_k^2)^a \xrightarrow{as} 0.$$

Exercise 10 Let f be a bounded measurable function on [0, 1] that is continuous at 1/2. Evaluate

$$\lim_{n \to \infty} \int_0^1 \int_0^1 \cdots \int_0^1 f\left(\frac{x_1 + \cdots + x_n}{n}\right) \, dx_1 \, dx_2 \, \cdots \, dx_n$$

Solution. Let U_n be independent and identically distributed random variables, having uniform distribution on [0, 1]. Then, the given integral is simply $E(f(\bar{U}_n))$, where $\bar{U}_n = (U_1 + \cdots + U_n)/n$. Since $E(|U_1|) < \infty$, Kolmogorov's Strong Law of Large Numbers gives $\bar{U}_n \to E(U_1) = 1/2$. Since f is continuous at 1/2, we have $f(\bar{U}_n) \to f(1/2)$. Finally, f is bounded, so the desired limit is f(1/2) by Lebesgue's dominated convergence theorem.

Exercise 11 Let $\{X_n\}$ be a sequence of independent and identically distributed random variables. Investigate the almost sure convergence/divergence of the series $\sum_{n=1}^{\infty} X_n$.

Solution. Kolmogorov's Three-Series Theorem says that if $\sum_{n=1}^{\infty} X_n$ converges almost surely, then for all A > 0,

$$\sum_{n=1}^{\infty} P(|X_1| > A) = \sum_{n=1}^{\infty} P(|X_n| > A) < \infty.$$

This sum is finite precisely when $P(|X_1| > A) = 0$ for all A > 0. Thus, the series $\sum_{n=1}^{\infty} X_n$ converges almost surely only when each X_n is a degenerate random variable with $P(X_n = 0) = 1$.

Exercise 12 Let $\{X_n\}$ be a sequence of independent random variables with $E(X_n) = 0$ and $E(X_n^2) = \sigma_n^2 < \infty$. Suppose that $\sum_{n=1}^{\infty} \sigma_n^2/b_n^2 < \infty$ for some positive sequence $\{b_n\}$ which increases to ∞ . Show that $b_n^{-1} \sum_{i=1}^n X_i \xrightarrow{as} 0$.

Solution. By Kronecker's Lemma, it is enough to show that $\sum_{n=1}^{\infty} X_n/b_n$ converges almost surely. By Levy's Theorem, it is equivalent to show that this converges in probability. This it is enough to show convergence in L^2 , whence is it enough to show that the sum of variances $\sum_{n=1}^{\infty} V(X_n/b_n)$ is finite. This is precisely $\sum_{n=1}^{\infty} \sigma_n^2/b_n^2 < \infty$ as given.

Exercise 13 Let $\{X_n\}$ be a sequence of independent random variables with each $X_n \sim N(\mu_n, \sigma_n^2)$. Show that $\sum_{n=1}^{\infty} X_n$ converges almost surely if and only if both $\sum_{n=1}^{\infty} \mu_n$ and $\sum_{n=1}^{\infty} \sigma_n^2$ converge.

Solution. (\Leftarrow) We have $\sum_{n=1}^{\infty} V(X_n - \mu_n) = \sum_{n=1}^{\infty} \sigma_n^2 < \infty$, hence $\sum_{n=1}^{\infty} (X_n - \mu_n)$ converges almost surely. Using $\sum_{n=1}^{\infty} \mu_n < \infty$, we have $\sum_{n=1}^{\infty} X_n < \infty$ almost surely.

 (\Rightarrow) First, suppose that all $\mu_n = 0$. Since $\sum_{n=1}^{\infty} X_n$ converges almost surely, Kolmogorov's Three-Series Theorem gives

$$\sum_{n=1}^{\infty} P(|X_n/\sigma_n| > A/\sigma_n) = \sum_{n=1}^{\infty} P(|X_n| > A) < \infty$$

for all A > 0; fix A = 1. Now, $Z_n = X_n/\sigma_n$ are independent and identically distributed standard normal random variables. Thus, $P(|Z_n| > A/\sigma_n) \to 0$ forces $\sigma_n \to 0$. We also have

$$\sum_{n=1}^{\infty} \sigma_n^2 E(Z_n^2 \chi_{|Z_n| \le A/\sigma_n}) = \sum_{n=1}^{\infty} E(X_n^2 \chi_{|X_n| \le A}) = \sum_{n=1}^{\infty} V(X_n \chi_{|X_n| \le A}) < \infty$$

Now, $A/\sigma_n \to \infty$, so there exists $N \in \mathbb{N}$ such that $A/\sigma_n \ge 1$ for all $n \ge N$. Then,

$$E(Z_n^2 \chi_{|Z_n| \le A/\sigma_n}) \ge E(Z_n^2 \chi_{|Z_n| \le 1}) = K > 0.$$

This immediately gives

$$\sum_{n=N}^{\infty} K\sigma_n^2 \le \sum_{n=N}^{\infty} \sigma_n^2 E(Z_n^2 \chi_{|Z_n| \ge A/\sigma_n}) < \infty,$$

hence $\sum_{n=1}^{\infty} \sigma_n^2 < \infty$.

