IISER Kolkata Exercises

MA4203: Probability II

Satvik Saha, 19MS154 May 1, 2023

Assignment 1

Exercise 1 Let » > 0 and let X be any almost surely non-negative random variable. Prove the
following.

(a)
E(X) :/ P(X > x) dz.
0

iP(in)gE(X)§1+§:P(XZn).

n=1

E(X") = 7‘/ " P(X > ) da.
0

AY nT'P(X > n) < E(XT) <14 BY n"'P(X >n).
n=1 n=1

(e) Let g be a non-negative strictly increasing differentiable function. Then,

E(g(X)) = g(0) + / T (@)P(X > z) dr.

Hence,
E(g(X)) <00 < Zg’(n)P(X >n) < oo.
n=1
() )
B(logm X) <00 = Zn_lP(X >n) < oo.
(g) Forp>1, .
E((log"m X)P) < 00 <= Zn_l(logx)p_lP(X >n) < oo.

(h) For p>0and r > 1,

E(X"(log" X)P) < 00 = Zn“l(log;ﬂ)pP(X >n) < oo.

n=1

E(logTlogt X) < 00 <= Znil(logn)*lp(X >n) < oo.

n=1



Solution.

(a)

(b)

Let F be the cdf of X. Then, Tonelli’s Theorem gives

E(X):/ zdF (z / / dt dF (x
~ [ [ ot dtar)

- [ e @ i@ a
0 0
- / 1~ F(t) dt

0

:/OOP(X>t)dt.
0

Note that if n <z <n + 1, then
P(X<n)<P(X<z)<PX<n+1), P(X>n+1)<P(X >z)<P(X >n).

Integrating from n to n + 1 and summing, we have

ZPX>n—|—1 )< B(X ZPX>n (X20)+iP(XZn).

n=0 n=1

Thus,
Y P(X>n)<EBE(X)<1+) P(X>n)
n=1

n=1

Using the substitution x +— u",
BXT) = / P(X" > z)de = / P(X > a*7) du = / P(X >u)ru" " du.
0 0 o

Check that each

mt<(n+1)" —n" <r(n+1)"t

To see this, note that (n+1)" —n" = ra"~! for some x € (n,n + 1) by the Mean Value Theorem.

Furthermore,
r—1
1
(n+1)"= (n i ) n’ Tt < r2r it
n

and

r—1
r—1 __ n r—1 —(r—1) r—1
= >
rn <n+1> m+1)"" >r2 (n+1)

Thus, we have
27 D 1) < (n 1) =" < r2n i

Now,
E(X"):/ TlPX>xdm—Z/ ra"'P(X > z) dx.
0

Thus,

[e%s} n+1 o0 n+1

Z P(X >n+ 1)/ ra” tde < B(X") < ZP(X > n)/ ra" ! da,

n=0 " n=0 n
S0

i PX>n+1)[n+1)"—n"]<EX") Si PX >n)[(n+1)" —n"].



Using the established inequality and re-indexing,

> PXzn+1) 270 V4 1) T S EXT) <14 Y P(X >n)-r27 e
n=0 n=1

r2= DN " P(X > ) < B(XT) < 14727 1an 'P(X >n).
n=1

n=1

(e) Calculate

E(9(X))

| st ar)
/Oo<g<o>+g<> 9(0)) dF ()
/ / ) dt dF (x)
+ /0 /t g (t) dF () dt

— 4(0) + / T 00— Ft)) dt

=g(0) + /00<> g (t)P(X >t)dt.

We now impose the condition that there exist constants A, B such that for x € [n, n+1], sufficiently
large n,
Ag(n+1)<g(x) < Bg'(n).

Then, E(g(X)) < oo if and only if the following integral is finite.

()PXm;d;z:—Z P(X > ) dz.
A A

0

Now,

ZAg (n+1)P(X >n+1) <Z/ P(X > x) dx<ZBg YP(X > n),
hence
AZg'(n)P(X >n) < /000 g (z)P(X > z)dx < Bg'(0) +BZg’(n)P(X > n).

Thus, E(g(X)) < oo if and only if Y07, ¢'(n)P(X > n) < cc.

Remark. Instead of starting at 0, we may have to truncate the integral /sum.

(f) Note that
oo M oo
B(g(X)) = / o) dF (z) = / g(x) dF () + /M o) dF (x),

the first part being finite, so we need only check the criterion for g and for the sum described in the
previous part on (M, 0o) and for n > M. Here, g = log™, which is non-negative, strictly increasing,
and differentiable on (1,00), with ¢'(x) = 1/z. Now, for « € [n,n + 1], we have

1
n+1

1 1
<-—< -
T " n

With this, the desired follows via the criterion in the previous part.



(g) Putting g = (log™)?, we have g non-negative, strictly increasing, differentiable on (2, 00), with

g (z) = pr~(logz)P~L. For x € [n,n + 1], we have
logz < log(n +1) < log(n?) = 2logn,

and

1 1
logz > logn = ilogn2 > ilog(n—i— 1).

Thus,
27D (n+ 1) (log(n + 1))P* <z~ '(loga)?~* < 27 'n~ " (logn)P .

Again, the desired criterion follows.

