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1 Introduction
We are interested in two types of data: categorical and numerical. Categorical data used named
qualities to describe a particular observation. This can be further categorized into nominal and
ordinal; the latter admit a natural ordering. Numerical data uses numbers, and can be further
categorized into discrete and continuous.

2 Measures of central tendency

2.1 Arithmetic mean

Suppose that we have been given a collection of n numeric observations, denoted x1, x2, . . . , xn.
These may be concentrated around some specific point, or spread out over some range; re-
gardless, we wish to identify one particular point around which our observations are ‘balanced’
or aggregate in some sense. In other words, we want to identify a point x̄ such that the net
deviation |xi − x̄| is minimized. For convenience, we consider the square deviations (xi − x̄)2;
thus, we wish to minimize the loss function defined by

t 7→
n∑

i=1

(xi − t)2.

It is easy to check that our loss function attains its minimum at

x̄ =
1

n

n∑
i=1

xi.

This quantity x̄ is called the arithmetic mean of our data. Note that this is not the only choice
of loss function measuring central tendency, but it is certainly quite convenient.

If our data is summarized in terms of frequencies, i.e. each xi has been recorded fi times,
we may write

x̄ =
1

N

n∑
i=1

fixi, N =

n∑
i=1

fi.

The quantities fi/N are often referred to as the weights of the observations xi. The arithmetic
mean can thus be interpreted as their ‘centre of mass’.

Now suppose that our data values have not been explicitly presented: instead, we have been
given the data classes (xi−1, xi] and the number of observations fi falling within each class. We
can make an estimate of the true mean by identifying each data class with some value, say
(xi−1, xi] gets associated with x∗i = (xi−1+xi)/2. Then we calculate the usual arithmetic mean
using these values. This gives us the estimate

x̄∗ =
1

N

n∑
i=1

fix
∗
i , N =

n∑
i=1

fi.

Note that the true mean must lie within the bounds
1

N

n∑
i=1

fixi−1 ≤ x̄ ≤ 1

N

n∑
i=1

fixi.

Suppose that each data class has width h. We may estimate the error in our mean by observing
that within a particular class (xi−1, xi] with frequency fi, the deviation between any of the true
data points and x∗i is at most h/2. Thus, the net deviation accumulated over a particular class
is at most fih/2, and the net deviation overall is at most Nh/2. Putting everything together,
we have

|x̄− x̄∗| ≤ h

2
.
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2.2 Geometric mean

Another measure of central tendency is the geometric mean G, calculated

G = n
√
x1x2 · · ·xn.

Note that

logG =
1

n

n∑
i=1

log xi.

Consider k sets of observations, with ni observations in each set. Then, the geometric mean of
the combined data is related with the geometric means GI of the sets as

logG =
1

N

k∑
i=1

ni logGi, N =
k∑

i=1

ni.

2.3 Harmonic mean

Another measure of central tendency is the harmonic mean G, calculated

1

H
=

1

n

n∑
i=1

1

xi
.

The Harmonic means of combined data and sets of data are related as

N

H
=

k∑
i=1

ni

Hi
, N =

k∑
i=1

ni.

Exercise 2.1. Given two positive numbers, their arithmetic, geometric, and harmonic
means all lie between them.

Proof. Without loss of generality, let x ≥ y > 0. Then for any a, b, we have

x =
ax+ bx

a+ b
≥ ax+ by

a+ b
≥ ay + by

a+ b
= y.

Setting a = b = 1/2 give the result for the arithmetic mean. Now, the logarithm function is
monotonic for positive reals, so log x ≥ log y. Applying the above gives

log x ≥ 1

2
(log x+ log y) ≥ log y,

and taking exponentials yields
x ≥ √

xy ≥ y.

Finally, applying the result to 1/y ≥ 1/x, we have

1

y
≥ a/y + b/x

a+ b
≥ 1

x
,

which we can rearrange and set a = b = 1/2 to get

x ≥ 2

1/x+ 1/y
≥ y.

Remark. The same proof applies for weighted means.
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Theorem 2.1. For n observations x1, . . . , xn, the arithmetic mean, geometric mean, and
harmonic mean are in descending order, i.e.

AM ≥ GM ≥ HM.