Returning to the general case, write

$$S_n = \sum_{i=1}^n X_i \sim N(m_n, s_n^2), \qquad m_n = \sum_{i=1}^n \mu_i, \qquad s_n^2 = \sum_{i=1}^n \sigma_i^2.$$

Since S_n converges almost surely to some random variable Y, it also does so in distribution, hence the characteristic functions $\phi_{S_n}(t) \to \phi_Y(t)$ for all $t \in \mathbb{R}$. Now,

$$\phi_{S_n}(t) = e^{itm_n - t^2 s_n^2/2}, \qquad e^{-t^2 s_n^2/2} = |\phi_{S_n}(t)| \to |\phi_Y(t)|$$

Since $\phi_Y(0) = 1$, the continuity of ϕ_Y gives $\phi_Y > 0$ on some neighbourhood of 0. There, applying logarithms gives

$$-\frac{1}{2}t^2s_n^2 \to \log|\phi_Y(t)|.$$

Fixing one such $t \neq 0$, we have $s_n^2 \to -2 \log |\phi_Y(t)|/t^2$, hence $\sum_{n=1}^{\infty} \sigma_n^2$ converges, say to s^2 . Thus,

 $e^{itm_n} \to e^{t^2 s^2/2} \phi_Y(t)$

for all $t \in \mathbb{R}$. This forces the convergence of m_n , hence of $\sum_{n=1}^{\infty} \mu_n$.

To justify the last step, suppose that the sequences $\{e^{-it\alpha_n}\}$ converge for all $t \in \mathbb{R}$. Then, we have each $e^{it(\alpha_n - \alpha_m)} \to 1$. It is enough to show that $\alpha_n - \alpha_m \to 0$, whence $\{\alpha_n\}$ is Cauchy, hence convergent. Thus, suppose that $e^{it\beta_k} \to 1$ for all $t \in \mathbb{R}$. Also suppose that all $\beta_k \neq 0$; we show that $\beta_k \to 0$ (we can re-insert any 0 values after initially removing them). Then, the dominated convergence theorem gives

$$\int_0^1 e^{it\beta_k} dt \to \int_0^1 dt = 1,$$

while

$$\int_0^1 e^{it\beta_k} \, dt = \frac{1}{i\beta_k} (e^{i\beta_k} - 1).$$

Thus, the following limit exists, and is given by

$$\lim_{n \to \infty} \beta_k = \lim_{n \to \infty} -i(e^{i\beta_k} - 1) = 0.$$

Assignment II

Exercise 1 Suppose that $\{x_n\}_{n\geq 1}$ is a sequence of real numbers. Define a sequence of random variables $\{X_n\}_{n\geq 1}$ as follows: $P(X_n = x_n) = 1$ for each $n \geq 1$.

- (a) Show that if $x_n \to x$, then X_n converges weakly to X, where P(X = x) = 1.
- (b) Show that if X_n converges weakly to X as above, then $x_n \to x$.
- (c) Show that if X_n converges weakly to a random variable Y, then P(Y = x) = 1 for some $x \in \mathbb{R}$.

Solution.

(a) Note that for any continuous bounded function f, we have

$$E(f(X_n)) = f(x_n) \to f(x) = E(f(X)),$$

hence $X_n \xrightarrow{d} X$.

- (b) Note that for all $y \neq x$, we have $F_{X_n}(y) \to F_X(y)$. This means that $F_{X_n}(y) \to 0$ when y < x, and $F_{X_n}(y) \to 1$ when y > x. But F_{X_n} only takes values in $\{0,1\}$; thus, for any $\epsilon > 0$, there exists sufficiently large N such that $F_{X_n}(x-\epsilon) = 0$ and $F_{X_n}(x+\epsilon) = 1$ for all $n \ge N$. Since each $x_n = \inf\{y: F_{X_n}(y) = 1\}$, we must have $x - \epsilon \le x_n \le x + \epsilon$ for all $n \ge N$. Thus, $x_n \to x$.
- (c) Note that for y not in the set of (countably many) discontinuities of Y, we have $F_{X_n}(y) \to F(y)$; since F_{X_n} only takes values in $\{0, 1\}$, this means that the limit function F_y must only take values in $\{0, 1\}$. The gaps at the point of discontinuity can be filled in by right continuity of F_Y ; for any such point of discontinuity y, one can always find a sequence $\{y_k\}$ decreasing to y that misses all discontinuity points of F_Y , hence $F_Y(y_n) \to F_Y(y)$.

Set $x = \inf\{y : F_Y(y) = 1\}$. Then, $F_Y(y) = 0$ for all y < x, and $F_Y(y) = 1$ for all y > x by construction, thus P(Y = x) = 1 (right continuity).

Exercise 2 Let X and Y be two real random variables. Show that P(X = Y) = 1 if and only if E(f(X)) = E(f(Y)) for all $f \colon \mathbb{R} \to \mathbb{R}$ which are bounded and uniformly continuous. Hence or otherwise, show that a sequence of probability measures cannot converge weakly to two different limits.