Precisely the same calculations as in (c) show that if there exist constants A, B and amap h: N — R
such that for all z € [n,n + 1],

Ah(n+1) < ¢'(z) < Bh(n),
then -
E(g(z)) <o < Z h(n)P(X > n) < oo.

n=1

Putting g(z) = 2" (log™ 2)?, we have g non-negative, strictly increasing, differentiable on (1, 00),
with ¢(x) = 2" *(log x)P~![rlog z + 1]. For sufficiently large n

rlogz <rlogz+1 < 2rlogz, rz" Ylogx)P < ¢'(x) < 2rz" 1 (logxz)P.
for x € [n,n + 1]. Thus,

727D (n 4 1) 27 P(log(n + 1))P < ¢'(x) < 2r- 27 tn" 1 2P (log n)P.
Thus, putting h(n) = n"~(logn)P gives the desired criterion.

Putting g = log™ log™, we have g non-negative, strictly increasing, differentiable on (e, o), with
g (z) =z 1(logx)~!. Also, for z € [n,n + 1], we have

(n+1)"(log(n +1))" < ¢'(z) <n”'(logn) ™.

The desired criterion follows.

Exercise 2 Let {X,,} be a sequence of pairwise independent and identically distributed random vari-

ables.

(a)
(b)

Show that X,,/n — 0 almost surely if and only if E(|X;]) < oo.
Show that |X,,|'/™ — 1 almost surely if and only if E(log™ |X;|) < oc.

Solution.

(a)

Xn/n 50 <= Y P(Xn/n|>e€) < oo foralle>0 (Borel-Cantelli)

n=1

= ZP(|Xn/€| >n) < oo forall e >0
n=1

Z P(|X1/e|l >n) < oo forall e >0 (Identical distributions)

E(] 1/€|) < oo for all e >0
E(|1X1]) <

Remark. Pairwise independence is only needed for the forward implication in the first step.

II



(b) Note that (log™ | X,|)/n =% 0 if and only if E(log™ |X;|) < oo by the previous part. By the contin-
uous mapping theorem, | X, /" 2% 1 gives (log™ | X,|)/n 22 0. Conversely, (log™ |X,|)/n 220
means that (log™ | X, (w)])/n — 0 for all w € A with P(A = 1). Thus, |X,(w)|/n — 0 for those
w € A where | X,,(w)| > 1; for the remaining w, we already have | X, (w)|/n < 1/n — 0.

Exercise 3 Let {X,} be a sequence of identically distributed variables, and let M,, = max{|X1|,..., |Xn|}.

(a) If E(]X1]) < oo, show that M,,/n — 0 almost surely.

(b) If E(|X1|*) < oo for some a € (0,00), then show that M, /n'/® — 0 almost surely.

(¢) If {X,} is also independent, then show that M, /n'/® — 0 almost surely implies that E(|X:]|*) <
0.

Solution.

(a) We have E(|X1|) < oo = X, /n 2% 0, hence there exists A C Q with P(A) = 1 such that
Xn(w)/n — 0 for all w € A. Set z,, = X,,(w), m,, = My, (w), and let € > 0, whence there exists
N € N such that for all n > N, we have |z,|/n < e. Now, observe that for all n > N,

my, < max{|z1],...,|zN]|} + max |xN+1|,.”,@ .
n n N+1 n
This is because either m,, € {|z1],...,|zn|}, or m, = |zk| for some N < k < n, so m,/n < |z|/k.

Note that as n — oo, the first term vanishes and the second term is always bounded by e. Thus,
my,/n — 0, hence M, /n 2% 0.

as

(b) We have E(|X1|*) < co => M2 /n %% 0. By the continuous mapping theorem, M, /n*/* 2% 0.

as

(¢c) We have M, /n"/* 2% 0 = |X,|/n'/* 25 0, as |X,| < M,. By the continuous mapping
theorem, | X,,|*/n 2% 0. Thus, the previous exercise gives E(|X1|*) < occ.

Exercise 4 Let {4,} be a sequence of independent events with all P(A,) < 1. Show that

n— oo

P(limsupA,)=1 < P <U An> =1

n=1

Solution. We have

P(limsup 4,) =1 <— P(ﬁ GAn)l = P(D An>1.

nTreo k=1n=k

For the reverse implication, it suffices to show that for all k¥ > 1, we have

P (,Q A,L> -

P (ﬁ A;) =0 ﬁP(A;) = 0.
n=~k

n==k

which is equivalent to

But this follows immediately since it holds for k¥ = 1; each P(A¢%) > 0 means that this term can be
cancelled from the product yielding the equality for all k > 1.



Exercise 5 Let {X,} be a sequence of independent random variables such that for n > 1, we have
P(X,=1)=n"!'=1- P(X, =0). Show that X,, converges to 0 in probability but not almost surely.

Solution. Note that for € > 0, we have P(|X,| > €) < 1/n — 0. Thus, X,, = 0.

By the Borel-Cantelli Lemmas, X,, —> 0 is equivalent to Y oo | P(|X,| > €) < oo for all € > 0. However,
this is false; putting € = 1/2, the latter sum is > - 1/n = occ.

Exercise 6 Let {X,} be a sequence of independent and identically distributed exponential random
variables with density f(x) = e™"x(0,00) (). Define

Y, = max X;.

