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1 Signed measures

As a motivating example, consider the space of linear functionals on Cn; each element of this
space is a linear function φ : Cn → C. If we denote the standard basis of Cn by {ei} and its
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dual basis by {φi}, any linear functional φ can be written as

φ =
n∑

i=1

φ(ei)φi.

Now we switch to a different perspective; note that each element of Cn is an n-tuple of complex
numbers of the form (z1, zn, . . . , zn). In other words, it is an assignment of complex numbers
to the indices X = {1, 2, . . . , n}. Thus, each element of Cn can be associated with a function
f : X → C, and vice versa. This gives us an identification of Cn with the space of functions
C(X) (all such functions are continuous when X is equipped with the discrete topology). For
instance, the basis vectors {ei} of C(X) can now be represented by the functions

ei : X → C, j 7→ δij .

Now, in order to extract the ‘coordinates’ zi ≡ f(i) from some f ∈ C(X), we may define the
following Dirac measures µi on X, concentrated at the index i.

µi : P(X) → C, E 7→

{
1, if i ∈ A,

0, otherwise.

This means that for any f ∈ C(X),

f(i) =

∫
f dµi.

The dual basis {φi} behaves as φi(ej) = δij , so

φi(f) = φi

n∑
j=1

f(j) ej = f(i) =

∫
f dµi.

Thus, for any linear functional φ : C(X) → C, we have

φ(f) =

n∑
i=1

φ(ei)φi(f) =

n∑
i=1

φ(ei)

∫
f dµi =

∫
f

n∑
i=1

φ(ei) dµi.

If we could make sense of the measure µ described by

µ =
n∑

i=1

φ(ei) µi,

then we could write
φ(f) =

∫
f dµ.

Note that the coefficients φ(ei) are complex numbers, so µ is not necessarily a measure in the
conventional sense!

1.1 Basic definitions
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Definition 1.1. Let M be a σ-algebra over X. A function ν : M → [−∞,+∞] is called a
signed measure if

1. ν(∅) = 0.
2. For all countable collections of disjoint measurable sets {Ei}, we have

ν

( ∞⋃
i=1

Ei

)
=

∞∑
i=1

ν(Ei).

Remark. For disjoint sets E,F ∈ M, we want

ν(E ∪ F ) = ν(E) + ν(F ).

Thus, we cannot allow the situation where ν(E) = +∞ and ν(F ) = −∞, or vice versa.
Remark. Note that in condition 2, the union on the left hand side is independent of order,
while the infinite sum on the right hand side is not. Thus, we demand that either the sum
on the right converges absolutely, or the following: neither one of the sums∑

i:ν(Ei)≥0

ν(Ei),
∑

j:ν(Ej)<0

ν(Ej)

should diverge to ∞.

Lemma 1.1. Let E,F ∈ M, with E ⊆ F . Then,

1. If |ν(E)| < ∞, then
ν(F \ E) = ν(F )− ν(E).

2. If ν(E) = ±∞, then ν(F ) = ±∞.

Proof. Using ν(F ) = ν(F \E)+ν(E), we obtain 1 when |ν(E)| < ∞. Otherwise, for ν(E) = ∞,
we cannot have ν(F \ E) = ∓∞, hence we must have ν(F ) = ±∞.

Corollary 1.1.1. If any measurable set E ⊆ X has ν(E) = ±∞, then ν(X) = ±∞. This
immediately shows that we cannot have two measurable sets E,F ∈ M with ν(E) = +∞,
ν(F ) = −∞. In other words, a signed measure has either of the following forms.

ν : M → [−∞,+∞), or ν : M → (−∞,+∞].

Example. Consider a non-negative measure µ, and a function f ∈ L1(µ). Then, the measure
defined by

ν(E) =

∫
E
f dµ

is a (finite) signed measure.
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Example. Consider any two non-negative measures µ1, µ2 ≥ 0. Then, the measure ν defined
by

ν = µ1 − µ2

where either one of µ1, µ2 is finite is a signed measure. Indeed, any signed measure is of
this form.

Lemma 1.2 (Continuity from below). Let {Ei} be a collection of measurable sets such that
each Ei ⊆ Ei+1. Then,

lim
n→∞

ν(En) = ν

( ∞⋃
n=1

En

)
.

Lemma 1.3 (Continuity from above). Let {Ei} be a collection of measurable sets such that
each Ei ⊇ Ei+1, and |ν(E1)| < ∞. Then,

lim
n→∞

ν(En) = ν

( ∞⋂
n=1

En

)
.

1.2 The Hahn-Jordan decomposition theorems

Definition 1.2. A set P ∈ M is called a positive set for ν if for every measurable subset
E ⊆ P , we have ν(E) ≥ 0.

Definition 1.3. A set N ∈ M is called a negative set for ν if for every measurable subset
E ⊆ N , we have ν(E) ≤ 0.

Definition 1.4. A set F ∈ M is called a null set for ν if for every measurable subset
E ⊆ F , we have ν(E) = 0.

Example. Let µ be a non-negative measure and let f be a measurable function. Define the
signed measure

ν(E) =

∫
E
f dµ.

