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1 Measure theory

1.1 Introduction

Measure theory seeks to generalize the notions of length, area, volume to more general sets:
this new notion is called a measure. This also allows us to generalize the notion of Riemann
integration to a broader class of functions.

Recall that continuous functions, or at least functions with finitely many discontinuities
on a closed interval are Riemann integrable. The Dirichlet function, which is discontinuous
everywhere, is not.

f : R → R, x 7→

{
1, if x ∈ Q,
0, if x /∈ Q.

This is simply because every non-empty interval contains at least one rational and one irrational
number, so the Darboux lower sum is always 0 and the upper sum is always 1 regardless of the
choice of partition.

On the other hand, if we had to assign a particular value to this integral, intuition tells us
that it ought to be zero. After all, the function f attains a non-zero value only on the countable
set Q ∩ [0, 1]; it is zero almost everywhere. Formally, we will show that f is non-zero on a set
of zero Lebesgue measure, which will allow us to set this Lebesgue integral to zero. We will
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see that with this new formulation of integration, we end up partitioning the range of f rather
than it’s domain, and write∫

f = 0 · µ([0, 1] \Q) + 1 · µ([0, 1] ∩Q) = 0.

Theorem 1.1 (Lebesgue criterion). A function f : [a, b] → R is Riemann integrable if and
only if it is bounded and its set of discontinuities has Lebesgue measure zero. This means
that the set of discontinuities of f must be coverable by countably many intervals (xi, yi)
such that the sum of lengths yi − xi can be made arbitrarily small.

1.2 Basic definitions

Definition 1.1. Let X be a set, and let M be a collection of subsets of X. We say that
M is a σ-algebra over X if it satisfies the following.

1. M contains X.
2. M is closed under complementation.
3. M is closed under countable unions.

Remark. The first condition can be replaced by forcing M to be non-empty.
Remark. The following properties follow immediately.

1. M contains ∅.
2. M is closed under countable intersections.
3. M is closed under differences.

Example. Given a set X, its power set forms a σ-algebra over X.

Example. Given a set X, the set {∅, X} forms a σ-algebra over X.

Example. Given an uncountable set X, the following set forms the co-countable σ-algebra
over X.

{E ⊆ X : E is countable or Ec is countable}.

Definition 1.2. Let X be a set, and let M be a σ-algebra over X. We say that a function
µ : M → R ∪ {−∞,+∞} is called a measure if it satisfies the following.

1. µ is non-negative.
2. µ(∅) = 0.
3. µ is additive over countable unions of disjoint sets, i.e. for any countable collection

{Ei}∞i=1 such that Ei ∩ Ej = ∅ for all pairs, we have

µ

( ∞⋃
i=1

Ei

)
=

∞∑
i=1

µ(Ei).
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Example. The trivial zero measure sends every set to zero.

Example. In probability theory, we look at the event space E as a σ-algebra over the sample
space Ω. The probability function P is a measure on this event space such that P (Ω) = 1.

Example. Let X be a set, and let M be its power set as a σ-algebra over X. Fix x0 ∈ X,
and define

µ : M → [0,∞], E 7→

{
1, if x0 ∈ E,

0, if x0 /∈ E.

This is called the Dirac measure.

Example. Let X be a set, and let M be its power set as a σ-algebra over X. Define

µ : M → [0,∞], E 7→


0, if E = ∅,
|E|, if E is finite,
∞, otherwise.

This is called the counting measure.

Example. Let X be an uncountable set, and let M be its co-countable sigma algebra. Define

µ : M → [0,∞], E 7→

{
0, if E is countable,
1, if Ec is countable.

Definition 1.3. Let (X,M, µ) be a measure space.

1. We say that µ is finite if µ(E) is finite for all E ∈ M.
2. We say that µ is σ-finite if given E ∈ M, we can write

E =
∞⋃
i=1

Ei

for Ei ∈ M such that each µ(Ei) is finite.

1.3 Basic properties

Lemma 1.2. Let (X,M, µ) be a measure space. Then, the following properties hold.