Solution. (\Rightarrow) This follows immediately from the fact that X and Y are identically distributed.

(\Leftarrow) Let a, b be continuity points of both F_X, F_Y , with $-\infty < a < b < \infty$. Pick a sequence δ_k decreasing to 0, and define the functions

$$h_k(x) = \begin{cases} 0, & \text{if } x \in (-\infty, a - \delta_k], \\ (x - (a - \delta_k))/\delta_k, & \text{if } x \in [a - \delta_k, a], \\ 1, & \text{if } x \in [a, b], \\ ((b + \delta_k) - x)/\delta_k, & \text{if } x \in [b, b + \delta_k], \\ 0, & \text{if } x \in [b + \delta_k, \infty). \end{cases}$$

Such $h_k \in C_B(\mathbb{R})$ approximate $\chi_{(a,b]}$ from above. Now, each h_k is bounded and uniformly continuous, so

$$F_X(b) - F_X(a) = E(\chi_{(a,b]}(X)) \le E(h_k(X)) = E(h_k(Y)).$$

By the Dominated Convergence Theorem, taking limits as $k \to \infty$ gives

$$F_X(b) - F_X(a) \le E(\chi_{[a,b]}(Y)) = E(\chi_{(a,b]}(Y)) = F_Y(b) - F_Y(a).$$

The reverse inequality holds by symmetry, hence

$$F_X(b) - F_X(a) = F_Y(b) - F_Y(a).$$

Taking the limit $a \to -\infty$, we have $F_X(b) = F_Y(b)$ for all common continuity points b. Thus, X and Y are identically distributed.

With this, we see that if $X_n \xrightarrow{d} X, Y$, then for all $f \in C_B(\mathbb{R})$, we have $E(f(X_n)) \to E(f(X))$, $E(f(X_n)) \to E(f(Y))$. Thus, E(f(X)) = E(f(Y)) for all $f \in C_B(\mathbb{R})$, whence X and Y are identically distributed.

Exercise 3

(a) Show that for any real random variable X and any proper open subset U of \mathbb{R} , we have

 $P(X \in U) = \sup\{P(X \in K) : K \subseteq U \text{ is compact}\}.$

(b) Show that

$$X_n \xrightarrow{d} X \iff \liminf P(X_n \in U) \ge P(X \in U)$$
 for any open $U \subseteq \mathbb{R}$.

(c) Show that

$$X_n \xrightarrow{a} X \iff \limsup P(X_n \in F) \le P(X \in F)$$
 for any closed $F \subseteq \mathbb{R}$.

Solution.

(a) We use the property of inner regularity of probability measures,

$$P(X \in U) = \sup\{P(X \in F) : F \subseteq U \text{ is closed}\}.$$

Given $\epsilon > 0$, find N > 0 such that $P(X \in U \setminus [-N, N]) < \epsilon/2$; this is possible, since this probability converges to zero as $N \to \infty$ by continuity from above. Via inner regularity, find closed $F \subseteq U \cap [-N, N]$ such that $P(X \in U \cap [-N, N]) - P(X \in F) < \epsilon/2$. Note that $F \subseteq [-N, N]$, hence F is compact. Also,

$$P(X \in U) - P(X \in F) \le P(X \in U \setminus [-N, N]) + P(X \in U \cap [-N, N]) - P(X \in F)$$

$$< \epsilon/2 + \epsilon/2 = \epsilon.$$

(b) (\Rightarrow) Note that $E(f(X_n)) \to E(f(X))$ for all continuous and bounded functions f. Let $U \subseteq \mathbb{R}$ be open. For any compact set $K \subseteq U$, use Urysohn's Lemma to find $f \in C_c(\mathbb{R})$ such that $0 \le f \le 1$, f(K) = 1, and $\operatorname{supp}(f) \subseteq U$. Thus,

$$P(X_n \in U) = E(\chi_U(X_n)) \ge E(f(X_n)).$$

As $n \to \infty$,

$$\liminf_{n \to \infty} P(X_n \in U) \ge E(f(X)) \ge E(\chi_K(X)) = P(X \in K).$$

Taking a supremum over all such K, and using the previous exercise gives

$$\liminf_{n \to \infty} P(X_n \in U) \ge P(X \in U).$$

 (\Leftarrow) Let x be a continuity point of X. Considering the open sets $(-\infty, x)$ and (x, ∞) , we have

$$\liminf_{n \to \infty} P(X_n < x) \ge P(X < x), \qquad \liminf_{n \to \infty} P(X_n > x) \ge P(X > x).$$

The latter gives

$$\limsup_{n \to \infty} P(X_n \le x) = 1 - \liminf_{n \to \infty} P(X_n > x) \le 1 - P(X > x) = P(X \le x).$$

This gives

$$P(X \le x) = P(X < x)$$

$$\leq \liminf_{n \to \infty} P(X_n < x)$$

$$\leq \liminf_{n \to \infty} P(X_n \le x)$$

$$\leq \limsup_{n \to \infty} P(X_n \le x)$$

$$< P(X < x).$$

Thus, $P(X_n \leq x) \to P(X \leq x)$, i.e. $X_n \stackrel{d}{\longrightarrow} X$.