Proof. We assume that all xi > 0. Consider the case n = 2. Then,

(
√
x1 −

√
x2)

2 ≥ 0, x1 + x2 ≥ 2
√
x1x2

is precisely AM ≥ GM . Applying the same on the reciprocals,

1

x1
+

1

x2
≥ 2

√
1

x1x2
,

√
x1x2 ≥

2

1/x1 + 1/x2

is precisely GM ≥ HM .

Suppose that the result holds for some n. Now consider a collection of 2n observations
x1, . . . , x2n. Then, applying AM ≥ GM on both halves, then the two variable case gives

2n∑
i=1

xi ≥ n n
√
x1 · xn + n n

√
xn+1 · · ·x2n ≥ 2n 2n

√
x1 · · ·xnxn+1 · · ·x2n

which is precisely AM ≥ GM for 2n observations. Now suppose that AM ≥ GM holds for
some n + 1. Consider a collection of n observations x1, . . . , xn, set x̄ = (x1 + · · · + xn)/n, and
note that

n∑
i=1

xi + x̄ ≥ (n+ 1) n+1
√
x1 · · ·xnx̄.

The left-hand side is simply (n+ 1)x̄, so

x̄ ≥ n+1
√
x1 · · ·xnx̄, x̄n/n+1 ≥ (x1 · · ·xn)1/n+1, x̄ ≥ n

√
x1 · · ·xn,

which is precisely AM ≥ GM for n observations. Therefore, AM ≥ GM holds for all n ≥ 2 by
induction.

Now that we have AM ≥ GM for n observations, use it on their reciprocals to get
n∑

i=1

1

xi
≥ n n

√
1

x1 · · ·xn
, n

√
x1 · · ·xn ≥ n∑n

i=1 1/xi

which is precisely GM ≥ HM .

2.4 Median

The median of a collection of ordered observations x1 ≤ x2 ≤ · · · ≤ xn is defined to be their
middle value: xk+1 if n = 2k + 1 is odd, and the mean (xk + xk+1)/2 if n = 2k is even.

For grouped data, we assume that the observations are evenly distributed over the median
class (l, u] with frequency fm, width h. If the total frequency is denoted by N , we write

M − l

h
=

N/2− nl

fm
.

Here, nl is the cumulative frequency of the preceding classes. This will give

M = l +
N/2− nl

fm
· h.
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Another way of estimating the median of grouped data is by drawing the more than and less
than ogives, and picking the abscissa of their intersection point. In the median class, the ogives
have the equations

y = nl +
fm
h

(x− l), y = N − nl −
fm
h

(x− l).

Solving for their intersection, we recover our formula.

Theorem 2.2. Let ϕ be a monotone function, and let two variables be related as y = ϕ(x).
Then their medians are related as My = ϕ(Mx).

Theorem 2.3. The median of a combination of two sets of observations lies in between the
individual medians.

2.5 Mode

The mode of a collection of observations x1, . . . , xn is the value with the highest frequency.
For grouped data, we pick the value with the highest frequency density. Let fm denote the

frequency of the modal class (l, u]. We approximate

M0 = l +
fm − fm−1

2fm − fm−1 − fm+1
· h.

Theorem 2.4. An empirical relation between these measures of central tendency is given
by

mean − mode ≈ 3(mean − median).

3 Measures of dispersion

3.1 Range

The range is a simple way of measuring how dispersed or scattered a set of observations is. This
is simply the difference between the maximum and the minimum value in the set.

Theorem 3.1. If two variables are related by y = a+ bx, then their ranges are related by

RY = |b| ·RX .

3.2 Mean deviation

The mean deviation about some value α is defined by

MD(α) =
1

n

n∑
i=1

|xi − α|.
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Theorem 3.2. If two variables are related by y = a+ bx, then

MDY (α) = |b| ·MDX(α).

Theorem 3.3. The mean deviation about a point is minimized at the median.

Exercise 3.1. The mean deviation is given by

n ·MD(α) = S2 − S1 + (n1 − n2)α.

Here, n1 is the number of values less than α and S1 is their sum, and n2 is the number of
values more than α and S2 is their sum.

Proof. Calculate

n ·MD(α) =

n∑
i=1

|xi − α|

=
∑
xi<α

α− xi +
∑
xi≥α

xi − α

= n1α− S1 + S2 − n2α

= S2 − S1 + (n1 − n2)α.