It is clear that any measurable subset of f−1[0,∞] is a positive set for ν, any measurable
subset of f−1[−∞, 0] is a negative set for ν, and any measurable subset of f−1(0) is a null
set for ν.
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Lemma 1.4. Every measurable subset of a positive(/negative/null) set is positive(/nega-
tive/null).

Proof. Let P be a positive set for ν, and E ⊆ P be a measurable subset. We claim that for all
measurable subsets F ⊆ E, ν(F ) ≥ 0. This is immediate from the fact that F ⊆ E ⊆ P is a
measurable subset of the positive set P . The cases for negative and null sets are analogous.

Lemma 1.5. Countable unions of positive(/negative/null) sets are positive(/negative/null).

Proof. Let {Pi} be a countable collection of positive measurable sets, and let P =
⋃∞

i=1 Pi.
Define the sets

Qi = Pi \
i−1⋃
j=1

Pj ,

and note that P =
⋃∞

i=1Qi, with the collection {Qi} being disjoint. Furthermore, each Qi ⊆ Pi

is a positive set. Now for any measurable E ⊆ P , each E ∩Qi ⊆ Qi is a positive set, hence

E =

∞⋃
i=1

E ∩Qi =

∞∑
i=1

ν(E ∩Qi) ≥ 0.

The cases for negative and null sets are analogous.

Lemma 1.6. Let ν : M → [−∞,+∞) be a signed measure, and let E ∈ M such that
ν(E) > 0. Then, there exists a measurable subset Ẽ ⊆ E such that Ẽ is a positive set for
ν and ν(Ẽ) > 0.

Proof. If E is a positive set, we are done. Otherwise, there exists some F ⊆ E such that
ν(F ) < 0. Note that

ν(E \ F ) = ν(E)− ν(F ) > 0.

For any non-positive set A, define the set

SA = {n ∈ N : ν(B) < −1/n for some B ⊆ A,B ∈ M}.

When A is not a positive set, SA is clearly non-empty and hence has a minimum element by
the Well Ordering Principle.

We have a non-positive set E, hence SE has a minimum element n1. Choose F1 ⊆ E such that
ν(F1) < −1/n1, set E1 = E \ F1, and note that

ν(E1) = ν(E)− ν(F1) > ν(E) +
1

n1
> 0.

If E1 is a positive set we are done. Otherwise, SE1 has a minimum element n2, hence we can
pick F2 ⊆ F1 such that ν(F2) < −1/n2. Setting E2 = E1 \ F2 = E \ (F1 ∪ F2), we have

ν(E2) = ν(E1)− ν(F2) > ν(E) +
1

n1
+

1

n2
> 0.
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Again, if E2 is a positive set, we are done; otherwise, we refine it to obtain E3 as before, and
so on. In this manner, if at any stage the set Ek = E \

⋃k
i=1 Fi is not a positive set, we let nk+1

be the minimum element of SEk
, pick Fk+1 ⊆ Ek such that ν(Fk+1) < −1/nk+1, and note that

ν(Ek+1) = ν(Ek)− ν(Fk+1) > ν(E) +

k+1∑
i=1

1

ni
> 0.

We stop this process if at any stage Ek is a positive set; otherwise, we obtain infinite sequences
of sets {Ei} and {Fi}. Set

A = E \
∞⋃
i=1

Fi =

∞⋂
i=1

Ei.

We claim that A is a positive set for ν. Note that the sets {Fi} are all disjoint subsets of E,
which has finite measure, hence

ν

( ∞⋃
i=1

Fi

)
=

∞∑
i=1

ν(Fi) > −∞.

This shows that the series
∞∑
i=1

1

ni
< −

∞∑
i=1

ν(Fi) < ∞.

For this convergence to hold, the terms 1/ni → 0, ni → ∞. Also note that

ν(A) = ν(E)−
∞∑
i=1

ν(Fi) > ν(E) +

∞∑
i=1

1

ni
> 0.

Suppose that A is not positive for ν. Then, SA has a minimum element m, hence we can pick
B ⊆ A such that ν(B) < −1/m. Since ni → ∞, we can fix k such that nk > m. But,

B ⊆ A =

∞⋂
i=1

Ei ⊆ Ek, ν(B) < − 1

m
< − 1

nk
.

This contradicts the minimality of nk with respect to the set SEk
. This shows that A ⊆ E is

indeed a positive set of positive measure, as desired.

Theorem 1.7 (Hahn Decomposition). Let ν be a signed measure on (X,M). Then, there
exists a positive set P and a negative set N for ν such that P ∪ N = X, P ∩ N = ∅.
Furthermore, if P,N and P ′, N ′ are two decompositions of X, then the symmetric difference
P∆P ′ = N∆N ′ is a null set for ν.

Proof. Without loss of generality, suppose that ν is of the form ν : M → [−∞,+∞). Let
P ⊆ M be the collection of all positive measurable sets for ν. Note that this collection is
non-empty, since ∅ ∈ P. Set

m = sup
E∈P

ν(E).