1<i<n

(a) Show that

Z P(X, > elogn)

n=1

converges if € > 1 and diverges if 0 < e < 1.
(b) Show that limsup X,,/logn = 1 almost surely.
(¢) Show that liminf X, /logn = 0 almost surely.

(d) Show that [X,, > elogn i.0.] <= [Y, > elogn i.0.], and hence limsup Y, /n = 1 almost surely.

Solution.

(a) Calculate

e 1
P(Xn>elogn):/ e dr = —.
elogn n
Thus
o0 o0 1
Z P(X, > elogn) = —
n=1 n=1 n
converges precisely when € > 1, and diverges when 0 < € < 1.
(b) Putting ¢ = 1, we have
o0
P(X, >logn) =00 <= P(X,/logn>1io0.)=1 (Borel-Cantelli)
n=1

= P(limsup X,,/logn >1) =1
<= limsup X,,/logn = 1 almost surely.
The second implication follows from the fact that there is a probability one set A such that for

w € A, we have X,,(w)/logn > 1 infinitely often, i.e. there is a subsequence {nj;} such that all
Xn, (w)/logng > 1.

Next, for € > 1, we have

> P(X, >e€logn) < oo <= P(X,/logn>eio)=0 (Borel-Cantelli)
n=1

< P(X,/logn < € eventually) =1
= P(limsup X,,/logn <e€) =1
<= limsup X,,/logn < € almost surely.

The third implication follows from the fact that there is a probability one set A, such that for
w € A, we have X, (w)/logny < e for all sufficiently large ny, for all subsequences {ny}. Since



all A;,/, have probability one, their intersection has probability one by continuity from above,
yielding
limsup X,,/logn < 1 almost surely.

Combining the two parts gives the desired result.

(¢) Note that for all 0 < e < 1,
o0 o0 1 )
ZP(Xn < elogn) = Zl ——=00 <= P(X,/logn<eio.)=1
€
n=1 n=1

= P(liminf X,,/logn <e¢) =1.
Putting e = 1/k — 0, continuity from above gives

liminf X,,/logn = 0.

(d) Tt is equivalent to show that
A = [X,, <elogn eventually] <= [Y,, < elogn eventually] = B.

Since X,, <Y, we have w € B = Y, (w) < elogn for n > N, hence X,,(w < elogn) for n > N,

= w e A

Next, let w € A, and let N € N such that for all n > N, we have X,,(w) < elogn. Then,
Yo (w) < max{X1(w),...,Xn(w)} 4 max Xn41(w) L X, (w) .
logn logn log(N +1) logn

The second term is bounded by e, while the first vanishes as n — oco. Thus, Y, (w)/logn < 2e
eventually, so w € B.

We have shown that A = B; repeating the proof of (b) with X,, > elogn i.o. replaced with
Y,, > elogn i.0. proves that limsup Y, /logn = 1 almost surely.

Exercise 7 Show that for any given sequence of random variables { X, }, there exists a (deterministic)
real sequence {a,} such that X, /a, *> 0.

Solution. Note that for any fixed X,,, we have P(|X,,| > M) — 0 as M — oco. Thus, for each n € N, we
can pick numbers M,, such that

1
P(| X, > M,) < o
Set a, = nM,,. Then for ¢ > 0,

> P Xnfan| >€) = D P(|Xu| > enMy,).
n=1

n=1

Let N € N such that Ne > 1. Then the tail of the above series is

o0 je%) 50 1
> P(Xpl > enMy) < Y P(IXn| > M) = Y = < .
n=N n=N n=N

Exercise 8 Let {X,,} be a sequence of independent random variables such that
P(X, =2)=P(X, =n") =a,, P(X, =a,) =1-2a,,
for some a,, € (0,1/3) and 8 € R. Show that ) ° | X, converges if and only if 7 | a,, < co.

Solution. Define Y,, = X, x[x,|<4] for A > 0. First, suppose that 3 > 0, whence n® — oco. Thus,
putting A = 3, for sufficiently large n, we have

E(Y,) = 2an 4 an(1 — 2a,) = 3a, — 202 < 3a,,



using a% > 0. Also,
V(Y,) < B(Y?) = 4a, + a2 (1 — 2a,) = 4a, — a2 + 2a> < 6a,,
using a2 < a,,. Finally,
P(|X,| > 3) = an.

Thus, if >°°7 , a, < oo, we have >~ | P(|X,| > 3) <00, > 0" E(Y,) < o0, Yo7 V(V,) < oo, whence
Kolmogorov’s Three Series Theorem gives the convergence of > | X,,. Conversely, the convergence of
Yoo 1 X, gives the convergence of > 7 P(|X,,| > 3) =>"7° \ an.

Next, suppose that 4 < 0. Thus, putting A = 1, for sufficiently large n, we have n® < 1, hence
EY,) = n®a, + an(l—2a,) = nPan + an — 202 < 2a,.

Also,
V(Y,) < E(Y?) =n?a, +a2(1 — 2a,) = n*Pa, + a2 — 243 < 2a,,

using a? < a,,. Finally,
P(|X,| >1) = ay,.

oo

Using precisely the same argument as before, >~ |

converges.