By denoting nα to be the number of values less than α, Sα to be their sum, and S to be the
sum of all elements, we have

n ·MD(α) = S − 2Sα + (2nα − n)α.

3.3 Root mean square deviation

The RMS deviation about some value α is defined by

RMS(α) =

√√√√ 1

n

n∑
i=1

(xi − α)2.

We call RMS(x̄) the standard deviation σ, and its square the variance. We can calculate

σ2 =
1

n

n∑
i=1

x2i − x̄2.

Theorem 3.4. The root mean square deviation about a point is minimized at the mean.
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Theorem 3.5. The standard deviations of two sets of observations are related by

σ2 =
n1σ

2
1 + n2σ

2
2

n1 + n2
+

n1(x̄1 − x̄)2 + n2(x̄2 − x̄)2

n1 + n2
.

In general, for k sets of observations, we have

σ2 =
1

N

k∑
i=1

niσ
2
i + ni(x̄i − x̄)2.

Theorem 3.6. If two variables are related by y = a+ bx, then

σY = |b| · σX .

Exercise 3.2. If a single observation α is added to a set of n values, then the standard
deviation increases only if

|x̄− α| >
√

n+ 1

n
· σ.

Proof. Without loss of generality, let x̄ = 0; this can be done by relabelling the data xi − x̄,
putting the mean at zero without affecting the variance. Thus, we have

nσ2 =

n∑
i=1

x2i .

Upon adding the point α to our data, the new mean is

x̄n =
α

n+ 1
,

so our new variance is related as

(n+ 1)σ2
n =

n∑
i=1

x2i + α2 − (n+ 1)x̄2n

= nσ2 + α2 − 1

n+ 1
α2,

(n+ 1)(σ2
n − σ2) = −σ2 +

n

n+ 1
α2.

For the standard deviation to increase, this must be positive, hence

α2 >
n+ 1

n
σ2

as desired.

Theorem 3.7. The mean deviation about the mean cannot exceed the standard deviation.
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Theorem 3.8. The difference between the mean and median cannot exceed the standard
deviation.

Exercise 3.3. The range and standard deviation obey

R2

2n
≤ σ2 ≤ R2

4
.

Proof. Without loss of generality, let x̄ = 0. Then,

nσ2 =

n∑
i=1

x2i , R = xn − x1.

Set α = (xn + x1)/2. Since the RMS deviation is minimized at the mean, we have

nσ2 ≤
n∑

i=1

(xi − α)2

=
∑
xi<α

(xi − α)2 +
∑
xi≥α

(xi − α)2

≤
∑
xi<α

(x1 − α)2 +
∑
xi≥α

(xn − α)2

=
∑
xi<α

R2

4
+

∑
xi≥α

R2

4

=
nR2

4
.

Finally note that RMS ≥ AM gives

nσ2 ≥ x2n + x21 ≥
(|xn|+ |x1|)2

2
=

R2

2
.

Lemma 3.9. The standard deviation is given by

σ2 =
1

2n2

∑
i,j

(xi − xj)
2.

Proof. Observe that∑
ij

(xi − xj)
2 = 2

∑
ij

x2i −
∑
ij

2xjxj = 2n
∑
i

x2i − 2
∑
i

xi
∑
j

xj = 2n
∑
i

x2j − 2n2x̄2.

3.4 Quartile deviation

A quantile of order p is such a value of the variable such that a proportion p of all the values
are less than or equal to it. For grouped data, we estimate

zp = l +
np− nl

fm
· h.

The quartile deviation, or semi-interquartile range is defined

Q =
Q3 −Q1

2
=

z3/4 − z1/4

2
.
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3.5 Coefficient of variation

Unlike the previous measures, the coefficient of variation is a relative measure of dispersion,
expressed as a percentage.

CV =
σ

x̄
.

A variable having a lower coefficient of variation is considered to be more stable. Similar
coefficients are

CV (α) =
MD(α)

α

where α is the mean or median.

Exercise 3.4. Suppose that the deviations xi − x̄ are small, so that ((xi − x̄)/x̄)3 and
higher powers can be neglected. Then,

1. GM ≈ x̄(1− σ2/2x̄2).

2. HM ≈ x̄(1− σ2/x̄2).

3. x̄2 −GM2 ≈ σ2.