Note that from the properties of the supremum, there exists a sequence of sets {Pi}i∈N from P
such that ν(Pi) → m. Set P =

⋃∞
i=1 Pi, and note that P is a positive set for ν, i.e. P ∈ P. We

claim that ν(P ) = m. To see this, define

Qi =

i⋃
j=1

Pi,
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and note that {Qi} is an increasing sequence of positive measurable sets for ν. Also, each
Qi ⊇ Pi, so 0 ≤ ν(Pi) ≤ ν(Qi) ≤ m. Taking limits, we have ν(Qi) → m. Thus, continuity from
below gives

ν(P ) = ν

( ∞⋃
i=1

Qi

)
= lim

n→∞
ν(Qi) = m.

Now, set N = X \ P . We claim that N is a negative set for ν. Indeed, if not, then we could
find some measurable E ⊆ N with ν(E) > 0. By the previous lemma, this yields a positive set
Ẽ ⊆ E for ν with ν(Ẽ) > 0. Now, Ẽ∪P is a positive set for ν, i.e. Ẽ∪P ∈ P. Also, Ẽ∩P = ∅,
so

ν(Ẽ ∪ P ) = ν(Ẽ) + ν(P ) > m.

This contradicts the maximality of m.

Thus, we have obtained a Hahn decomposition P,N of X. If P ′, N ′ is another Hahn decompo-
sition of X, then

P∆P = (P \ P ′) ∪ (P ′ \ P ) = (N c \N ′c) ∪ (N ′c \N c) = (N ′ \N) ∪ (N \N ′) = N∆N ′.

Furthermore, P \ P ′ ⊆ P is a positive set for ν; P \ P ′ ⊆ P ′c = N ′ is also a negative set for ν.
This means that P \ P ′ must be a null set for ν. The same reasoning shows that P ′ \ P is a
null set for ν, hence so is P∆P ′.

Corollary 1.7.1. Given a signed measure ν on (X,M), consider the Hahn decomposition
P,N of X and define the measures ν+, ν− as

ν+(E) = ν(E ∩ P ) ≥ 0, ν−(E) = −ν(E ∩N) ≥ 0.

Then, we have the decomposition of ν as the difference of the non-negative measures ν+,
ν− as

ν = ν+ − ν−.

Definition 1.5. Let µ, ν be two measures on (X,M). We say that µ and ν are mutually
singular, denoted µ ⊥ ν, if there exists E,F ∈ M such that E ∪ F = X, E ∩ F = ∅, E is a
null set for µ, and F is a null set for ν.

Example. For any signed measure ν, the corresponding Hahn decomposition P,N of X also
gives the decomposition ν = ν+ − ν− where ν+, ν− are positive measures. Then, ν+ ⊥ ν−,
with N being a null set for ν+, P for ν−.

Theorem 1.8 (Jordan Decomposition). Let ν be a signed measure on (X,M). Then, there
exist unique positive measures ν+, ν− on M such that ν = ν+ − ν− and ν+ ⊥ ν−.

Proof. We have already shown that every signed measure ν admits such ν+, ν− via the Hahn
decomposition P,N of X. Thus, it is enough to show that if ν = µ+−µ− for positive measures
µ+, µ−, and µ+ ⊥ µ− with E,F being null sets for µ+, µ−, then µ+ = ν+ and µ− = ν−.
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Let A ∈ M. Then,

0 ≤ µ+(A) = µ+(A ∩ F ) + µ+(A ∩ E) = µ+(A ∩ F )

since A∩E ⊆ E which is a null set for µ+. Additionally, A∩ F ⊆ F which is a null set for µ−,
so

0 ≤ µ+(A ∩ F ) = µ+(A ∩ F )− µ+(A ∩ F ) = ν(A ∩ F ).

This shows that every subset of F has positive ν-measure, i.e. F is a positive set for ν. Similarly,

0 ≥ −µ−(A) = −µ−(A ∩ E) = −ν(A ∩ E),

which shows that E is a negative set for ν. Thus, F,E is a Hahn decomposition of X. Theo-
rem 1.7 immediately tells us that P∆F = N∆E is a null set for ν. Now,

µ+(A) = ν(A ∩ F ) = ν(A ∩ F ∩ P ) + ν(A ∩ F ∩N),

but A ∩ F ∩N ⊆ (P ∩ E) ∪ (F ∩N) = P∆F which is a null set for ν. Thus,

µ+(A) = ν(A ∩ F ∩ P ).

Using the same arguments,

ν+(A) = ν(A ∩ P ) = ν(A ∩ P ∩ F ) + ν(A ∩ P ∩ E),

but A ∩ P ∩ E ⊆ (P ∩ E) ∪ (F ∩N) = P∆F , hence

ν+(A) = ν(A ∩ F ∩ P ) = µ+(A).

Thus, ν+ = µ+. An analogous argument shows that ν− = µ−.

Remark. The Hahn and Jordan decomposition theorems together give the existence of the
decomposition of any signed measure ν = ν+ − ν− along with its uniqueness in a certain sense.

1.3 The total variation measure

Definition 1.6. Let ν be a signed measure on (X,M), and let ν = ν+ − ν− for positive
measures ν+, ν− with ν+ ⊥ ν−. Then, the total variation measure |ν| of ν is defined as

|ν| = ν+ + ν− ≥ 0.

