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1 Normed linear spaces

1.1 Basic definitions

Definition 1.1. Let X be a vector space over the field F' (typically R or C). A subset
S C X is called linearly independent if for every finitely many vectors zi,...,x, € S, we

have
n

Zcixi:O — ¢; =0 foreach 1 <i<n.
i=1

Definition 1.2. A subset B C X is called a Hamel basis of X if it is linearly independent,
and every element of X can be written as a finite linear combination of elements from B.

Ezample. The standard basis {e;} of R" is a Hamel basis.

Ezample. The polynomials {1, 2,22, ...} is a Hamel basis of the space % (R) of all polyno-
mials.
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Definition 1.3. A norm on X isamap ||-||: X — [0, c0) satisfying the following properties.

1. ||z|| = 0 if and only if z = 0.
2. ||kz|| = |k|||x| for all z € X, k € F.
3. [lz +yll < llzll + llyl| for all z,y € X.

The space (X, || - ||) is called a normed linear space.

Example. The vector space R” equipped with the metric

n 1/2
]2 = (Z w?)
i=1

is a normed linear space.

Ezample. The vector space of continuous functions C[0, 1] equipped with the supremum
norm

[flloo = sup | ()]

z€(0,1

is a normed linear space.

Example. The vector space of continually differentiable functions C'[0, 1] equipped with the
norm

Il = sup [f(z)|+ sup |f'(z)]

z€[0,1] z€[0,1]

is a normed linear space.

Ezample. The function spaces LP(u) for 1 < p < oo, equipped with the metrics

1/p
1l = </|f|p du)

are normed linear spaces.

Definition 1.4. Every normed linear space (X, | - ||) can be equipped with the normed
topology 74, induced by the metric

d(z,y) = [z =yl

Lemma 1.1. Let x, — x, y, — y tn X with the normed topology, and let a, — @ in X.
Then,

1. zp+yn > x+y in X.

2. apx, — ax in X.
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1.2 Banach spaces

Definition 1.5. A normed linear space X is called a Banach space if (X, d) is a complete
metric space where

d(z,y) = [z =yl

Ezample. The spaces R with the metrics || - ||, for 1 < p < oo are Banach spaces.

Ezxzample. The sequence spaces P for 1 < p < oo are Banach spaces.

Definition 1.6. Let X be a normed linear space. A countable collection {x;} C X is called

a Schauder basis of X if each ||z;|| = 1, and every vector € X can be uniquely written as
[e.e]
r = Z C; T4
i=1
for ¢; € F.

Remark. This infinite sum represents a convergent limit of partial sums in X.

Remark. A Schauder basis is linearly independent, from the uniqueness of the expansion

Lemma 1.2. The space of continuous functions C[0,1] equipped with the supremum norm

[flloo = sup [f(z)|

z€[0,1]

is a Banach space.

Proof. Let {fn,} be a Cauchy sequence of functions in C[0,1]. We claim that this sequence
converges to some f in C[0, 1], i.e. there exists f € C[0, 1] such that || f,, — f|| — 0.

Using the fact that {f,} is Cauchy, we have the following: for every e > 0, there exists N € N
such that for all m,n > N, we have

1frn = fmll <.

In particular, for each z € X,

|fa(®) = fn(2)] < sup [fu(z) = fm(2)| = [|fn — full <€

z€[0,1]

In other words, each of the real sequences {f,(z)} is Cauchy. From the completeness of R, all
such sequences converge, hence the pointwise limit

f:10,1] = R, x li_}m fn(x)
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exists. Furthermore, each
i | fal) — finl)] = () — F(2)] < €

hence

1o = fll = el [fu(z) = fz)| < e

z€(0,1
Thus, ||fn — f] = 0, ie. fr, = f in X.