(c) The conditions

 $\liminf P(X_n \in U) \ge P(X \in U) \text{ for any open } U \subseteq \mathbb{R},$

$$\limsup P(X_n \in F) \le P(X \in F) \text{ for any closed } F \subseteq \mathbb{R},$$

are equivalent, since

$$\liminf P(X_n \in U) = 1 - \limsup P(X_n \in U^c), \qquad \limsup P(X_n \in F) = 1 - \liminf P(X_n \in F^c),$$

and

$$P(X \in U) = 1 - P(X \in U^{c}), \qquad P(X \in F) = 1 - P(X \in F^{c})$$

Exercise 4 Let \mathcal{A} be a π -system of subsets of \mathbb{R} . Suppose that \mathcal{A} has the property that any open subset of \mathbb{R} is a countable union of sets from \mathcal{A} . For a collection of real random variables $\{X_n\}_{n\geq 1}$ and X, show that $P(X_n \in \mathcal{A}) \to P(X \in \mathcal{A})$ for every $\mathcal{A} \in \mathcal{A}$ implies that $X_n \xrightarrow{d} X$.

Solution. We use the criterion from 3(b); let $U \subseteq \mathbb{R}$ be open. Then, write

$$U = \bigcup_{n=1}^{\infty} A_n, \qquad U_N = \bigcup_{n=1}^{N} A_n$$

where $A_n \in \mathcal{A}$. Then, the Inclusion-Exclusion Principle gives

$$P(X_n \in U_N) = \sum_{\emptyset \neq J \subseteq \{1, \dots, N\}} (-1)^{|J|+1} P\left(X_n \in \bigcap_{j \in J} A_j\right).$$

Taking the limit $n \to \infty$, we have

$$\lim_{n \to \infty} P(X_n \in U_N) = \sum_{\emptyset \neq J \subseteq \{1, \dots, N\}} (-1)^{|J|+1} P\left(X \in \bigcap_{j \in J} A_j\right) = P(X \in U_N).$$

Since each $P(X_n \in U) \ge P(X_n \in U_N)$,

$$\liminf_{n \to \infty} P(X_n \in U) \ge P(X \in U_N),$$

so taking the limit $N \to \infty$ and using continuity from below,

$$\liminf_{n \to \infty} P(X_n \in U) \ge P(X \in U).$$

Exercise 5 Let $\{X_n\}_{n\geq 1}$ be i.i.d. real random variables defined from a probability space (Ω, \mathcal{F}, P) having a common cdf F. Define the empirical cdf \hat{F}_n corresponding to the observations (X_1, \ldots, X_n) as

$$\hat{F}_n(\omega, x) = \frac{1}{n} \sum_{i=1}^n \chi_{(X_i(\omega) \le x)},$$

where $\omega \in \Omega$ and $x \in \mathbb{R}$.

- (a) Prove that $\hat{F}_n(\cdot, x)$ is a real-valued random variable for each $x \in \mathbb{R}$.
- (b) Prove that $\hat{F}_n(\omega, \cdot)$ is a valid cdf for each $\omega \in \Omega$.
- (c) Show that $\hat{F}_n(\cdot, \cdot) \xrightarrow{d} F$ as $n \to \infty$ almost surely, i.e.

$$P(\{\omega: \lim_{n \to \infty} \hat{F}_n(\omega, x) = F(x) \text{ for every } x \in C(F)\}) = 1.$$

Solution.

- (a) Note that each of the terms $Y_i = \chi_{[X_i \leq x]}$ is a real-valued random variable; since $X_i \colon \Omega \to \mathbb{R}$ is measurable, the set $[X_i \leq x] = X_i^{-1}(-\infty, x]$ is measurable, whence the indicator function Y_i on this set is also measurable. Thus, $\hat{F}_n(\cdot, x) \colon \Omega \to \mathbb{R}$ is measurable, being a scaled finite sum of measurable functions. This means that $\hat{F}_n(\cdot, x)$ is a random variable for each $x \in \mathbb{R}$.
- (b) It is enough to check that given $\omega \in \Omega$, the map $\hat{F}_n(\omega, \cdot)$ is non-decreasing, right continuous, $\lim_{x\to-\infty} \hat{F}_n(\omega, x) = 0$, and $\lim_{x\to\infty} \hat{F}_n(\omega, x) = 1$.
 - Denote $X_i(\omega) = y_j$, where the indices j are arranged such that $y_1 \leq \cdots \leq y_n$. Then,

$$\hat{F}(\omega, x) = \begin{cases} 0 & \text{if } x \in (-\infty, y_1), \\ 1/n & \text{if } x \in [y_1, y_2), \\ \vdots & \vdots \\ k/n & \text{if } x \in [y_k, y_{k+1}), \\ \vdots & \vdots \\ 1 & \text{if } x \in [y_n, \infty). \end{cases}$$

All four properties follow immediately.