4. x̄− 2GM +HM ≈ 0.

5. E(
√
X) ≈

√
x̄(1− σ2/8x̄2).

Proof.

1. Write
logGM =

1

n

∑
log xi =

1

n

∑
log

[
x̄

(
1 +

xi − x̄

x̄

)]
.

Using the series expansion of the logarithm, this is approximately

log x̄+
1

n

∑ xi − x̄

x̄
+

(xi − x̄)2

2x̄2
= log x̄− σ2

2x̄2
.

Finally, use eα ≈ 1 + α to write

GM ≈ x̄

(
1− σ2

2x̄2

)
.

2. Write
1

HM
=

1

n

∑ 1

xi
=

1

nx̄

∑[
1 +

xi − x̄

x̄

]−1

.

Using the series expansion of 1/(1 + x), this is approximately

1

nx̄

∑
1− xi − x̄

x̄
+

(xi − x̄)2

x̄2
=

1

x̄

(
1 +

σ2

x̄2

)
.

Taking the reciprocal and approximating (1 + α)−1 ≈ 1− α gives

HM ≈ x̄

(
1− σ2

x̄2

)
.
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3. Use the first approximation to estimate

x̄2 −GM2 ≈ x̄2

[
1−

(
1− σ2

2x̄2

)2
]
.

Use (1− x)2 ≈ 1− 2x to write

x̄2 −GM2 ≈ x̄2
[
1− 1 +

σ2

x̄2

]
= σ2.

4. Use the first two approximations to write

x̄− 2GM +HM ≈ 0.

5. Write

E[
√
X] =

1

n

∑√
xi =

√
x̄

n

∑[
1 +

xi − x̄

x̄

]1/2
.

Using the series expansion of the square root, this is approximately

E[
√
X] ≈

√
x̄

n

∑
1 +

xi − x̄

2x̄
− (xi − x̄)2

8x̄2
=

√
x̄

(
1− σ2

8x̄2

)
.

3.6 Moments

The rth order moment about α is given by

mr(α) =
1

n

n∑
i=1

(x− α)r.

The corresponding central moment is simply

mr =
1

n

n∑
i=1

(x− x̄)r.

The rth order raw moment is simply m′
r = mr(0).

Lemma 3.10. If two variables are related by y = a+ bx, then

mr,Y = br ·mr,X .

Lemma 3.11. The central moments can be expressed in terms of raw moments as

mr =
r∑

k=0

(
n

k

)
(−1)km′

r−k(m
′
1)

k.
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Definition 3.1. Define
b1 =

m2
3

m3
2

, b2 =
m4

m2
2

.

Theorem 3.12. For any frequency distribution, b1 ≥ 1, b2 > b1, b2 ≥ b1 + 1. Equality
holds only when the variable takes two values with equal frequency.

The absolute rth order moment about α is given by

νr(α) =
1

n

n∑
i=1

|x− α|r.

For absolute central moments, we have νr = ν ′r(x̄).

Theorem 3.13.
νa−c
b ≤ νa−b

c νb−c
a , a > b > c ≥ 0.

Corollary 3.13.1.
ν2k+l < ν2k ν2l, m2

k+l < m2k m2l.

Theorem 3.14 (Liapunov). ν
1/x
x is increasing in x.

4 Skew and kurtosis

4.1 Skew

Skewness is a measure of lack of symmetry in a frequency distribution. A positively skewed
distribution has a longer tail to the right.

The odd central moments of a symmetric distribution are all zero for a symmetric distribu-
tion, positive for a positively skewed distribution. Thus, one measure of skewness is

g1 =
m3

m
3/2
2

.

Lemma 4.1. For a positively skewed distribution, we have

mean > median > mode.

Thus,
sk =

mean − mode
σ
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is considered a measure of skewness. We have seen the empirical relation between mean, median,
mode, and standard deviation, hence we typically have

−3 ≤ sk ≤ 3.

This measure sk is called Pearson’s coefficient of skewness.
For a positively skewed distribution, Q1 is nearer to Q2 than Q3. Thus, Bowley’s coefficient

of skewness is
sk =

Q3 − 2Q2 +Q1

Q3 −Q1
∈ [−1, 1].