X,, converges almost surely if and only if ZZOZI an

Exercise 9 Let {X,} be a sequence of independent random variables such that F(X,,) = 0, E(X2) =
0?. Define s2 = >"}'_, 0% — oco. Show that for any a > 1/2,

1 ~ o as
Y, = ——S"X, 20
sn(log s2 )@ ; F

Solution. Set
Xy

sn(logs2)ae’

Without loss of generality, let s; > 1. Then,

D Vi(Za) =
n=1

2
On

sy (log s7)%

hE

3
Il
-

2
n—1

53 (log s7)%

2
sy, — 8

K

3
Il
_

2
/Sn dx
2a
w  2(loga)
1 s

(2a — 1) log(z)2e—11s2

K

i
L

I
NE

1

3
Il
-

o0

1 1 1
= % 12 g T (gt <

n=1

Thus, > 7, Z,, converges in Lo, hence in probability, hence almost surely by Levy’s Theorem. Finally,

Kronecker’s Lemma gives

Y, =

1 n
—_— Z log s2)* % 0.
sallog e 2 Zhontoe D



Exercise 10 Let f be a bounded measurable function on [0, 1] that is continuous at 1/2. Evaluate

li_>m / / / (wl - +m") dry dxo - dx,.

Solution. Let U, be independent and identically distributed random variables, having uniform distri-
bution on [0,1]. Then, the given integral is simply E(f(U,)), where U, = (U + --- + U,)/n. Since

E(|U1]) < 00, Kolmogorov’s Strong Law of Large Numbers gives U,, — E(U;) = 1/2. Since f is continu-
ous at 1/2, we have f(U,) — f(1/2). Finally, f is bounded, so the desired limit is f(1/2) by Lebesgue’s
dominated convergence theorem.

Exercise 11 Let {X,,} be a sequence of independent and identically distributed random variables.
Investigate the almost sure convergence/divergence of the series Y - | X,,.

Solution. Kolmogorov’s Three-Series Theorem says that if Y~ | X,, converges almost surely, then for
all A >0,

oo

oo
> P(IX:| > A) :Z (1X,] > A) <
n=1

This sum is finite precisely when P(|X;| > A) = 0 for all A > 0. Thus, the series Y - | X,, converges
almost surely only when each X, is a degenerate random variable with P(X,, =0) = 1.

Exercise 12 Let {X,,} be a sequence of independent random variables with F(X,,) = 0 and E(X?2) =
02 < co. Suppose that > °° 02 /b? < oo for some positive sequence {b,} which increases to co. Show

that b1 >0 | X; =5 0.

Solution. By Kronecker’s Lemma, it is enough to show that ZZO:1 X, /by, converges almost surely. By
Levy’s Theorem, it is equivalent to show that this converges in probability. This it is enough to show
convergence in L?, whence is it enough to show that the sum of variances > >~ | V(X,,/b,,) is finite. This
is precisely > 7 02 /b2 < oo as given.

Exercise 13 Let {X,} be a sequence of independent random variables with each X ~ N(pin,02).
Show that > 7 | X,, converges almost surely if and only if both Y | u, and Y - | 02 converge.

Solution. (<) We have > 02 V(X,, — up) = >.oo ;02 < 00, hence > > (X, — pn) converges almost

nln

surely. Using Y7 | p, < 0o, we have > 2 | X,, < oo almost surely.

(=) First, suppose that all u,, = 0. Since Y > | X,, converges almost surely, Kolmogorov’s Three-Series
Theorem gives

> P(Xn/onl > Afon) =D P(IXa| > A) < 00

for all A > 0; fix A = 1. Now, Z,, = X,, /0, are independent and identically distributed standard normal
random variables. Thus, P(|Z,| > A/c,) — 0 forces o,, — 0. We also have

> O2E(ZIXz0<a/0,) = D B(XIX1x24) = Y V(XnX|x,|<4) < 00
n=1 n=1 n=1

Now, A/c,, — o0, so there exists N € N such that A/o,, > 1 for all n > N. Then,
E(ZyX\z,1<4/0,) 2 B(Z3X|2,1<1) = K > 0.
This immediately gives

Y Kol <Y 0lE(ZiX|z,2)0,) < 00,
= n=N

hence > 7 | 02 < c0.

=1"n



Returning to the general case, write

Sn:inNN(mn,Si)a mn:iﬂz, S%:ZJ?
=1 i

i=1

Since S,, converges almost surely to some random variable Y, it also does so in distribution, hence the
characteristic functions ¢g, (t) — ¢y (t) for all ¢t € R. Now,

95, (1) = etmnmten 2T = g ()] = oy (1)]-
Since ¢y (0) = 1, the continuity of ¢y gives ¢y > 0 on some neighbourhood of 0. There, applying
logarithms gives

1
—§t23i — log |py ()]

Fixing one such ¢ # 0, we have s2 — —2log |¢y (t)|/t?, hence >~ | 02 converges, say to s?. Thus,

eitm" N 6t232/2¢y (t)
for all t € R. This forces the convergence of m,,, hence of Y07 | fun.