Lemma 1.9. Let E ∈ M. The following are equivalent.

1. E is a null set for ν.
2. ν+(E) = ν−(E) = 0.
3. |ν|(E) = 0.

Proof. Let P,N be the Hahn decomposition of X associated with ν.
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(1⇒2 ) Note that E ∩N,E ∩ P ⊆ E are null sets for ν. Thus,

ν+(E) = ν+(E ∩ P ) + ν+(E ∩N)

= ν+(E ∩ P )

= ν+(E ∩ P )− ν−(E ∩ P )

= ν(E ∩ P )

= 0.

Similarly,

ν−(E) = ν−(E ∩ P ) + ν−(E ∩N)

= ν−(E ∩N)

= −ν+(E ∩N) + ν−(E ∩N)

= −ν(E ∩N)

= 0.

(2⇒3 ) follows trivially.

(3⇒1 ) By the positivity of ν+, ν−, we immediately have ν+(E) = ν−(E) = 0. Thus, for any
measurable F ⊆ E, we have ν+(F ) = ν−(F ) = 0, hence ν(F ) = 0. Therefore, E is a null set
for ν.

Lemma 1.10. Let ν, µ be signed measures. The following are equivalent.

1. ν ⊥ µ.
2. ν+ ⊥ µ and ν− ⊥ µ

3. |ν| ⊥ µ.

Proof. Let P,N be the Hahn decomposition associated with ν.

(1⇒2 ) Let ν ⊥ µ via the decomposition E,F of X. Then F is a null set for ν, E for µ. We
claim that ν+ ⊥ µ via the decomposition N ∪ F, P ∩E. It is clear that P ∩E ⊆ E is a null set
for µ; we now show that N ∪ F is a null set for ν+, i.e. ν+(N ∪ F ) = 0. Indeed,

0 ≤ ν+(N ∪ F ) ≤ ν+(N) + ν+(F ) = ν+(F ) = 0.

We have used the fact that N is a null set for ν+, and F is a null set for ν together with the
previous lemma.

The proof that ν− ⊥ µ via the decomposition N ∪ F, P ∩ E is analogous.

(2⇒3 ) Let ν+ ⊥ µ via E1, F1, and ν− ⊥ µ via E2, F2. We claim that |ν| ⊥ µ via the
decomposition E1∪E2, F1∩F2. Is is clear that E1∪E2 is a null set for µ since it is the union of
the null sets E1, E2 for µ. We must show that F1 ∩ F2 is a null set for |ν|, i.e. |ν|(F1 ∩ F2) = 0;
but this is clear from the fact that F1, F2 are null sets for ν+, ν−, hence

0 ≤ |ν|(F1 ∩ F2) = ν+(F1 ∩ F2) + ν−(F1 ∩ F2) ≤ ν+(F1) + ν−(F2) = 0.

(3⇒1 ) Let |ν| ⊥ µ via E,F . We claim that ν ⊥ µ via the same decomposition E,F ; indeed
|ν|(F ) = 0 immediately shows that F is a null set for ν by the previous lemma.
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Lemma 1.11. Let ν be a signed measure.

1. ν is a finite measure if and only if |ν| is a finite measure.
2. ν is a σ-finite measure if and only if |ν| is a σ-finite measure.

Proof. The finiteness of ν implies that ν+ and ν− are finite hence their sum |ν| is finite, and
vice versa. Next, if X is a countable union of {Xi} each of which has finite ν-measure, each
ν+(Xi) < ∞, ν−(Xi) < ∞ i.e. each Xi has finite |ν|-measure, and vice versa.

Definition 1.7. The space of functions L1(ν), where ν is a signed measure, is defined by

L1(ν) = L1(ν+) ∩ L1(ν−).

Lemma 1.12. The spaces L1(ν) = L1(|ν|).

Proof. Note that∫
P
|f | dν =

∫
X
|f | dν+ =

∫
P
|f | d|ν|,

∫
N
|f | dν = −

∫
X
|f | dν− = −

∫
N
|f | d|ν|.

Definition 1.8. Let ν be a signed measure and µ be a positive measure. We say that ν is
absolutely continuous with respect to µ, denoted ν � µ, if µ(E) = 0 =⇒ ν(E) = 0 where
E ∈ M.
Remark. If ν � µ, then all null sets for µ are null sets for ν.
Remark. If ν � µ and ν ⊥ µ, then ν = 0. Indeed, if X = E ∪F , E ∩F = 0 with F null for
ν, E for µ, then for any A ∈ M, we have ν(A) = ν(A∩E). But A∩E ⊆ E is a null set for
µ, hence µ(A ∩ E) = 0 =⇒ ν(A) = ν(A ∩ E) = 0.

Lemma 1.13. Let ν be a signed measure and let µ be a positive measure. The following
are equivalent.

1. ν � µ.
2. ν+ � µ and ν− � µ.
3. |ν| � µ.