1. If A,B ∈ M such that A ⊆ B, then µ(A) ≤ µ(B).
2. If A,B ∈ M such that A ⊆ B and µ(A) is finite, then µ(B −A) = µ(B)− µ(A).
3. If {Ei}∞i=1 such that Ei ∈ M, then

µ

( ∞⋃
i=1

Ei

)
≤

∞∑
i=1

µ(Ei).
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Corollary 1.2.1. A measure µ is finite if and only if µ(X) is finite.

Theorem 1.3 (Continuity from below). Let (X,M, µ) be a measure space, and let {Ei}∞i=1

be a sequence of measurable sets such that Ei ⊆ Ej for all i < j. Then,

µ

( ∞⋃
i=1

Ei

)
= lim

n→∞
µ(En).

Proof. Define Fi = Ei − Ei−1, denoting E0 = ∅. Thus,

µ

( ∞⋃
i=1

Ei

)
= µ

( ∞⋃
i=1

Fi

)
=

∞∑
i=1

µ(Fi).

Also note that
n∑

i=1

µ(Fi) = µ

(
n⋃

i=1

Fi

)
= µ(En).

Since the infinite sum in the first part is the limit of partial sums, we have our result.

Theorem 1.4 (Continuity from above). Let (X,M, µ) be a measure space, and let {Ei}∞i=1

be a sequence of measurable sets such that Ei ⊇ Ej for all i < j. Further assume that µ(E1)
is finite. Then,

µ

( ∞⋂
i=1

Ei

)
= lim

n→∞
µ(En).

Proof. Define Fi = E1 − En, and note that Fi ⊆ Fj for all i < j. Thus,

µ

( ∞⋃
i=1

Fi

)
= lim

n→∞
µ(Fn).

This can be rewritten as

µ

(
E1 −

∞⋂
i=1

Ei

)
= lim

n→∞
µ(E1 − En).

Using the subtractive property and the fact that each µ(Ei) is finite,

µ(E1)− µ

( ∞⋂
i=1

Ei

)
= lim

n→∞
µ(E1)− µ(En).

Pulling the constant µ(E1) out from the limit and subtracting from both sides gives our result.

Example. Consider the counting measure µ on (N,P(N)), and define En = {n, n+ 1, . . . }.
Then,

µ

( ∞⋂
i=1

Ei

)
= 0, lim

n→∞
µ(En) = ∞.
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1.4 The Borel σ-algebra

Theorem 1.5. Let X be a set, and let S be a collection of subsets of X. Then, there exists
a smallest σ-algebra containing S. This is called the σ algebra generated by S, denoted
M(S).

Proof. Let Ω be the collection of all σ-algebras on X containing S. Note that Ω 6= ∅, since it
contains the power set of X. Consider the intersection of all the sigma algebras in Ω,

M =
⋂

Mλ∈Ω
Mλ.

We claim that M is indeed a σ-algebra. To see this, first note that X ∈ M. Next, pick
E ∈ M ⊆ Mλ, so Ec ∈ Mλ for all Mλ ∈ Ω, hence Ec ∈ M. Finally, pick {Ei}∞i=1 where
Ei ∈ M ⊆ Mλ, which shows that the union of these Ei is in every Mλ, hence in M.

Definition 1.4. Let (X, τ) be a topological space. The σ algebra generated by τ is called
the Borel σ-algebra, BX = M(τ).
Remark. The Borel σ-algebra BX contains all open as well as all closed sets in X, as well
as their countable unions and intersections.

Theorem 1.6. Consider the collection β of open intervals in R, and the standard topology
τ on R. Then, both β and τ generate the same Borel σ-algebra BR.

Proof. This relies on the fact that every open set U ⊆ R can be written as a countable union of
open intervals. To see this, pick x ∈ U , and an open interval x ∈ (a, b) ⊂ U . Now pick p, q ∈ Q
such that a < p < x < q < b, hence x ∈ (p, q) ⊂ U . Now, U is precisely the union of all such
intervals (p, q). This collection is countable, due to the countability of the rationals.

Remark. The same holds if we consider the collection β′ of closed intervals in R. This can be
shown using the standard trick

(a, b) =

∞⋃
n=1

[
a+

1

n
, b− 1

n

]
.