(c) For fixed x, the random variable $Y_i = \chi_{[X_i \leq x]}$ has expectation F(x), which is also the absolute expectation. Since all X_i are independent, so are all Y_i , whence the Strong Law of Large Numbers gives

$$\hat{F}_n(\cdot, x) = \frac{1}{n} \sum_{i=1}^n Y_i \xrightarrow{as} E(Y_1) = F(x).$$

Note that the (countable) collection \mathcal{A} of all intervals of the form (q_i, q'_i) for $q_i, q'_i \in \mathbb{Q}$ forms a basis of the standard topology on \mathbb{R} . Now, for each $x \in C(F)$,

$$P(\hat{F}_n(\cdot,x) < q_i') \rightarrow P(F(x) < q_i'), \qquad P(\hat{F}_n(\cdot,x) \le q_i) \rightarrow P(F(x) \le q_i),$$

since $\hat{F}_n(\cdot, x) \xrightarrow{as} F(x)$ implies $\hat{F}_n(\cdot, x) \xrightarrow{d} F(x)$. Thus,

$$P(\hat{F}_n(\cdot, x) \in A) \to P(F(x) \in A)$$

for every $A \in \mathcal{A}$, whence \mathcal{A} is a π -system as described in the previous exercise. Thus, $\hat{F}(\cdot, x) \xrightarrow{d} F(x)$ for all $x \in C(F)$, hence $\hat{F}(\cdot, \cdot) \xrightarrow{d} F$ almost surely.

Assignment III

Exercise 1 Let X be a random variable with characteristic function ϕ_X . Show that the following are equivalent.

- (a) $|\phi_X(t_0)| = 1$ for some $t_0 \neq 0$.
- (b) There exists $a, h \in \mathbb{R}$ with $h \neq 0$ such that

$$P(X \in \{a + kh : k \in \mathbb{Z}\}) = 1.$$

Solution. (\Leftarrow) Check that

$$\phi_X(2\pi/h) = E(e^{2\pi i X/h}) = \sum_{k \in \mathbb{Z}} e^{2\pi i (a+kh)/h} P(X = a+kh) = e^{2\pi i a/h} \sum_{k \in \mathbb{Z}} P(X = a+kh) = e^{2\pi i a/h}.$$

 (\Rightarrow) Let $|\phi_X(t_0)| = 1$ for some $t_0 \neq 0$. Then, write $\phi_X(t_0) = e^{2\pi i \alpha}$, and set $h = 2\pi/t_0$, $a = \alpha h = 2\pi \alpha/t_0$. Now,

$$1 = e^{-2\pi i \alpha} \phi_X(t_0)$$

= $e^{-2\pi i \alpha} \int_{\mathbb{R}} e^{i t_0 x} dF(x)$
= $e^{-2\pi i a/h} \int_{\mathbb{R}} e^{2\pi i x/h} dF(x)$
= $\int_{\mathbb{R}} e^{2\pi i (x-a)/h} dF(x)$,

 \mathbf{SO}

$$\int_{\mathbb{R}} 1 - e^{2\pi i (x-a)/h} dF(x) = 0.$$

This is possible only when $e^{2\pi i(x-a)/h} = 1$ almost everywhere with respect to F, i.e. when $(X-a)/h \in \mathbb{Z}$ almost surely.

To see this, note that the above equation forces

$$\int_{\mathbb{R}} 1 - \cos(2\pi (x-a)/h) \, dF(x) = 0,$$

hence

$$\int_{\mathbb{R}} \sin^2(\pi(x-a)/h) \, dF(x) = 0.$$

Exercise 2 Let F be a cdf on \mathbb{R} with pdf f and c.f. ϕ_X . Show that

$$\lim_{|t| \to \infty} |\phi_X(t)| = 0.$$

Solution. First, suppose that $f \in C_c(\mathbb{R})$. Then, note that the substitution $x \mapsto x + \pi/t$ gives

$$\phi_X(t) = \frac{1}{2\pi} \int_{\mathbb{R}} f(x) e^{itx} \, dx = \frac{1}{2\pi} \int_{\mathbb{R}} f(x + \pi/t) e^{itx} e^{i\pi} \, dx.$$

Taking averages,

$$\phi_X(t) = \frac{1}{2\pi} \int_{\mathbb{R}} [f(x) - f(x + \pi/t)] e^{itx} dt,$$
$$|\phi_X(t)| \le \frac{1}{2\pi} \int_{\mathbb{R}} |f(x) - f(x + \pi/t)| dx.$$

 \mathbf{SO}

Note that as $|t| \to \infty$, we have $|f(x) - f(x + \pi/t)| \to 0$; also, for |t| > 1, the latter has compact hence bounded support. Thus, the Bounded Convergence Theorem gives

$$\lim_{|t|\to\infty} |\phi_X(t)| = 0.$$

Next, if $f \notin C_c(\mathbb{R})$, use the density of $C_c(\mathbb{R})$ in $L^1(\mathbb{R})$ to find $g \in C_c(\mathbb{R})$ such that $||f - g||_1 < \epsilon$. Then, separate

$$\phi_X(t) = \frac{1}{2\pi} \int_{\mathbb{R}} [f(x) - g(x)] e^{itx} \, dx + \frac{1}{2\pi} \int_{\mathbb{R}} g(x) e^{itx} \, dx$$

hence

$$|\phi_X(t)| \le \frac{1}{2\pi} ||f(x) - g(x)||_1 + \frac{1}{2\pi} |\int_{\mathbb{R}} g(x) e^{itx} dx|.$$