Proof. (1⇒2 ) If µ(E) = 0, then µ(F ) = 0 for every measurable F ⊆ E, hence ν(F ) = 0. In
other words, E is a null set for ν, hence ν+(E) = ν−(E) = 0 by a previous lemma.

(2⇒3 ) If µ(E) = 0, then ν+(E) = ν−(E) = 0, hence |ν|(E) = ν+(E)− ν−(E) = 0.

(3⇒1 ) If µ(E) = 0, then |ν|(E) = 0 hence E is a null set for ν by a previous lemma, giving
ν(E) = 0.
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Lemma 1.14. Let ν, µ be finite measures. Then, ν � µ if and only if the following holds:
for every ε > 0, there exists δ > 0 such that whenever µ(E) < δ, we have |ν(E)| < ε.

Proof. (⇐) If µ(E) = 0, then for any ε > 0, we must have δ > 0 such that µ(E) < δ =⇒
|ν(E)| < ε. This forces ν(E) = 0, hence ν � µ.

(⇒) Let ν � µ. Suppose that there exists ε > 0 such that for all δ > 0, we have sets Eδ where
µ(Eδ) < δ but ν(Eδ) ≥ ε. Set δ = 2−n, and obtain corresponding En where µ(En) < 2−n,
ν(En) ≥ ε. Now, set

Fn =

∞⋃
i=n

En, F =

∞⋂
i=1

Fi.

Then, each Fn ⊇ Fn+1, and

µ(Fn) ≤
∞∑
i=n

1

2i
=

2

2n
→ 0.

Thus, continuity from above with the finiteness of µ gives

µ(F ) = lim
n→∞

µ(Fn) = 0.

But each ν(Fn) ≥ ν(En) ≥ ε, hence ν(F ) ≥ ε by the finiteness of ν, a contradiction.

Corollary 1.14.1. Let f ∈ L1(µ). Then for all ε > 0, there exists δ > 0 such that whenever
µ(E) < δ, we have

|
∫
E
f dµ| < ε.

1.4 The Radon-Nikodym theorem

Theorem 1.15 (Radon-Nikodym). Let ν be a σ-finite measure, and let µ be a σ-finite
positive measure. Then, we have the following.

1. There exists a unique decomposition ν = ν1 + ν2 such that ν1 � µ and ν2 ⊥ µ. Both
ν1 and ν2 are σ-finite.

2. There exists a measurable, µ-integrable (in the extended sense) function f such that

ν1(E) =

∫
E
f dµ.

Furthermore, if two such functions satisfy the above, they must be equal µ-almost
everywhere.
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Example. Let m be the Lebesgue measure and let c be the counting measure on R. Clearly,
m � c. If there existed a function f such that

m(E) =

∫
E
f dc,

then we would have
0 = m({x}) =

∫
{x}

f dc = f(x)

for each x ∈ R, forcing f = 0 hence m = 0 a contradiction.

Definition 1.9. Let ν be a σ-finite measure, and let µ be a positive σ-finite measure, such
that ν � µ. Using the Radon-Nikodym theorem, we can pick a measurable function f such
that

ν(E) =

∫
E
f dµ

for all E ∈ M. Then, the function
f ≡ dν

dµ

is called the Radon-Nikodym derivative of ν with respect to µ.
Remark. If dν = f dµ, then d|ν| = |f | dµ.

Lemma 1.16. Let ν � µ and µ � λ. Then,

dν

dλ
=

dν

dµ

dµ

dλ

λ-almost everywhere.

2 Complex measures

2.1 Basic definitions
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Definition 2.1. Let M be a σ-algebra over X. A function ν : M → C is called a complex
measure if

1. ν(∅) = 0.
2. For all countable collections of disjoint measurable sets {Ei}, we have

ν

( ∞⋃
i=1

Ei

)
=

∞∑
i=1

ν(Ei).

Remark. A complex measure only assumes finite values.
Remark. A complex measure ν can be decomposed as

ν = νr + iνi

where νr, νi are signed measures.

Definition 2.2. A function f ∈ L1(ν) if and only if f ∈ L1(νr) ∩ L1(νi).

Lemma 2.1. Let ν, µ be complex measures. The following are equivalent.

1. ν ⊥ µ.
2. νr ⊥ µr and νi ⊥ µi.

Lemma 2.2. Let ν be a complex measure, and let µ be a positive measure. The following
are equivalent.

1. ν � µ.
2. νr � µr and νi � µi.

2.2 The Radon-Nikodym theorem and the total variation measure

Theorem 2.3 (Radon-Nikodym). Let ν be a complex measure, and let µ be a σ-finite
positive measure. Then, there exists a unique decomposition

ν = ν1 + ν2

such that ν1 � µ, ν2 ⊥ µ. There also exists a function f ∈ L1(µ) such that

ν1(E) =

∫
E
f dµ.

Furthermore, f us unique µ-almost everywhere.
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Lemma 2.4. Let ν be a complex measure and let µ1, µ2 be σ-finite positive measures, such
that for f1 ∈ L1(µ1), f2 ∈ L1(µ2),

dν = f1 dµ1 = f2 dµ2.

Then,
|f1| dµ1 = |f2| dµ2.