Indeed, we may also consider the collection of intervals of the form [a, b), or the collection of
intervals (a, b], or even the collection of intervals (a,∞), or (−∞, b), or [a,∞), or (−∞, b].

Definition 1.5. A countable union of closed sets is called an Fσ set. A countable intersec-
tion of open sets is called a Gδ set.
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1.5 Measurable functions

Definition 1.6. Let (X,MX), (Y,MY ) be measure spaces. We say that a function f : X →
Y is (MX ,MY ) measurable if for every E ∈ MY , we have f−1(E) = MX .

Example. Consider the Borel σ-algebra BR on R, and fix E ∈ BR. Define the characteristic
function

χE : R → R, x 7→

{
1, if x ∈ E,

0, if x /∈ E.

Then, χE is measurable. However, we can choose E to be closed and not open, so that χE

is not continuous.

Lemma 1.7. Let f : (X,MX) → (Y,MY ), and let MY be generated by S. Then f : X → Y
is measurable if for every E ∈ S, we have f−1(E) ∈ MX .

Proof. Define
M = {E ⊆ Y : f−1(E) ∈ MX}.

Clearly, S ⊆ M. We now claim that M is a σ-algebra over Y . First, Y ∈ M since f−1(Y ) =
X ∈ MX . Next if E ∈ M, we have f−1(Ec) = f−1(E)c ∈ MX . Finally, if {Ei}∞i=1 such that
each Ei ∈ M, set E to be their union, whence

f−1(E) =

∞⋃
i=1

f−1(Ei) ∈ M.

Thus, M is indeed a σ-algebra. Since S generates MY , we have MY ⊆ M, completing the
proof.

Example. A function f : X → R is measurable if and only if f−1((a,∞)) is measurable for
all a ∈ R.

Theorem 1.8. Let f : X → Y be continuous. Then, f is (BX ,BY ) measurable.

Lemma 1.9. The composition of measurable functions is measurable. In other words,
if f : (X,MX) → (Y,MY ) is surjective and (MX ,MY ) measurable, and g : (Y,MY ) →
(Z,MZ) is (MY ,MZ) measurable, then g ◦ f is (MX ,MZ) measurable.

Lemma 1.10. Let u, v : (X,M) → (R,BR) be (M,BR) measurable. Then, f : (X,M) →
(R2,BR2), defined by x 7→ (u(x), v(x)), is (M,BR2) measurable.

Proof. Basic open sets in R2 can be chosen as the open rectangles (a, b)× (c, d). The pre-image
of such an open set under f is u−1((a, b)) ∩ v−1((c, d)), which is clearly a measurable set in
X.
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Corollary 1.10.1. Let f, g : (X,M) → (R,BR) be (M,BR) measurable. Then the sum
f + g and the product f · g are also (M,BR) measurable.

Proof. The maps (x, y) 7→ x+ y and (x, y) 7→ xy are continuous, hence measurable. Thus, the
composite maps x 7→ (f(x), g(x)) 7→ f(x) + g(x) and x 7→ (f(x), g(x)) 7→ f(x)g(x) are also
measurable.

Example. Let (X,M) be a measurable space, and let A1, . . . , An ∈ M. Then the map

s : X → R, x 7→
n∑

i=1

ciχAi(x)

is measurable. Such functions are called simple functions.

Lemma 1.11. The maximum and minimum of measurable functions are measurable.

Corollary 1.11.1. The positive and negative parts of a measurable function are measurable.
Remark. Recall that

f+ = max{f, 0}, f−1 = −min{f, 0}, f = f+ − f−.

Thus, in order to show that a result holds for all measurable functions, it suffices to show
the result only for all non-negative measurable functions.

Theorem 1.12. Let {fn}∞n=1 be a collection of measurable functions fn : X → R∪{−∞,+∞}.
Then, their supremum and infimum are measurable.

Theorem 1.13. Let {fn}∞n=1 be a sequence of measurable functions fn : X → R. Then,
lim supn→∞ fn and lim infn→∞ fn are measurable.

Theorem 1.14. Let {fn}∞n=1 be a sequence of measurable functions fn : X → R, and let
fn → f pointwise on X. Then, f is measurable.
Remark. This is a stronger result than the corresponding one regarding limits of continuous
functions.