To justify the last step, suppose that the sequences {e~%“"} converge for all ¢ € R. Then, we have each
elen—am) _ 1 Tt is enough to show that o, — a,, — 0, whence {a,} is Cauchy, hence convergent.
Thus, suppose that e+ — 1 for all t € R. Also suppose that all 8 # 0; we show that 3, — 0 (we can
re-insert any 0 values after initially removing them). Then, the dominated convergence theorem gives

1 1
/ et dt — / dt =1,
0 0

1 4 1 s
ek dt = —(e'P* —1).
/o lﬂk( )

while

Thus, the following limit exists, and is given by

lim B = lim —i(e?®* — 1) =0.

n—oo n—oo

10



Assignment 11

Exercise 1 Suppose that {z, },>1 is a sequence of real numbers. Define a sequence of random variables
{Xn}n>1 as follows: P(X,, =x,) =1 for each n > 1.

(a) Show that if x,, — z, then X,, converges weakly to X, where P(X =z) = 1.

(b) Show that if X, converges weakly to X as above, then =, — x.

(c¢) Show that if X,, converges weakly to a random variable Y, then P(Y = z) =1 for some z € R.
Solution.

(a) Note that for any continuous bounded function f, we have
E(f(Xn)) = f(zn) = f(z) = E(f(X)),
hence X, LIS

(b) Note that for all y # x, we have Fx,_ (y) — Fx(y). This means that Fx (y) — 0 when y < z,
and Fx, (y) — 1 when y > z. But Fx, only takes values in {0,1}; thus, for any ¢ > 0, there
exists sufficiently large N such that Fx, (z —€) =0 and Fx, (r +¢€) = 1 for all n > N. Since each
x, =inf{y : Fx, (y) = 1}, we must have z — e < z,, <z + € for all n > N. Thus, z,, — z.

(¢) Note that for y not in the set of (countably many) discontinuities of Y, we have Fx (y) — F(y);
since Fx, only takes values in {0, 1}, this means that the limit function F,, must only take values
in {0,1}. The gaps at the point of discontinuity can be filled in by right continuity of Fy; for any
such point of discontinuity y, one can always find a sequence {y;} decreasing to y that misses all
discontinuity points of Fy, hence Fy (y,) — Fy (y).

Set © = inf{y : Fy(y) = 1}. Then, Fy(y) = 0 for all y < z, and Fy(y) = 1 for all y > = by
construction, thus P(Y = z) = 1 (right continuity).

Exercise 2 Let X and Y be two real random variables. Show that P(X = Y) = 1 if and only if
E(f(X))=E(f(Y)) for all f: R — R which are bounded and uniformly continuous. Hence or otherwise,
show that a sequence of probability measures cannot converge weakly to two different limits.

Solution. (=) This follows immediately from the fact that X and Y are identically distributed.

(<) Let a,b be continuity points of both Fx, Fy, with —co < a < b < co. Pick a sequence §; decreasing
to 0, and define the functions

0, if x € (—o0,a — &),

(x —(a—0g))/0k, ifzé€la— 0, al,
hi(z) =41, if € [a, ],

((b+dy) —x) /0, ifz€[bb+ dl,

0, if 2 € [b+ 0, 00).

Such hy € Cp(R) approximate X (4, from above. Now, each Ay is bounded and uniformly continuous,
SO

Fx(b) = Fx(a) = E(x(ap (X)) < E(hi(X)) = E(hx(Y)).

By the Dominated Convergence Theorem, taking limits as k — oo gives
Fx(b) — Fx(a) < E(X{a,4](Y)) = E(X(a01(Y)) = Fy (b) — Fy (a).
The reverse inequality holds by symmetry, hence

Fx(b) — Fx(a) = Fy(b) — Fy(a).

11



Taking the limit @ — —oo, we have Fx(b) = Fy (b) for all common continuity points b. Thus, X and Y
are identically distributed.

With this, we see that if X, - X,V then for all f € Cp(R), we have E(f(X,)) — E(f(X)),
E(f(X,)) = E(f(Y)). Thus, E(f(X)) = E(f(Y)) for all f € Cp(R), whence X and Y are identically
distributed.

Exercise 3

(a) Show that for any real random variable X and any proper open subset U of R, we have

P(X eU) =sup{P(X € K) : K CU is compact}.
(b) Show that
X, -5 X <= liminf P(X, € U) > P(X € U) for any open U C R.
(¢) Show that

X, % X <= limsup P(X, € F) < P(X € F) for any closed F' C R.
Solution.

(a) We use the property of inner regularity of probability measures,
P(X eU)=sup{P(X € F): F CU is closed}.

Given € > 0, find N > 0 such that P(X € U \ [-N,N]) < ¢/2; this is possible, since this
probability converges to zero as N — co by continuity from above. Via inner regularity, find closed
F CUNJ[-N,N] such that P(X € UN[-N,N]) — P(X € F) < ¢/2. Note that FF C [N, N|,
hence F' is compact. Also,
PXeU)-P(XeF)<P(XeU\[-N,N))+P(XeUN|[-N,N])—P(X e€F)
<e€/2+¢€¢/2=c¢.