4.2 Kurtosis

Kurtosis is a measure of the peakedness of a frequency distribution. We look at m4, normalized
as b2 = m4/m

2
2 as a measure of kurtosis.

Lemma 4.2. For a normal distribution, b2 = 3.

Thus, g2 = b2 − 3 is also a measure of kurtosis. A distribution with g2 = 0 is called
mesokurtic, g2 > 0 is called leptokurtic, and g2 < 0 is called platykurtic.

5 Bivariate data
Here, out data items are in the form of points (xi, yi). We are typically interested in predicting
the values of one of these variables (called the study variable) given knowledge of the other
(called the auxiliary variable).

5.1 Correlation

Correlation is a measure of how change in one variable is associated with change in the other.
Here, we only examine linear correlation. Two variables are said to be positively correlated if
one variable increases with average increase in the other, or negatively correlated if one variable
decreases with average increase in the other.

We define the covariance between two variables as

Cov(x, y) =
1

n

n∑
i=1

(xi − x̄)(yi − ȳ).

The Pearson’s product moment correlation coefficient is now defined as

r(x, y) =
Cov(x, y)

σx · σy
.

Lemma 5.1.

Cov(x, y) =
1

n

n∑
i=1

xiyi − x̄ȳ.
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Lemma 5.2. Covariance is a bilinear map, with

Cov(ax+ by, cx+ dy) = acσ2
x + bdσ2

y + (ad+ bc)Cov(x, y).

Lemma 5.3. The numerical value of r is invariant under shifting and scaling.

Lemma 5.4. We have
−1 ≤ r(x, y) ≤ 1.

Furthermore, equality holds if and only if (xi − x̄) = k(yi − ȳ), k = ±σx/σy.

5.2 Intra-class correlation

Consider p families, with the ith family containing ki members. Further let xij be the variate
value of the jth member of the ith family.

Fix a family i, and set ui as the first variate value, which takes the values xij , with ki − 1
copies for each j. The second variate value vi is such that (uil, vil) takes all possible pairs
(xij , xij′) with j 6= j′. This immediately gives

ui = vi =
1

ki

ki∑
j=1

xij ,

hence

u = v =
1

N

p∑
i=1

ki∑
j=1

xij(ki − 1), N =

p∑
i=1

ki(ki − 1).

Thus, the variances of u, v are

σ2
u = σ2

v =
1

N

p∑
i=1

ki∑
j=1

(xij − u)2(ki − 1).

Also,

Cov(u, v) =
1

N

p∑
i=1

k2i (ui − u)2 −
ki∑
j=1

(xij − u)2

 .

The inter-class correlation coefficient is thus defined as

rI =
Cov(u, v)

s2u
.

Consider the special case where all families have the same size ki = k. Then,

N = pk(k − 1), u =
1

kp

p∑
i=1

k∑
j=1

xij , s2u =
1

pk

p∑
i=1

k∑
j=1

(xij − u)2.

Also,

Cov(u, v) =
1

k − 1
(ks2b − s2u), s2b =

1

p

p∑
i=1

(ui − u)2.

This gives

rI =
1

k − 1

[
ksb2

s2u
− 1

]
.
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Lemma 5.5.
− 1

k − 1
≤ rI ≤ 1.

Remark. The equality rI = 1 is attained if and only if each xij = ui.
Remark. The equality rI = −1/(k − 1) is attained if and only if each ui = u.

Lemma 5.6. The numerical value of rI is invariant under shifting and scaling.

5.3 Linear regression

Given two variables X,Y , we want to relate them as

Y = φ(X) + ε = β1 + β2X + ε.

Here, our choice of the regression function φ is linear. X is called the auxiliary variable, and Y
is called the response variable.

In order to determine β1, β2, we minimize the sum of squares of errors εi = yi − (β1 + β2xi).
This yields

β̂1 = ȳ − β̂2x̄, β̂2 = rxy ·
σy
σx

=

∑
i xiyi − nx̄ȳ∑
i x

2
i − nx̄2

.

The regression line of Y on X thus is

ŷ = ȳ + r
σy
σx

(x− x̄).

The slope byx is called the regression coefficient of Y on X. Note that we assume that X is free
of error.

The regression line of X on Y is

x̂ = x̄+ r
σx
σy

(y − ȳ).

Lemma 5.7. If u = (x− a)/c, v = (y − b)/d, then

byx =
d

c
bvu, bxy =

c

d
buv.