1.6 Lebesgue integration
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Theorem 1.15. Let f : X → [0,∞] be measurable. Then, there exists a sequence of simple
functions sn : X → [0,∞) such that

0 ≤ s1 ≤ s2 ≤ · · · ≤ sn ≤ f

for all n ∈ N, and sn → f .

Corollary 1.15.1. Any measurable function f : X → [−∞,∞] can be written as the limit
of a sequence of simple functions {sn}∞n=1, with sn → f .

Definition 1.7. When dealing with the extended reals in measure theory, we use the
convention 0 · ∞ = ∞ · 0 = 0.
Remark. We want to have∫ ∞

0
0 = 0 · µ(f−1(0)) = 0 · µ([0,∞)) = 0.

Definition 1.8. Let (X,M, µ) be a measure space, and let s : X → [0,∞) be a simple,
measurable function, of the form

s =

n∑
i=1

ciχAi , Ai ∈ M

where c1, . . . , cn are distinct values of s. Then, the Lebesgue integral of s on E ∈ M is
defined as ∫

E
s dµ =

n∑
i=1

ci · µ(E ∩Ai).

Example. The Dirichlet function is the simple function χQ. Thus, upon assigning a σ-
algebra and a measure µ on R, we will be able to assign its Lebesgue integral on R as the
value µ(Q).

Definition 1.9. Let (X,M, µ) be a measure space, and let f : X → [0,∞) be a measurable
function. Then, the Lebesgue integral of f on E ∈ M is defined as∫

E
f dµ = sup

{∫
E
s dµ, for all simple functions s,where 0 ≤ s ≤ f

}
.
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Theorem 1.16. Let f, g : X → [0,∞] be measurable functions.

1. If 0 ≤ f ≤ g, then ∫
E
f dµ ≤

∫
E
g dµ.

2. If A ⊂ B, then ∫
A
f dµ ≤

∫
B
f dµ.

3. For c ∈ R, ∫
E
cf dµ = c

∫
E
f dµ.

4. If f = 0, then ∫
E
f dµ = 0.

5. If µ(E) = 0, then ∫
E
f dµ = 0.

Definition 1.10. We say that a statement is true almost everywhere on X if it is true
everywhere on X \ E for a measure zero set E.

Lemma 1.17. Let f : X → [0,∞] be a measurable function. If∫
X
f dµ = 0,

then f = 0 almost everywhere.

Proof. We wish to show that the set E = f−1(0,∞] has measure zero. Now, note that this is
the union of the measurable sets En = f−1(1/n,∞]. Since En ⊂ E ⊆ X, we have∫

En

1

n
dµ ≤

∫
En

f dµ ≤
∫
X
f dµ.

However, this is just
0 ≤ 1

n
µ(En) ≤

∫
En

f dµ ≤ 0,

hence each µ(En) = 0. Continuity from below gives µ(E) = 0.

Lemma 1.18. Let (X,M, µ) be a measure space, and let s : X → R be a non-negative
simple function. Define

ν(E) =

∫
E
s dµ, E ∈ M.

Then, ν is a measure on M.
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1.6.1 Monotone convergence

Theorem 1.19 (Monotone convergence). Let {fn}∞n=1 be a sequence of non-negative mea-
surable functions fn : X → R, such that fn ≤ fn+1, and fn → f pointwise. Then,

lim
n→∞

∫
X
fn dµ =

∫
X
f dµ.

Lemma 1.20. Let f, g : X → R be measurable functions. Then, f + g is measurable.

Theorem 1.21. Let {fn}∞n=1 be a sequence of non-negative measurable functions fn : X →
R. Define

f : X → R, f(x) =
∞∑
n=1

fn(x).

Then, f is measurable and ∫
X
f dµ =

∞∑
n=1

∫
X
fn dµ.

Theorem 1.22 (Fatou). Let {fn}∞n=1 be a sequence of non-negative measurable functions
fn : X → R. Then, ∫

X
lim inf
n→∞

fn dµ ≤ lim inf
n→∞

∫
X
fn dµ.