Definition 2.3. Let ν be a complex measure, and let µ be a positive measure such that
dν = f dµ. Then, d|ν| = |f | dµ defines a measure |ν| called the total variation measure.
Remark. Such a measure exists since ν � ν+r + ν−r + ν+i + ν−i supplies us with a Radon-
Nikodym derivative f .
Remark. This definition is independent of our choice of µ, hence f by the previous lemma.

Lemma 2.5.
|ν(E)| ≤ |ν|(E).

Lemma 2.6.
|ν| = inf{λ : |ν(E)| ≤ λ(E) for all E ∈ M}.

Lemma 2.7.
ν � |ν|,

∣∣∣∣ dνd|ν|

∣∣∣∣ = 1 |ν|-almost everywhere.

Lemma 2.8.
L1(ν) = L1(|ν|).

Lemma 2.9.
|
∫

f dν| ≤
∫

|f | d|ν|.

Lemma 2.10.
|ν1 + ν2| ≤ |ν1|+ |ν2|.
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Theorem 2.11. Let M(X) be the collection of all complex measures on (X,M). Then,
given ν1, ν2 ∈ M(X), we have ν1 + ν2 ∈ M(X) and αν1 ∈ M(X) for all α ∈ C. Thus,
X(X) is a vector space. Furthermore,

‖ν‖ = |ν|(X)

defines a norm on M(X). With this, M(X) is a Banach space.

3 Differentiation on Euclidean Spaces

3.1 Locally integrable functions

Definition 3.1. Let f : Rn → C be measurable. We say that f is locally integrable if for
every bounded measurable E ⊆ Rn, ∫

E
|f | dm

is finite. The class of all such functions is denoted L1
loc(Rn).

Definition 3.2. For f ∈ L1
loc(Rn), define the average value of f on Br(x) as

Ar(f)(x) =
1

m(Br(x))

∫
Br(x)

f dm.

Lemma 3.1. Ar(f)(x) is jointly continuous in r and x.

Definition 3.3. For f ∈ L1
loc(Rn), define its Hardy-Littlewood maximal function as

Hf(x) = sup
r>0

Ar(|f |)(x) = sup
r>0

1

m(Br(x))

∫
Br(x)

|f | dm.

3.2 The Maximal Function Theorem

Lemma 3.2. Let C be a collection of open balls in Rn, and let

U =
⋃
B∈C

B.

If c < m(U), then there exist disjoint B1, . . . , Bk ∈ C such that

c < 3n
k∑

i=1

m(Bi).
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Theorem 3.3 (Maximal Function). There exists a constant C > 0 such that for all f ∈ L1

and all α > 0,
m({x : Hf(x) > α}) ≤ C

α

∫
|f | dm.

Theorem 3.4. If f ∈ L1
loc(Rn), then

lim
r→0

Ar(f)(x) = f(x).

almost everywhere on Rn.

3.3 The Lebesgue Differentiation Theorem

Definition 3.4. For f ∈ L1
loc(Rn), define the Lebesgue set Lf of f as the collection of all

x ∈ Rn such that
lim
r→0

1

m(Br(x))

∫
Br(x)

|f(x)− f(x′)| dx′ = 0.

Lemma 3.5. For f ∈ L1
loc(Rn), we have m(Lc

f ) = 0.

Definition 3.5. We say that the family of measurable sets {Er} shrink nicely to x ∈ Rn if
each Er ⊆ Br(x), and there exists α > 0 such that each m(Er) > αm(Br(x)).
Remark. It is possible that none of the sets Er contains x!

Theorem 3.6 (Lebesgue Differentiation). Let f ∈ L1
loc(Rn). Then for all x ∈ Lf , we have

lim
r→0

1

m(Er)

∫
Er

|f(x)− f(x′)| dx′ = 0, lim
r→0

1

m(Er)

∫
Er

f dm = f(x)

for all families {Er} which shrink nicely to x.

Definition 3.6. A positive Borel measure ν on Rn is called regular if the following hold.

1. ν(K) is finite for every compact K ⊆ Rn.
2. ν(E) = inf{ν(U) : E ⊆ U,U ⊆ Rn is open} for every Borel measurable E.

Remark. The second condition follows from the first.
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Theorem 3.7. Let ν be a regular signed or complex Borel measure on Rn, whose Radon-
Nikodym representation is given by

dν = f dm+ dλ.

Then, for every family {Er} that shrinks nicely to x ∈ Rn, we have

lim
r→0

ν(Er)

m(Er)
− f(x)

almost everywhere with respect to m.

4 Total and Bounded Variation

4.1 Total variation

Theorem 4.1. Let F : R → R be increasing, and let

G(x) = F (x+) = lim
t→x+

F (x).

Then, the following hold.

1. G is increasing and right continuous.
2. The set of discontinuities of F is countable.
3. Both F,G are differentiable almost everywhere, with F ′ = G′ almost everywhere.

Definition 4.1. Let F : R → R. The total variation function TF of F is defined as

TF (x) = sup

{
n∑

i=1

|F (xi)− F (xi−1)| : −∞ < x0 < · · · < xn = x

}
.