Lemma 5.8. The mean of the predicted values ŷ is equal to the mean ȳ of the values.

The residuals are
ε̂i = yi − ŷi = yi − ȳ − byx(xi − x̄).

Lemma 5.9. The sum of residuals is zero.
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Lemma 5.10.
|rxy| =

σŷ
σy

, σε̂ = σy
√

1− r2.

Thus, the coefficient of determination r2 = byxbxy is a measure of the usefulness of the linear
regression. If r = 0, then σε̂ = σy, making the regression pointless.

Lemma 5.11.
Cov(ŷ, ε̂) = 0.

Lemma 5.12. The angle between both regression lines satisfies

tan θ =

∣∣∣∣1− r2

r
· σxσy
σ2
x + σ2

y

∣∣∣∣ .
Now suppose that our variables are empirically related as

y = f(x, β1, β2, . . . , βn) = f(x;β).

Here, β = (β1, . . . , βn) are unknown constants. Make an initial guess β(0), and note that we
wish to minimize β − β(0). Taylor’s theorem gives the approximation

y = f(x;β) ≈ f(x;β(0)) + (β − β(0)) ·
[
∂f

∂βi
(β(0))

]
.

Since this is now linear, the values β − β(0) can be determined using the least squares method
as before. This gives us a new approximation β(1); we can repeat this process getting better
and better solutions.

Suppose that both variables are subject to error. To perform a linear regression

ax+ by + 1 = 0,

we minimize the sum of squares of distances from this line to the points (xi, yi), i.e. we want to
minimize

n∑
i=1

(axi + byi + 1)2

a2 + b2
.

Setting the partial derivatives to zero yields

ab2
∑
i

(x2i − y2i ) + b(b2 − a2)
∑
i

xiyi + (b2 − a2)
∑
i

xi − 2ab
∑
i

yi = na,

a2b
∑
i

(y2i − x2i ) + a(a2 − b2)
∑
i

xiyi + (a2 − b2)
∑
i

yi − 2ab
∑
i

xi = nb,

ax̄+ bȳ + 1 = 0.
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5.4 Orthogonal polynomials

A sequence of polynomials {pi} is said to be orthogonal if∑
x

pi(x) · pj(x)

{
= 0, if i 6= j

6= 0, if i = j
.

Consider the polynomials

pn(x) =

n∑
k=0

cnkx
k.

When considering the first N+1 such polynomials, we have (N+1)(N+2)/2 unknown constants
cnk. For these to be orthogonal, we have N(N+1)/2 equations from the orthogonality equations.
Thus, we need N + 1 additional constraints to fully determine the coefficients. Typically, we
take the coefficients of the highest power, cnn = 1. Thus, we can calculate such orthogonal
polynomials, given our data x1, . . . , xn.

5.5 Polynomial regression

Here, our regression function is the polynomial

φ(X) = β0 + β1X + · · ·+ βkX
k.

Naturally, we wish to minimise the least square error∑
i

(yi − β0 − β1xi − · · · − βkx
k
i )

2.

This yields k + 1 normal equations. The estimated errors are

ε̂i = yi − β̂0 − β̂1xi − · · · − β̂kx
k
i .

These sum to zero, and their sum of squares is∑
i

ε̂2i =
∑
i

yi(yi − β̂0 − β̂1xi − · · · − β̂kx
k
i ) =

∑
i

yiŷi.

Lemma 5.13. This residual sum of squares is a non-increasing with k.

As usual, we will find Cov(ŷ, ε̂) = 0, and r2 = Var(ŷ)/Var(y).

Lemma 5.14. For different degrees k, we have 0 ≤ r2k ≤ r2k+1 ≤ 1.

Rewrite our kth degree polynomial in terms of orthogonal polynomials,

φ = β0p0 + β1p1 + · · ·+ βkpk.

Again, we solve the normal equations∑
i

pj(xi)(yi − β̂0p0(xi)− · · · − β̂kpk(xi)) = 0.

This immediately simplifies to ∑
i

yipj(xi) = β̂j
∑
i

p2j (xi).

It turns out that when increasing the degree of our polynomial regression, the first k coefficients
β̂i do not change!
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6 Rank correlation
Suppose that ui is the rank of the ith data point with respect to character A, and vi is its rank
with respect to character B. Rank correlation is a measure of how well these two rankings agree
with each other.