Corollary 1.22.1. If fn → f , then∫
X
f dµ ≤ lim inf

n→∞

∫
X
fn dµ.

Corollary 1.22.2. If fn → f and each 0 ≤ fn ≤ f , then∫
X
f dµ = lim inf

n→∞

∫
X
fn dµ.

Example. Consider the functions fn = χ[n,n+1). Now, fn → 0 pointwise, but the Lebesgue
integrals of fn are all 1.
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Lemma 1.23. Let {aij}i,j∈N be sequences of non-negative terms. Then,∑
i

∑
j

aij =
∑
j

∑
i

aij .

Proof. Define fi(j) = aij , and f =
∑

i fi. Using the counting measure,∫
N
fi dµ =

∑
j

aij .

Also,

f(j) =
∑
i

aij ,
∑
j

∑
i

aij =
∑
j

f(j) =

∫
N
f dµ =

∑
i

∫
N
fi dµ =

∑
i

∑
j

aij .

Theorem 1.24. Let f : X → [0,∞] be a non-negative measurable function. Define

ν(E) =

∫
E
f dµ, E ∈ M.

Then, ν is a measure on M. Furthermore, if g : X → [0,∞] is measurable, then∫
X
g dν =

∫
X
g f dµ.

1.6.2 Dominated convergence

Definition 1.11. For a measurable function f : X → [−∞,∞], we may define∫
X
f dµ =

∫
X
f+ dµ−

∫
X
f− dµ,

as long as at least one of these terms is finite.

Definition 1.12. Let

L1(µ) = {f : X → C : f is measurable, and
∫
X
|f | dµ is finite}.

For f ∈ L1(µ), we may write f = u + iv where u, v are real valued measurable functions
and define ∫

X
f dµ =

∫
X
u dµ+ i

∫
X
v dµ.
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Lemma 1.25. When f, g ∈ L1(µ), α, β ∈ C, we have∫
X
αf + βg dµ = α

∫
X
f dµ+ β

∫
X
g dµ.

∣∣∣∣∫
X
f dµ

∣∣∣∣ ≤ ∫
X
|f | dµ.

Theorem 1.26. The space of functions L1(µ) is a vector space over C. The map

T : L1(µ) → C, f 7→
∫
X
f dµ

is a linear map. Furthermore, L1(µ) is a metric space, with

d(f, g) =

∫
X
|f − g| dµ.

Remark. Observe that
|T (f)− T (g)| ≤ d(f, g),

making T a Lipschitz continuous map.

Theorem 1.27 (Dominated convergence). Let {fn}∞n=1 be a sequence of complex measurable
functions fn : X → C, such that fn → f pointwise on X. Furthermore, let g : X → [0,∞),
g ∈ L1(µ) such that |fn| ≤ g. Then, f ∈ L1(µ),

lim
n→∞

∫
X
|fn − f | dµ = 0, lim

n→∞

∫
X
fn dµ =

∫
X
f dµ.

Corollary 1.27.1 (Bounded convergence). Let {fn}∞n=1 be a sequence of complex measur-
able functions fn : X → C, such that fn → f pointwise on X. Furthermore let |fn| ≤ M
for some M ∈ R, and let µ(X) <∞. Then, f ∈ L1(µ),

lim
n→∞

∫
X
|fn − f | dµ = 0, lim

n→∞

∫
X
fn dµ =

∫
X
f dµ.

Example. Consider
fn : [0, 1] → R, x 7→ nx

1 + n2x2
.

Then, it can be shown that fn → 0 pointwise on [0, 1]. Furthermore, each |fn| < 1 and
µ([0, 1]) = 1, hence

lim
n→∞

∫
[0,1]

nx

1 + n2x2
dµ = 0.
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Theorem 1.28 (Fundamental theorem). Let F : [a, b] → R such that F ′ = f where f ∈
L1(µ), |f | < c. Then, ∫

[a,b]
f dµ = F (b)− F (a).

Proof. Define
fn : [a, b] → R, x 7→ n(F (x+ 1/n)− F (x)),

and note that fn → f .