Finally, we must show that f € C[0,1], i.e. that f is continuous. Fix zp € X, and let € > 0.
Since f,, — f in X, pick N € N such that for all n > N,

[fu(z) = f(2)| < sup [fu(z) — f(2)| = |f~v = fl < %

z€[0,1]

From the continuity of fx, there exists § > 0 such that whenever |z — xg| < 0, we have
€
(@) = o)) < 5.
Thus, whenever |z — zo| < 0, we have

F(@) = Flao)] < |f(@) = fu(@)] + fv(@) = nleo) + [ fn(eo) — Fzo) < 5+ 5+ 5 =

This shows that f is continuous at each zg € X, as desired. O

Exercise 1.1. Is the space of continuous functions C[0, 2] equipped with the norm

2
1] = / ()] da

a Banach space?

Solution. Consider the functions

xn

fn:[0,2] - R, x'_)l—i—:z:"'

Note that this sequence has a pointwise limit f,, — f, where

0, if0<z<1,
f:10,2] - R, x> ¢1/2, ifzx=1,
1, ifl<az<2

Now,
2 1 n 2 n
: ]fn(:c)—f(:z:)\d:z::/o — da:—i—/l 1+$n—1’ dx
§/1|x”|da:+ * " da
0 1
! L(Q—"“ —1) — 0.

T+l n-1
Thus, given € > 0, we can find N € N such that for all n > N,

€

2
| 1@ = s do < §
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Then, for all m,n > N, we have

2
1o — fonllt = /0 \Fal®) — finl®)] do
2 2
< /0 Fnle) — (@) dec + /0 fonl@) — (@) de
5

This shows that {f,} is Cauchy in C[0,2]. However, if || f, — g||1 — 0 for some continuous
function g € C[0, 2], then

2 2 2
0< /0 |f(x) = g(x)] do < /0 |f (@) = fu(2)| dx +/O |fu(z) = g(x)] dz =0,
whence )
| 1@ =@ dz o
In particular,

[ l@las=0 [ j-g@lde=o,
[0,1) (1,2]

The continuity of g forces g(x) = 0 on [0,1) and g(z) = 1 on (1,2]. Again, the continuity
of g guarantees 6 > 0 such that for all |z — 1| < §, we have |g(z) — g(1)| < 1/4. But

1 1 1
1=1]g(1+6/2) —g(1 =4/2)| < |91 +6/2) = g(V| +1g(1) —9(1 =6/2)| < 7+ 7 =3,
a contradiction.

Thus, the above Cauchy sequence {f,} does not converge in C[0, 1], hence this is not a
Banach space.

Lemma 1.3 (Young). Let a,b >0, and 1 < p < co. Then,

al/pbl/ng+é7 14_1:1.
p q p q

Lemma 1.4 (Holder). Let x,y € (P for 1 < p < oco. Then,

le -yl < lelolylly  ~+i=1
Y1 = ||1T Yligs - - =1
P q p q

Lemma 1.5 (Minkowski). Let x,y € P for 1 < p < co. Then,

12+ yllp < llzllp + [lyllp-
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Lemma 1.6. Cauchy sequences in a normed linear space are bounded.

Proof. Let {x,} be a Cauchy sequence in the normed linear space X. Then, there exists N € N
such that for all m,n > N, we have

|xn — zm| < 1.
In particular, putting m = N, we have for all n > N,
2]l = llzn — 28 + 2n]] < [l — 2| + llzn ]| < 1+ (2]

Thus, for all n € N,
[zn |l < max{||lz1], ..., [len-1], 1+ [lzn]}- O

Lemma 1.7. The spaces of sequences (P(R) for 1 < p < oo are Banach spaces.

Proof. Let {z,,} be a Cauchy sequence in ¢P. Note that each term is of the form

T = (xl 22, .2k ).