The first term is less than $\epsilon/2\pi$, and the second vanishes in the limit $|t| \to \infty$ by the previous argument. Since $\epsilon > 0$ is arbitrary, we have

$$\lim_{|t|\to\infty} |\phi_X(t)| = 0$$

Exercise 3 Let X and Y be i.i.d. random variables with cdf F and c.f. ϕ . Show that

$$P(X = Y) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |\phi(t)|^2 dt.$$

Hence or otherwise, show that F is continuous if and only if the above limit equals zero.

Solution. Set Z = X - Y, and note that the independence of X, Y, followed by their identical distribution gives

$$\phi_Z(t) = \phi_{X-Y}(t) = \phi_X(t)\phi_{-Y}(t) = \phi(t)\phi(t) = |\phi(t)|^2$$

Thus, the inversion formulae give

$$P(X = Y) = P(Z = 0) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} \phi_Z(t) \, dt = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |\phi(t)|^2 \, dt.$$

We show that F is continuous if and only if P(X = Y) = 0. To see this, note that $P(X = Y) = P((X, Y) \in \Delta)$, where $\Delta = \{(x, x) : x \in \mathbb{R}\}$. Thus,

$$P(X = Y) = \iint_{\Delta} dF_{X,Y}(x,y) = \int_{\mathbb{R}} \int_{\{x=y\}} dF(x) dF(y)$$

If F is continuous, the inner integral is always zero, hence P(X = Y) = 0. Conversely, if P(X = a) = p > 0 for some $a \in \mathbb{R}$, then $P(X = Y) \ge P((X, Y) = (a, a)) = p^2 > 0$.

Exercise 4 Let $\{F_n\}$ and F be cdfs on \mathbb{R} with corresponding c.f.'s given by $\{\phi_n\}$ and ϕ . Suppose that $F_n \xrightarrow{d} F$.

- (a) Give an example to show that ϕ_n may not converge to ϕ uniformly on the entire real line.
- (b) Suppose that F_n and F have pdfs given by f_n and f. If f_n converges to f almost surely, then show that ϕ_n converges to ϕ uniformly on \mathbb{R} .

Solution.

(a) Let $F_n \sim N(0, 1/n)$, whence $\phi_n(t) = e^{-t^2/2n}$. As $n \to \infty$, we have $\phi_n \to 1$, hence $F_n \xrightarrow{d} F$ where F is the cdf of a degenerate distribution with full mass at 0. However, ϕ_n does not converge uniformly to 1 on \mathbb{R} . Note that $\phi_n(\sqrt{2n}) = e^{-1}$, hence

$$\|\phi_n - 1\| = \sup_{t \in \mathbb{R}} |\phi_n(t) - 1| \ge |e^{-1} - 1| \ne 0$$

(b) Write

$$\phi_n(t) - \phi(t) = \frac{1}{2\pi} \int_{\mathbb{R}} (f_n(x) - f(x)) e^{itx} dx$$

hence

$$|\phi_n(t) - \phi(t)| \le \frac{1}{2\pi} \int_{\mathbb{R}} |f_n(x) - f(x)| \, dx.$$

As $n \to \infty$, the right hand side (which is independent of t) converges to zero by the Dominated Convergence Theorem, since $f_n \to f$ almost surely, and

$$\int_{\mathbb{R}} |f_n(x) - f(x)| \, dx = 2 \int_{\mathbb{R}} (f(x) - f_n(x))^+ \, dx$$

with $(f - f_n)^+$ dominated by f which is integrable on \mathbb{R} .

Exercise 5 Let ϕ_X be the c.f. of a random variable X on \mathbb{R} . Suppose that $|\phi_X(t)| = |\phi_X(\alpha t)| = 1$ for some non-zero $t \in \mathbb{R}$, and some irrational $\alpha \in \mathbb{R}$. Show that there exists $c \in \mathbb{R}$ such that P(X = c) = 1.

Solution. From Exercise 1, we find that X must be supported on

$$S = \{a + kh : k \in \mathbb{Z}\} \cap \{a/\alpha + kh/\alpha : k \in \mathbb{Z}\},\$$

where $h = 2\pi/t$, $a = \beta h$, $\phi_X(t) = e^{2\pi i\beta}$. Any element $x \in S$ must look like

$$x = (\beta + k)h = (\beta + \ell)h/\alpha$$

for $k, \ell \in \mathbb{Z}$. Thus,

$$\alpha = \frac{\beta + \ell}{\beta + k}$$

If we had $x' \in S$ with $x' \neq x$, then we could write

$$\alpha = \frac{\beta + \ell'}{\beta + k'}$$

for $k', \ell' \in \mathbb{Z}, k' \neq k, \ell' \neq \ell$. Thus,

$$\alpha = \frac{\beta + \ell}{\beta + k} = \frac{\beta + \ell'}{\beta + k'} = \frac{(\beta + \ell) - (\beta + \ell')}{(\beta + k) - (\beta + k')} = \frac{\ell - \ell'}{k - k'}$$

contradicting the irrationality of α . Thus, S contains at most one element; it must contain at least one element since $P(X \in S) = 1$.