Theorem 1.29. Let f : X × [a, b] → C, where −∞ < a < b < ∞, and let each f(·, t) =
ft ∈ L1(µ,X). Define

F (t) =

∫
X
f(x, t) dµ(x).

Suppose that ∂f/∂t exists, with g ∈ L1(µ,X) such that∣∣∣∣∂f∂t (x, t)
∣∣∣∣ ≤ g(x).

Then, F is differentiable, with

F ′(t) =

∫
X

∂f

∂t
(x, t) dµ(x).

Theorem 1.30. Let f : X → C, where f ∈ L1(µ). Then for every ε > 0, there exists a
δ > 0 such that for all E ∈ M with µ(E) < δ, we have∫

E
|f | dµ < ε.

In other words,
lim

µ(E)→0

∫
E
|f | dµ = 0.

Proof. Define

fn : X → C, x 7→

{
|f(x)|, if |f(x)| ≤ n,

n, if |f(x)| > n.

Then each |fn| ≤ n, fn → |f | monotonically. Thus, the Monotone Convergence Theorem will
give

lim
n→∞

∫
X
fn dµ =

∫
X
|f | dµ.

For sufficiently large N , we have ∫
X
|f | dµ−

∫
X
fN dµ <

ε

2
.

By restricting the domain of integration to E ⊆ X,∫
E
|f | dµ−

∫
E
fN dµ <

ε

2
.
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Finally, set δ = ε/2N , so that for µ(E) < δ, we have∫
E
|f | dµ <

∫
E
fN dµ+

ε

2
< Nµ(E) +

ε

2
= ε.

Theorem 1.31. Let f : X → C, where f ∈ L1(µ). Suppose that for all E ∈ M, we have∫
E
f dµ = 0.

Then, f = 0 almost everywhere on X.

Theorem 1.32. Let f : [a, b] → R be bounded on the compact interval [a, b]. If f is Riemann
integrable, then f ∈ L1(µ) with ∫ b

a
f =

∫
[a,b]

f dµ.

Remark. The converse fails, since χQ is not Riemann integrable, but it is Lebesgue inte-
grable.

Example. Suppose that we wish to compute the integral∫
(0,1)

1√
x
dµ.

Note that the corresponding Riemann integral is improper. Thus, we define the functions

fn : (0, 1) → R, x 7→ 1√
x
χ[1/n,1)(x),

and note that fn(x) → 1/
√
x on (0, 1) monotonically. Thus, the Monotone Convergence

Theorem guarantees that∫
(0,1)

1√
x
dµ = lim

n→∞

∫ 1

1/n

1√
x
dx = lim

n→∞
2

(
1− 1√

n

)
= 2.

Example. Suppose that we wish to compute∫
(1,∞)

1

x2
dµ.

Again, define
fn : (1,∞) → R, x 7→ 1

x2
χ(1,n)(x).

Then fn(x) → 1/x2 on (1,∞) monotonically, so∫
(0,1)

1

x2
dµ = lim

n→∞

∫ n

1

1

x2
dx = lim

n→∞
1− 1

n
= 1.

14 Updated on May 7, 2022



MA3203: Analysis IV 1 MEASURE THEORY

Example. Suppose that we wish to compute

lim
n→∞

∫ n

0

(
1− x

n

)n
e−2x dx.

By setting
fn : [0,∞) → R, x 7→

(
1− x

n

)n
e−2xχ[0,n](x),

we have
lim
n→∞

∫ n

0

(
1− x

n

)n
e−2x dx = lim

n→∞

∫
[0,∞)

fn dµ.

Furthermore, |fn(x)| ≤ e−2x and the latter is in L1(µ). Thus, the Dominated Convergence
Theorem guarantees that this limit is∫

[0,∞)
lim
n→∞

fn dµ =

∫ ∞

0
e−3x dx =

1

3
.

Remark. For any x ∈ R, the sequence

en =
(
1 +

x

n

)n
is increasing, with en → ex. To show this, consider the ratio

en+1

en
=

(1 + x
n+1)

n+1

(1 + x
n)

n
=

(
1 + x

n+1

1 + x
n

)n+1 (
1 +

x

n

)
=

(
1− x

(n+ 1)(n+ x)

)n+1 (
1 +

x

n

)
.