(b) (=) Note that E(f(X,)) — E(f(X)) for all continuous and bounded functions f. Let U C R be
open. For any compact set K C U, use Urysohn’s Lemma to find f € C.(R) such that 0 < f <1,
f(K) =1, and supp(f) C U. Thus,

P(Xn S U) = E(XU(Xn)) > E(f(Xn))
Asn — oo,

liminf P(X, € U) > E(f(X)) > E(xx(X)) = P(X € K).

n—roo

Taking a supremum over all such K, and using the previous exercise gives

liminf P(X,, € U) > P(X € U).

n— oo

(<) Let z be a continuity point of X. Considering the open sets (—oo, z) and (z,00), we have

liminf P(X,, < z) > P(X < z), liminf P(X,, > x) > P(X > x).

n— oo n— oo

The latter gives

limsup P(X,, <z) =1—liminf P(X,, >z) <1—-P(X >z) = P(X <z).

n—oo n—oo

12



This gives

P(X <z)=P(X <x)
<liminf P(X,, < )

n— o0

<liminf P(X, <)

n— oo

< limsup P(X,, < x)

n—oo
< P(X <x).
Thus, P(X, < z) - P(X < z), i.e. X, - X.

(¢) The conditions
liminf P(X,, € U) > P(X € U) for any open U C R,

€
limsup P(X,, € F) < P(X € F) for any closed F' C R,

IN

are equivalent, since
liminf P(X,, € U) =1 — limsup P(X,, € U°), limsup P(X,, € F) =1 —liminf P(X,, € F°),

and
P(XeU)=1-P(X €U, P(XeF)=1-P(X € F°).

Exercise 4 Let A be a m-system of subsets of R. Suppose that .4 has the property that any open
subset of R is a countable union of sets from .A. For a collection of real random variables {X,,},>1 and

X, show that P(X, € A) — P(X € A) for every A € A implies that X, NS¢

Solution. We use the criterion from 3(b); let U C R be open. Then, write

oo N
U={JA4., Uv=J A4,
n=1 n=1

where A,, € A. Then, the Inclusion-Exclusion Principle gives
PX,eUn)= >  (-D"P[X,e ()4
0#£JC{1,...,N} jeJ

Taking the limit n — oo, we have

. _ 41 .

lim P(X, € Uy) = Yoo ()P (X e (4| =P(X €Uny).
0#£JC{1,...,N} jeJ

Since each P(X,, € U) > P(X, € Un),

liminf P(X,, € U) > P(X € Uy),

n—oo

so taking the limit N — oo and using continuity from below,

liminf P(X,, € U) > P(X € U).

n— oo

Exercise 5 Let {X,,},>1 be ii.d. real random variables defined from a probability space (€2, F, P)
having a common cdf F. Define the empirical cdf F;, corresponding to the observations (Xi,...,X,) as

. 1<
Fn(w7x) = E ZX(Xi(w)Sw)7
i=1
where w € Q and z € R.

13



(a) Prove that Fn(, x) is a real-valued random variable for each z € R.

(b)
()

Prove that F),(w,-) is a valid cdf for each w € €.

Show that F, (-, ) 5 F as n — oo almost surely, i.e.

P({w: lim F,(w,z) = F(z) for every z € C(F)}) = 1.

n—oo

Solution.

(a)

Note that each of the terms Y; = X[ X,<a] 18 a real-valued random variable; since X;: 0 — R is
measurable, the set [X; < z] = !(—o0, x] is measurable, whence the indicator function Y; on

this set is also measurable. Thus, Fn( ,2): 2 — R is measurable, being a scaled finite sum of
measurable functions. This means that F, (-, z) is a random variable for each = € R.

It is enough to check that given w € , the map E, (w, ) is non-decreasing, right continuous,
limy oo Fy (w,z) =0, and limy o0 F, (w,z) =1.

Denote X;(w) = y;, where the indices j are arranged such that y; <--- <y,. Then,

0 if z € (—o0,uy1),
1/n ifze [yl,yz),

k/n ifxc [ykayk-‘rl)y

1 if z € [yp, 00).
All four properties follow immediately.

For fixed x, the random variable Y; = x|x,<, has expectation F' (x), which is also the absolute
expectation. Since all X; are independent, so are all Y;, whence the Strong Law of Large Numbers
gives

Z Y; 25 E(Y1) = F(x).
Note that the (countable) collection A of all intervals of the form (g;, ¢;) for ¢;, ¢} € Q forms a basis
of the standard topology on R. Now, for each = € C(F),
P(Fu(2) <) = P(F(x) <qj),  P(Fu(,2) <) = P(F(z) < ),

since F,(-,2) = F(x) implies F, (-, ) N F(z). Thus,

P(E,(-,z) € A) —» P(F(z) € A)

for every A € A, whence A is a m-system as described in the previous exercise. Thus, F'(-, z) 4,
F(z) for all z € C(F), hence F(-,-) 4, F almost surely.

14



Assignment 111

Exercise 1 Let X be a random variable with characteristic function ¢x. Show that the following are
equivalent.

(a) |px(to)| =1 for some to # 0.
(b) There exists a,h € R with i # 0 such that

PXe{a+kh:keZ})=1.
Solution. (<) Check that

X(27T/h) _ E(eQTriX/h) _ ZGZWi(aJrkh)/hP(X =a+ kh) _ e27ria/hZP(X =a+ kh) _ e27ria/h.
keZ kEZ

(=) Let |¢x (to)] = 1 for some tg # 0. Then, write ¢x (tg) = €2™®, and set h = 27 /ty, a = ah = 2wa/ty.
Now,

1= e ™% x(to)
:e—QTria/eitgx dF(Q?)
R

:e—QTria/h/eQﬂ'ix/h dF(.’L‘)
R

:/627ri(x—a)/h dF(x)7
R

S0
/ 1 — ¥mie—a/h gp(g) = 0.
R

2mi(e=a)/h — 1 almost everywhere with respect to F, i.e. when (X —a)/h € Z

This is possible only when e
almost surely.