Lemma 4.2.

TF (b)− TF (a) = sup

{
n∑

i=1

|F (xi)− F (xi−1)| : a = x0 < · · · < xn = b

}
.

Lemma 4.3. The total variation function TF of F is increasing, taking values in [0,∞].

4.2 Bounded variation
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Definition 4.2. We say that F is of bounded variation if

T (∞) = lim
x→∞

T (x)

is finite. The class of such functions is denoted BV (R).

Furthermore, the class of functions F such that TF (b)− TF (a) is finite is denoted BV [a, b].

Example. If F is bounded and increasing, then F ∈ BV (R), with

TF (x) = F (x)− F (−∞).

Example. If F,G ∈ BV (R), then αF + βG ∈ BV (R) for all α, β ∈ C.

Example. If F is differentiable and F ′ is bounded, then F ∈ BV [a, b].

Lemma 4.4. If F ∈ BV (R), then TF ± F are bounded and increasing functions.

Theorem 4.5. The following results hold.

1. F ∈ BV (C) if and only if <(F ),=(F ) ∈ BV (R).
2. F ∈ BV (R) if and only if F is the difference of two bounded and increasing functions.

Note that
F =

1

2
(TF + F )− 1

2
(TF − F ).

3. If F ∈ BV (R), all of the following limits exist.

F (x+) = lim
t→x+

F (x), F (x−) = lim
t→x−

F (x), F (±∞) = lim
x→±∞

F (x).

4. If F ∈ BV (R), then the set of points on which F is discontinuous is countable.
5. If F ∈ BV (R), and G(x) = F (x+), then F ′ = G′ almost everywhere.

Definition 4.3. For F ∈ BV (R), the following is called the Jordan representation of F .

F =
1

2
(TF + F )− 1

2
(TF − F ).

The two terms are called the positive and negative variations of F respectively.
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Lemma 4.6. Denote the positive and negative parts of x as x± = 1
2(|x| ± x). Then,

1

2
(TF ± F )(x) = sup

{
n∑

i=1

[F (xi)− F (xi−1)]
± : −∞ < x0 < · · · < xn = x

}
.

4.3 Normalized Bounded Variation

Definition 4.4. Denote
TF (−∞) = lim

x→−∞
TF (x).

We say that F ∈ BV (R) is of normalized bounded variation if F is right continuous and
TF (−∞) is finite. The class of such functions is denoted NBV (R).
Remark. If F ∈ BV (R), then G(x) = F (x+)− F (−∞) is in NBV (R).

Lemma 4.7. If F ∈ NBV (C), then TF (−∞) = 0. Furthermore, if F is right continuous,
so is TF .

Theorem 4.8. Let µ be a complex Borel measure on Rn. Let

F (x) = µ(−∞, x].

Then, F ∈ NBV (C).

Conversely, if F ∈ NBV (C), there exists a complex Borel measure µF such that

µF (−∞, x] = F (x).

Furthermore,
|µF | = µTF

.

Corollary 4.8.1. If F ∈ NBV , then TF ∈ NBV .

4.4 Fundamental Theorem of Calculus

Definition 4.5. We say that F : R → C is absolutely continuous if for every ε > 0, there
exists δ > 0 such that for any finite disjoint intervals {(ai, bi)}ni=1 where

∑n
i=1(bi − ai) < δ,

we have
n∑

i=1

|F (bi)− F (ai)| < ε.

Remark. All absolutely continuous functions are uniformly continuous.
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Lemma 4.9. Let F ∈ NBV . Then, F is absolutely continuous if and only if µF � m.

Corollary 4.9.1. Let f ∈ L1(m). The function F defined by

F (x) =

∫ x

−∞
f(t) dt

is in NBV , is absolutely continuous, and f = F ′ almost everywhere.

Conversely, if F ∈ NBV , then F ′ ∈ L1(m), and

F (x) =

∫ x

−∞
F ′(t) dt.

Theorem 4.10 (Fundamental Theorem of Calculus). Let −∞ < a < b < ∞, and let
F : [a, b] → C. The following statements are equivalent.

1. F is absolutely continuous on [a, b].
2. There exists f ∈ L1([a, b],m) such that

F (x)− F (a) =

∫ x

a
f(t) dt.

3. F is differentiable almost everywhere, with F ′ ∈ L1([a, b],m), and

F (x)− F (a) =

∫ x

a
F ′(t) dt.

Lemma 4.11. If F is absolutely continuous on [a, b], then F ∈ BV [a, b].
Remark. The converse is not true: consider the Cantor function.

4.5 Integration by parts

Theorem 4.12. Let F,G ∈ NBV , with at least one of them continuous. Then, for −∞ <
a < b < ∞, we have ∫

(a,b]
F dG+

∫
(a,b]

G dF = F (b)G(b)− F (a)G(a).

Remark. Here, we denote dF = dµF = F ′ dm.

5 Radon measures
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Definition 5.1. A Radon measure µ on X is a Borel measure such that the following hold.

1. µ(K) is finite for all compact sets K ⊆ X.
2. µ is outer regular on Borel sets.
3. µ is inner regular on open sets.