6.1 Spearman’s coefficient

Spearman’s rank correlation coefficient is given by

rR = 1−
n∑

i=1

6d2i
n(n2 − 1)

,

with du = ui − vi. Note that in case of ties, the group with the tie gets the average of their
ranks assuming no tie.

Lemma 6.1. Assuming no tie,

ū = v̄ =
1

2
(n+ 1), σ2

u + σ2
v =

1

12
(n2 − 1).

Lemma 6.2. Assuming no tie,

rR = ruv =
Cov(u, v)

σuσv
.

Lemma 6.3.
−1 ≤ rR ≤ 1.

Lemma 6.4. For a tie of length k, the variance lowers by

k(k2 − 1)

12n
.

6.2 Kendall’s coefficient

Here, each pair of data points with indices (i, j), i < j, is assigned a score

sij = sgn [(ui − uj)(vi − vj)] .

Then, Kendall’s rank correlation coefficient is

τ =
Total score

Maximum possible score .

In the case where there are no ties, the maximum possible score is
(
n
2

)
.
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Note that by writing

aij = sgn(ui − uj), bij = sgn(vi − vj),

we have
τ =

∑
i<j aijbij√∑

i<j a
2
ij

√∑
i<j b

2
ij

.

Lemma 6.5. τ may be regarded as a product moment correlation coefficient.

7 Sample surveys

Definition 7.1. A finite population consists of a finite number of N identifiable units,
labelled U = (U1, . . . , UN ). A collection of units from U is called a sample.

Definition 7.2. A variable X defined on U is a study variable. We denote its values as
Xi = X(Ui). If s is a sample from U , then X(s) is the vector of X values for units in the
sample s. The components of X(s) are labelled Y1, . . . , Yn. The sample size n(s) is the
number of units in s, while the effective sample size ν(s) is the number of distinct units in
s.

In this discussion, we assume that there is no observational error, and that X(s) is com-
pletely known. We wish to estimate a function f of the study variable X; we further assume
that f(X) is indeed estimable on the basis of X(s).

Definition 7.3. Let S be a countable collection of samples from the sampling frame U .
Assign a real number p(s) > 0 to every sample s ∈ S, such that

∑
s∈S p(s) = 1. Then,

P = {p(s) : s ∈ S}

describes a discrete probability measure on S, called a sampling design.
Remark. If S contains all population units, then the sampling design P is called a census.

Definition 7.4. Random sampling is a procedure of drawing samples in which a sample
s ∈ S is selected according to a sampling design, with probability p(s).

Example. In Simple Random Sampling With Replacement where each sample has size n,
i.e. SRSWR(n), we have the sampling design

p(s) =
1

Nn

for all samples s such that n(s) = n. This can be achieved by drawing n units from U one
at a time, each with probability 1/N , allowing for repetitions.
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Example. In Simple Random Sampling WithOut Replacement where each sample has size
n, i.e. SRSWOR(n), we have the sampling design

p(s) =
1

N(N − 1)(N − 2) · · · (N − n+ 1)

for all samples s such that n(s) = ν(s) = n. This can be achieved by drawing n units
from U one at a time, each with uniform probability, discarding previously selected units
thereby disallowing repetitions.

Definition 7.5.

1. A parameter is a function of the population values, typically unknown.
2. A statistic is a function of the sample values, which is known.
3. An estimator is a statistic which is used to estimate an (unknown) parameter. It is a

random variable.
4. An estimate is a numerical value of an estimator.

7.1 Simple Random Sampling With Replacement

Here, a sample of size n is chosen such that every such possible sample has uniform probability
1/Nn. The probability of the ith element in the sample being any particular unit Xα from the
population is 1/N , i.e.

P (Yi = Xα) =
1

N
, for all 1 ≤ i ≤ n, 1 ≤ α ≤ N.

Thus, the expected value of Yi is

E[Yi] =

N∑
α=1

Xα · P (Yi = Xα) =
1

N

N∑
α=1

Xα = X.

This is known as the population mean, µ = X. The variance

Var[Yi] = E[(Yi − E[Yi])
2] =

1

N

N∑
α=1

(Xα −X)2 = σ2

is called the population variance.
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