Given € > 0, we can pick N € N such that for all m,n > N,

0 1/P
[ — 2| < (Zm—w) = (|20 — Ty < €.
=1

This shows that the sequences {z¥},cn for each k € N are Cauchy in R. By the completeness
of R, they converge to some z¥ — 2. Set

First, we show that x € /P. Recall that Cauchy sequences in a normed linear space are bounded,
hence there exists M > 0 such that for each n € N,

o .
DLzl = laallh < M.
i=1

Thus, for every k € N, the partial sum

k .
> |ahlP < M.
=1

Taking the limit n — oo,

k k 0
: 1P — : P — Lp <
Jim )l = fim fol =3 lafl" < M.
=1 =1 =1

In other words, each partial sum is bounded, hence taking the limit k£ — oo,

k ' 0o
tim S ol = 3 Jal? = [l < M.
k—o00 4 :

=1 =1
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Finally, we show that z,, — = in (7, i.e. that ||z, — x|, — 0. Note that given € > 0, we have for
alln,m > N,

o0
D lan —anlP <
i=1

hence for all k£ € N, the partial sums

k

Z 2t — 2t [P < €P

=1

Thus,
k

k k
lim g |z, — ;[P = lim |z; —a),|P = E |zy, — x| < €P.
m—0o0 m—0o0
i=1 i=1 i=1
Taking the limit of partial sums,

lim E |y, — ' P = g |2y, — ' = ||y — 2||D < €. O
i=1

k—o0 4
i=1

Exercise 1.2. Show that the space of sequences ¢>°(R) is a Banach space.

Solution. Let {x,} be a Cauchy sequence in ¢>°. Then for every € > 0, there exists N € N
such that for all m,n > N,

ja — ok | < suplak — ok | = [lon — 2l < c.
keN

This shows that the sequences {xf;}neN are Cauchy in R. By the completeness of R, they
converge to some :cfl — 2%, Set

First, we show that x € £°°. Since Cauchy sequences in a normed linear space are bounded,
there exists M > 0 such that for each n € N,

%] < S;lelg\w%! = [[#nloc < M.
(2

Thus, taking the limit n — oo,

] k k
11_>120‘xn’ = |z"| < M.
This shows that
sup ]:rk] = ||z|loo < M.
keN

Finally, we show that z,, — x in £*°, i.e. ||, — z||oc — 0. Note that given € > 0, we have
for all m,n > N,
|2k — 2| < |2 — Zmlloo < €

for each k£ € N. Thus, taking the limit m — oo,

lim |zF — 28| = |2F — 2% <e
m—0o0
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This shows that

sup [zF — zF| = ||z, — Z[oo < e
keN

Lemma 1.8. Let x € R". Then ||z|, = |||l as p — oco.

Proof. Note that for each 1 < k < mn,
n
' k
|z|B =" [P > |a* P,
i=1

Thus,
lzllp > max |2¥] = [|z]|oo-

1<k<n
) < [[zll% -,

]y < ll]loo- O

Next, note that

lz|p =" |2 = [l=lf% TR
i=1 i=1 e

hence
|zllp < llz]loo - n'/7.

Taking the limit p — oo, we have

Lemma 1.9. Let x € (4(R) for some ¢ > 1. Then ||z|, = ||z||cc as p — oc.

Proof. Let p > 1. Note that for each k € N,

i . k .
[ e = B A e E
i=1 i=1

Thus,
lzlp > sup |2°] = ||z .
keN
This immediately shows that if ||z]c = oo, then |z||, = oco. Thus, we can assume that
Izl < o0.

Let p > g > 1. Then by Holder’s inequality,

lzllp =Y &P | < BT ) Jat).
=1 =1

In other words,
lzllp < llllss /- ||z

Note that by assumption, ||z||; < co. Taking the limit as p — oo, we now have

2]l < [l oo- ]
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1.3 Linear maps

Definition 1.7. Let V, W be normed linear spaces over R or C. Let T': V. — W be a linear
map. Then, T is called a bounded linear map if 7" is a continuous map between the normed
topological spaces (V.|| - ||v) and (W, || - |lw)-
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