5.1 Locally compact Hausdorff spaces

Lemma 5.1. Let X be a locally compact Hausdorff space, let U ⊆ X be open, and let
x ∈ U . Then, there is a compact neighborhood of x contained in U .

Lemma 5.2. Let X be a locally compact Hausdorff space, and let U be open, K be compact,
such that K ⊆ U . Then, there exists an open set V such that V iscompact, and K ⊆ V ⊆
V ⊆ U .

Lemma 5.3 (Urysohn). Let X be a locally compact Hausdorff space, let U be open, K be
compact such that K ⊆ U . Then, there exists a continuous map f : X → [0, 1], such that
f = 1 on K, and f = 0 outside a compact subset of U .

Lemma 5.4. Let X be a locally compact Hausdorff space. The space Cc(X), of compactly
supported continuous functions on X, is dense in C0(X), the space of functions that vanish
at infinity.

Definition 5.2. Let X be a topological space, and let E ⊆ X. A partition of unity on E
is a collection {hα}α∈I of functions in C(X, [0, 1]) such that the following hold.

1. Each x ∈ X has a neighborhood on which only finitely many hα’s are non-zero.
2. For each x ∈ E,

∑
α∈I hα(x) = 1.

Furthermore, we say that a partition of unity {hα}α∈I is subordinate to an open cover U
of E if for each α ∈ I, there exists U ∈ U such that supp(hα) ⊂ U .

Lemma 5.5. Let X be a locally compact Hausdorff space, let K ⊆ X be compact, and let
{Ui}ni=1 be an open cover of K. Then, there exists a partition of unity on K subordinate to
{Ui}ni=1, consisting of compactly supported functions.
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5.2 Positive linear functionals

Definition 5.3. A linear functional I on Cc(X) is called positive if I(f) ≥ 0 whenever
f ≥ 0.

Lemma 5.6. Let I be a positive linear functional on Cc(X). For any compact set K ⊆ X,
there exists a constant CK > 0 such that whenever f ∈ Cc(X) with supp(f) ⊆ K, we have

|I(f)| ≤ CK‖f‖∞.

Definition 5.4. Let U ⊆ X be open, and let f ∈ Cc(X). We write f ≺ U when 0 ≤ f ≤ 1,
and supp(f) ⊂ U .

Theorem 5.7 (Riesz Representation Theorem for Cc(X)). Let I be a positive linear func-
tional on Cc(X). Then, there exists a unique Radon measure µ on X such that

I(f) =

∫
f dµ,

and the following regularity conditions are satisfied.

1. For all open U ⊆ X,

µ(U) = sup{I(f) : f ∈ Cc(X), f ≺ U}.

2. For all compact K ⊆ X,

µ(K) = inf{I(f) : f ∈ Cc(X), f ≥ χK}.

5.3 Regularity and approximation

Lemma 5.8. Every Radon measure is inner regular on σ-finite sets.

Corollary 5.8.1. Any σ-finite Radon measure is regular.

Corollary 5.8.2. If X is σ-compact, then every Radon measure on X is regular.
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Lemma 5.9. Let µ be a σ-finite Radon measure on X, and let E ⊆ X be a Borel set.

1. For every ε > 0, there exists open U and closed F , such that F ⊆ E ⊆ U and
µ(U \ F ) < ε.

2. There exists an Fσ set A and a Gδ set B such that A ⊆ E ⊆ B and µ(B \A) = 0.

Theorem 5.10. Let X be a locally compact Hausdorff space, where every open set is σ-
compact. Then, every Borel measure on X that is finite on compact sets is regular, hence
Radon.

Lemma 5.11. Let µ be a complex Borel measure. Then, µ is Radon if and only if |µ| is
Radon.

Additionally, if µ is a finite Borel measure, then µ us Radon if and only if the following
property holds: for every Borel set E, given ε > 0, there exists some compact set K and
open set U such that K ⊆ E ⊆ U and µ(U \K) < ε.

Lemma 5.12. Let µ be a Radon measure. Then, Cc(X) is dense in Lp(mu), where 1 ≤
p < ∞.

Theorem 5.13 (Lusin). Let µ be a Radon measure, and let f : X → C be a measurable
function that vanishes outside a set of finite measure. Then, for any ε > 0, there exists
ϕ ∈ Cc(X) such that ϕ = f except on a set of measure less than ε. Furthermore, if f is
bounded, then ϕ can be chosen such that ‖ϕ‖∞ ≤ ‖f‖∞.

5.4 The dual of C0(X)

Lemma 5.14. Let I ∈ C0(X,R)∗. Then, there exist positive linear functionals I+, I−,
such that I = I+ − I−.

Definition 5.5. We denote M(X) to be the vector space of all complex Radon measures
on X. This is equipped with the norm

‖µ‖ = |µ|(X).
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Theorem 5.15 (Riesz Representation Theorem). Let X be a locally compact Hausdorff
space, let µ ∈ M(X), and let f ∈ C0(X). Define

Iµ(f) =

∫
f dµ.

Then, the map µ → Iµ is an isometric isomorphism from M(X) to C0(X)∗.
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