Exercise 6 Let $\{X_n\}$ and X be a collection of random variables with corresponding c.f.'s $\{\phi_n\}$ and ϕ . Suppose that $\phi_n \in L^1(\mathbb{R})$ for each $n \ge 1$, and ϕ_n converges in $L^1(\mathbb{R})$ to ϕ . Show that

$$\sup_{B \in \mathcal{B}_{\mathbb{R}}} |P(X_n \in B) - P(X \in B)| \to 0.$$

Solution. Note that $\phi \in L^1(\mathbb{R})$; thus, $\{X_n\}$ and X admit density functions f_n and f. By Scheffe's Theorem, it is now enough to show that $f_n \to f$ almost everywhere. To do so, use the inversion formula

$$f_n(x) - f(x) = \frac{1}{2\pi} \int_{\mathbb{R}} (\phi_n(t) - \phi(t)) e^{-itx} dt,$$

hence

$$|f_n(x) - f(x)| \le \frac{1}{2\pi} \|\phi_n - \phi\|_1 \to 0.$$

Exercise 7 Let $\{U_i\}_{i\geq 1}$ be i.i.d. random variables with distribution $P(U_1 = \pm 1) = 1/2$. Define $X_n = \sum_{i=1}^n U_i/2^i$.

- (a) Find the c.f. of X_n .
- (b) Show that $\lim_{n\to\infty} X_n$ exists almost surely, and denote it by X. Show that the c.f. of X is given by $\phi_X(t) = \frac{\sin(t)}{t}$.

Solution.

(a) Calculate

$$\phi_{U_1}(t) = E(e^{itU_1}) = \frac{1}{2}e^{it} + \frac{1}{2}e^{-it} = \cos(t).$$

Thus, using independence,

$$\phi_{X_n}(t) = \prod_{i=1}^n \phi_{U_i/2^i}(t) = \prod_{i=1}^n \phi_{U_1}(t/2^i) = \prod_{i=1}^n \cos(t/2^i).$$

Multiplying and dividing by $\sin(t/2^i)$ and using the identity $2\sin(x)\cos(x) = \sin(2x)$, we can simplify this (for $t \neq 0$) to

$$\phi_{X_n}(t) = \frac{\sin(t)}{2^n \sin(t/2^n)}.$$

(b) Note that

$$\lim_{n \to \infty} X_n = \lim_{n \to \infty} \sum_{i=1}^n U_i / 2^i$$

is an infinite sum of centred random variables; it is enough to check that the following limit is finite.

$$\lim_{n \to \infty} \sum_{i=1}^{n} V(U_i/2^i) = \lim_{n \to \infty} \sum_{i=1}^{n} \frac{1/4}{2^{2i}} = \frac{1/4}{1 - 1/4} = \frac{1}{3}$$

Thus, X_n converges almost surely, say $X_n \xrightarrow{as} X$. This means that $X_n \xrightarrow{d} X$, hence $\phi_{X_n} \to \phi_X$. Calculate

$$\lim_{n \to \infty} \phi_{X_n}(t) = \lim_{n \to \infty} \frac{\sin(t)}{2^n \sin(t/2^n)} = \lim_{n \to \infty} \frac{\sin(t)}{t} \cdot \frac{t/2^n}{\sin(t/2^n)} = \frac{\sin(t)}{t}.$$

This is precisely the c.f. of a U(-1, 1) random variable.

Exercise 8 Let $\{X_n\}$ be a sequence of independent random variables with $P(X = \pm 1) = 1/2 - 1/2\sqrt{n}$ and $P(X = \pm n^2) = 1/2\sqrt{n}$ for each $n \ge 1$. Find constants $\{a_n\} \subseteq (0, \infty)$ and $\{b_n\} \subseteq \mathbb{R}$ such that $a_n^{-1} \sum_{j=1}^n (X_n - b_n)$ converges weakly to N(0, 1).

Solution. Note that $E(X_j) = 0$; set

$$\sigma_j^2 = V(X_j) = 1 - \frac{1}{\sqrt{n}} + \frac{n^4}{\sqrt{n}}, \qquad s_n^2 = \sum_{j=1}^n \sigma_j^2.$$

We claim that $a_n = s_n$, $b_n = 0$ gives the desired result, via the Lindeberg-Levy Central Limit Theorem. Check that σ_j^2 increases to ∞ , hence

$$\frac{\max_{1 \le j \le n} \sigma_j^2}{s_n^2} = \frac{\sigma_n^2}{s_n^2}$$

Now,

$$n^{7/2} \le \sigma_n^2 \le 1 + n^{7/2},$$

hence

$$\sum_{j=1}^{n} j^{7/2} \le s_n^2 \le n + \sum_{j=1}^{n} j^{7/2}$$

Also,

$$\int_{j-1}^{j} x^{7/2} \, dx \le j^{7/2} \le \int_{j}^{j+1} x^{7/2} \, dx,$$

 \mathbf{SO}

$$\frac{2}{9}n^{9/2} \le \int_0^n x^{7/2} \, dx \le s_n^2 \le \int_1^{n+1} x^{7/2} \, dx = \frac{2}{9}(n+1)^{9/2}.$$