To see this, note that the above equation forces

/ | — cos(2n(x — a) /) dF (z) = 0,
R

hence

/ sin?(r(x — a)/h) dF(z) = 0.
R

Exercise 2 Let F be a cdf on R with pdf f and c.f. ¢x. Show that

lim |px(t)| =0.

|t] =00
Solution. First, suppose that f € C.(R). Then, note that the substitution z — z + 7/t gives

Px(t) = %/Rf(x)eitz dr — %/Rf(l”rﬂ/t)e“"”e” do.

Taking averages,
1

Px(t) = o

/[f(ac) — flz+ ﬂ/t)]eim dt,
R

6x(t \<—/|f f(@ + /1) de.
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Note that as [t| — oo, we have |f(z) — f(z + 7/t)] — 0; also, for |t| > 1, the latter has compact hence
bounded support. Thus, the Bounded Convergence Theorem gives

lim |¢x(t)| =0.

|t] =00

Next, if f ¢ C.(R), use the density of C.(R) in L*(R) to find g € C.(R) such that ||f — g|l1 < €. Then,

separate
1

2
hence

Mxmhiéﬂﬂm—g@Wr+%jAQ@kmdﬂ

The first term is less than €/27, and the second vanishes in the limit [¢| — co by the previous argument.
Since € > 0 is arbitrary, we have

lim |¢x(t)| =0.

|t] =00

Exercise 3 Let X and Y be i.i.d. random variables with cdf F' and c.f. ¢. Show that
T
P(X =Y) = lim —/ |p(t)|* dt.

Hence or otherwise, show that F' is continuous if and only if the above limit equals zero.

Solution. Set Z = X —Y, and note that the independence of X, Y, followed by their identical distribution
gives

0z(t) = dx—y (t) = dx (t)p—v (t) = o(t) D(t) = |p(t)[*.

Thus, the inversion formulae give

T—>oo 2T T—o0 2

T
P(X=Y)=P(Z=0)= lim —/ ¢z(t)dt = lim L/ |p(t)|* dt.
-7

We show that F' is continuous if and only if P(X = Y) = 0. To see this, note that P(X =Y) =
P((X,Y) € A), where A = {(x,x) : x € R}. Thus,

HX=W=[AMRA%MZAAFMMWMNW

If F is continuous, the inner integral is always zero, hence P(X =Y) = 0. Conversely, if P(X = a) =
p > 0 for some a € R, then P(X =Y) > P((X,Y) = (a,a)) = p* > 0.

Exercise 4 Let {F,} and F be cdfs on R with corresponding c.f.’s given by {¢,} and ¢. Suppose that
d
F, — F.

(a) Give an example to show that ¢, may not converge to ¢ uniformly on the entire real line.

(b) Suppose that F,, and F have pdfs given by f, and f. If f,, converges to f almost surely, then show
that ¢,, converges to ¢ uniformly on R.

Solution.
(a) Let F,, ~ N(0,1/n), whence ¢,(t) = e t'/2n As n — oo, we have ¢, — 1, hence F, < F

where F' is the cdf of a degenerate distribution with full mass at 0. However, ¢,, does not converge
uniformly to 1 on R. Note that ¢, (v/2n) = e~ !, hence

I¢n — 1]l = sup |¢n(t) — 1| = [e™" = 1] /0.
teR
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(b) Write
alt) = (6) = 5 [ (Fule) = S da
hence

6a(6) = 00| < 5 [ 1fule) = 1(@)] da:

As n — oo, the right hand side (which is independent of ¢) converges to zero by the Dominated
Convergence Theorem, since f,, — f almost surely, and

[ \tute) = f@)lde =2 [ (@) = fu(e)) " da,

with (f — f.)* dominated by f which is integrable on R.

Exercise 5 Let ¢x be the c.f. of a random variable X on R. Suppose that |¢x(t)| = |¢x(at)] =1 for
some non-zero t € R, and some irrational a € R. Show that there exists ¢ € R such that P(X =¢) = 1.

Solution. From Exercise 1, we find that X must be supported on
S={a+kh:keZ}n{a/a+kh/a:keZ},
where h = 27/t, a = Bh, ¢x(t) = €>™5. Any element x € S must look like
x=(B+kh=(B+0)h/a
for k,¢ € Z. Thus,

o Bt
B+k
If we had z' € S with 2’ # z, then we could write
o= b+l
B+ K

for k', 0 € Z, k' # k, ' # £. Thus,

B+l g (BHO)—-BFC) =T
T B4k BHEKE T Bk —(B+E) k—FK,

contradicting the irrationality of a. Thus, S contains at most one element; it must contain at least one
element since P(X € §) = 1.

Exercise 6 Let {X,} and X be a collection of random variables with corresponding c.f.’s {¢,,} and ¢.
Suppose that ¢,, € L*(R) for each n > 1, and ¢,, converges in L*(R) to ¢. Show that

sup |P(X, € B) — P(X € B)| — 0.
BeBr

Solution. Note that ¢ € L'(R); thus, {X,} and X admit density functions f, and f. By Scheffe’s
Theorem, it is now enough to show that f, — f almost everywhere. To do so, use the inversion formula

1

falw) = fla) = 5

/ (6 () — B())e" dt,

hence

fnl@) = F@)] < 51160 — 0l 0.
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Exercise 7 Let {U;};>1 be i.i.d. random variables with distribution P(U; = £1) = 1/2. Define
X, =20 Ui/ 2%

(a) Find the c.f. of X,,.