Thus,

$$\frac{\max_{1 \le j \le n} \sigma_j^2}{s_n^2} = \frac{\sigma_n^2}{s_n^2} \le \frac{1 + n^{7/2}}{2n^{9/2}/9} \to 0.$$

Next, we verify the Lyapunov condition for $\delta = 2$. Check that

$$E(X_j^4) = 1 - \frac{1}{\sqrt{n}} + \frac{n^8}{\sqrt{n}} \le 1 + n^{15/2},$$

hence

$$\sum_{j=1}^{n} E(X_j^4) \le n + \sum_{j=1}^{n} n^{15/2} \le n + \int_1^{n+1} n^{15/2} = n + \frac{2}{17} n^{17/2}.$$

Thus,

$$\frac{\sum_{j=1}^{n} E(X_{j}^{4})}{s_{n}^{4}} \leq \frac{n + 2n^{17/2}/17}{4n^{9}/81} \to 0.$$

Lindeberg-Levy now gives

$$s_n^{-1} \sum_{j=1}^n X_j \xrightarrow{d} N(0,1).$$

Exercise 9 Let $\{X_n\}$ be a sequence of random variables. Let

$$S_n = \sum_{j=1}^n X_j, \qquad s_n^2 = \sum_{j=1}^n E(X_j^2) < \infty.$$

If $s_n^2 \to \infty$, then show that the following are equivalent.

$$\lim_{n \to \infty} s_n^{-2} \sum_{j=1}^n E(X_j^2 \chi_{|X_j| > \epsilon s_n}) = 0 \text{ for all } \epsilon > 0,$$
$$\lim_{n \to \infty} s_n^{-2} \sum_{j=1}^n E(X_j^2 \chi_{|X_j| > \epsilon s_j}) = 0 \text{ for all } \epsilon > 0,$$

Solution. (\Leftarrow) Each sum in the second expression has more terms than in the first, since $|X_j| > \epsilon s_n \implies |X_j| > \epsilon s_j$. Thus, the first expression is sandwiched between zero and the second expression, hence must also be zero in the limit.

 (\Rightarrow) Check that for any $\delta > 0$, we have

$$\sum_{j:s_j < \delta s_n} E(X_j^2) < \delta^2 s_n^2.$$

This is clear, since s_j increases to s_n ; if j'(n) is the largest j such that $s_j < \delta s_n$, then the sum is over precisely $1, 2, \ldots, j'(n)$, hence is equal to $s_{j'(n)}^2$. But $s_{j'(n)}^2 < \delta^2 s_n^2$ by construction.

Let $\epsilon > 0$; for each $\delta > 0$, we have

$$s_n^{-2}\sum_{j=1}^n E(X_j^2\chi_{|X_j| > \delta\epsilon s_n}) \to 0.$$

Now,

$$\begin{split} s_n^{-2} \sum_{j=1}^n E(X_j^2 \chi_{|X_j| > \epsilon s_j}) &= s_n^{-2} \sum_{j=1}^n E(X_j^2 \chi_{|X_j| > \epsilon s_j} (\chi_{|X_j| > \delta \epsilon s_n} + \chi_{|X_j| \le \delta \epsilon s_n})) \\ &= s_n^{-2} \sum_{j=1}^n E(X_j^2 \chi_{|X_j| > \epsilon s_j} \chi_{|X_j| > \delta \epsilon s_n}) + s_n^{-2} \sum_{j=1}^n E(X_j^2 \chi_{|X_j| > \epsilon s_j} \chi_{|X_j| \le \delta \epsilon s_n}) \\ &\leq s_n^{-2} \sum_{j=1}^n E(X_j^2 \chi_{|X_j| > \delta \epsilon s_n}) + s_n^{-2} \sum_{j=1}^n E(X_j^2 \chi_{\delta \epsilon s_n \ge |X_j| > \epsilon s_j}) \\ &\leq s_n^{-2} \sum_{j=1}^n E(X_j^2 \chi_{|X_j| > \delta \epsilon s_n}) + s_n^{-2} \sum_{j=1}^n E(X_j^2 \chi_{\delta \epsilon s_n > s_j}) \\ &\leq s_n^{-2} \sum_{j=1}^n E(X_j^2 \chi_{|X_j| > \delta \epsilon s_n}) + s_n^{-2} \sum_{j=1}^n E(X_j^2 \chi_{\delta s_n > s_j}) \\ &< s_n^{-2} \sum_{j=1}^n E(X_j^2 \chi_{|X_j| > \delta \epsilon s_n}) + \delta^2 \end{split}$$

Taking the limit as $n \to \infty$, the first term vanishes. Since $\delta > 0$ is arbitrary, the limit must be zero.