(b) Show that lim, . X, exists almost surely, and denote it by X. Show that the c.f. of X is given
by ¢x(t) = sin(t)/t.

Solution.
(a) Calculate
_ 1. 1 .
by, (t) = BE(e'V) = 56” + 567” = cos(t).
Thus, using independence,
¢x,(t) = [T dv.jo:(8) = [T dun (¢/27) = T cos(t/2").
i=1 i=1 i=1
Multiplying and dividing by sin(¢/2¢) and using the identity 2sin(z)cos(z) = sin(2z), we can
simplify this (for ¢ # 0) to
sin(t)
t) = —————.
ox.(0) = 55 sin(t/2m)
(b) Note that

n—oo n—

n
lim X, = lim ZUi/T'
=1

is an infinite sum of centred random variables; it is enough to check that the following limit is
finite.

2"31/4_ 14 1
220 1-1/4 3

m

n
Ji, 2 V(U/2) = lim,

i=1 i=1

Thus, X,, converges almost surely, say X,, —» X. This means that X,, LN e , hence ¢x, — ox.

Calculate - ., o y
lim ¢y, (t) = lim ﬁ — lim sin(t) . / _ sin(t)
n—00 n n—oo0 2N sm(t/2n) n—oo t Sln(t/2n) n

This is precisely the c.f. of a U(—1,1) random variable.

Exercise 8 Let {X,,} be a sequence of independent random variables with P(X = +1) =1/2—1/2y/n
and P(X = 4+n?) = 1/2/n for each n > 1. Find constants {a,} C (0,00) and {b,} C R such that

a, " 3201 (X — by) converges weakly to N(0,1).

Solution. Note that E(X;) = 0; set

1 n4 ~
2 2 2
gj_‘/(Xj)_l—%+ﬁ7 Sn—g ags.

We claim that a,, = s,,, b, = 0 gives the desired result, via the Lindeberg-Levy Central Limit Theorem.
Check that 032» increases to oo, hence

maxj<;j<n 0']2- . O—’?L

282
Now,

n7/? < UfL < 1—|—n7/2,
hence

n n
Yo <n+y §
j=1 j=1

18



Also,
J j+1
/ /2 dm§j7/2§/ x7/2d1‘,
j—1 J
SO
§n9/2§/ m7/2dx§8721§/ m7/2dm:§(n+1)9/2.
0 1

Thus,
maxicj<n 05 o2 _ 1+n7/?

=Inc T2 .
52 s2 = 2n9/2/9
Next, we verify the Lyapunov condition for § = 2. Check that
B(XY P PP R T2
J vnooy/n T ’
hence
- 4 - 15/2 e 15/2 2 1772
ZE(Xj)Sn—i—Zn §n+/1 n :n—i—ﬁn .
j=1 Jj=1
Thus,
Zj:1 E(X;‘L) < n+2n17/2/17 0

st — 4n?%/81
Lindeberg-Levy now gives

st X -5 N(0, 1),

Jj=1

Exercise 9 Let {X,,} be a sequence of random variables. Let

n

Sn:in7 si:ZE(ij)<oo.
j=1

j=1
If s2 — oo, then show that the following are equivalent.

n
nh_}n;o 5,2 ZE(XJZX\XHXS,L) =0 for all € > 0,
j=1

n
dim ;2 B(X7X)x;[5e5,) = 0 for all e > 0,
j=1

Solution. (<) Each sum in the second expression has more terms than in the first, since | X,;| > es,, =
| X;| > €s;. Thus, the first expression is sandwiched between zero and the second expression, hence must
also be zero in the limit.

(=) Check that for any 6 > 0, we have
Y EB(X}) < 8%
ji5;<dsn

This is clear, since s; increases to sy; if j/(n) is the largest j such that s; < ds,, then the sum is over
precisely 1,2,...,j'(n), hence is equal to s?,(n). But s?,(n) < 6%s2 by construction.

Let € > 0; for each § > 0, we have

s$p° ZE(XJZX|XJ\>5GSH) — 0.

=1
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Now,

n n
5,2 ZE(XJZX\XHXSJ.) =s,° ZE(XJZX|Xj\>esj (X|X;|>6es, T X|X;|<besn)
j=1 j=1

n n
-2 2 -2 2
=5, ZE(XjX|Xj\>est|Xj|>éesn)+sn ZE(XjX|Xj\>est|Xj|§6esn)
Jj=1 j=1

n
-2 2
< Sn Z E(X] X|X;|>8esn
Jj=1

n
-2 2
< s, § E(XjX|Xj\>5esn
Jj=1

2

Xj Xéesnz\Xj|>esj)
2

Xj X65n>s]-)

)+ s5° En:E(
j=1

)+ s,° En: E(
j=1

< 5.0 Y B(XF)x,|55es,) 6

j=1

Taking the limit as n — oo, the first term vanishes. Since § > 0 is arbitrary, the limit must be zero.
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