Applying Bernoulli’s inequality, noting that |x/(n+ x)| < 1,

en+1

en
≥
(
1− x

n+ x

)(
1 +

x

n

)
= 1.

Example. Suppose that we wish to compute

lim
n→∞

∫ ∞

1

log(1 + nx)

1 + x2 log n
dx.

Observe that for x ≥ 1, n ≥ 1, we have nx ≤ 1 + nx ≤ 2nx so

log n+ log x

1 + x2 log n
≤ log(1 + nx)

1 + x2 log n
≤ log 2 + log n+ log x

1 + x2 log n
.

The Squeeze Theorem immediately gives

lim
n→∞

log(1 + nx)

1 + x2 log n
=

1

x2
.

Furthermore,
log(1 + nx)

1 + x2 log n
≤ log 2

x2
+

log x

x2
+

log n

x2
,

15 Updated on May 7, 2022



MA3203: Analysis IV 1 MEASURE THEORY

and the latter is in L1(µ). Indeed, log x < x yields log
√
x ≤

√
x, hence log x/x2 ≤ 2x−3/2.

Thus, the Dominated Convergence Theorem guarantees that our limit is

lim
n→∞

∫ ∞

1

log(1 + nx)

1 + x2 log n
dx =

∫ ∞

1

1

x2
dx = 1.

Example. Suppose that we wish to compute

lim
n→∞

∫ ∞

0

n1/4e−nx2

1 + x2
dx.

Observe that the map t 7→ te−t4 is bounded on (0,∞), attaining a maximum at t = 1/
√
2

with the maximum M = e−1/4/
√
2. Thus, putting t = n1/4x1/2, we have

n1/4
√
xe−nx4 ≤M,

n1/4e−nx2

1 + x2
≤ M/

√
x

1 + x2
.

On the interval (0, 1), we have∫ 1

0

1√
x(1 + x2)

dx ≤
∫ 1

0

1√
x
dx = 2,

and on (1,∞), we have ∫ ∞

1

1√
x(1 + x2)

dx ≤
∫ ∞

1

1

x2
dx = 1.

Furthermore, n1/4e−nx2 → 0 pointwise as n → ∞. Thus, the Dominated Convergence
Theorem guarantees that

lim
n→∞

∫ ∞

0

n1/4e−nx2

1 + x2
dx = 0.

Remark. Consider n1/me−nxk ; to bound this, we examine the map t 7→ te−tm . This attains
a maximum when e−tm − mtme−tm = 0, i.e. t = 1/m1/m, hence a maximum value of
M = e−1/m/m1/m. Thus, putting t = n1/mxk/m,

n1/mxk/me−nxk ≤M, n1/me−nxk ≤Mx−k/m.

1.7 Lp spaces

Definition 1.13. Let (X,M, µ) be a measure space. For 1 ≤ p <∞, we define

Lp(µ) = {f : X → C : f is measurable, and
∫
X
|f |p dµ is finite}.

Remark. We denote

‖f‖p =
(∫

X
|f |p dµ

)1/p

.
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Definition 1.14. Let (X,M, µ) be a measure space, and let f : X → C be measurable.
We define the essential supremum of f as

‖f‖∞ = inf{M : µ{x ∈ X : |f(x)| > M} = 0}.

Remark. We have f ≤ ‖f‖∞ almost everywhere in X.

Example. Note that for
f : (0, 1) → R, x 7→ 1/x,

we have ‖f‖∞ = ∞. By convention, inf ∅ = ∞.

Definition 1.15. Let (X,M, µ) be a measure space. We define the space of essentially
bounded functions as

L∞(µ) = {f : X → C : f is measurable, and ‖f‖∞ is finite}.

Lemma 1.33 (Young). For a, b ≥ 0, p, q > 1,

ab ≤ ap

p
+
bq

q
,

1

p
+

1

q
= 1.

Proof. Using Jensen’s inequality on the logarithm,

log(tap + (1− t)bq) ≥ t log(ap) + (1− t) log(bq).

Putting t = 1/p and exponentiating immediately gives the result.

Lemma 1.34 (Hölder). For 1 ≤ p, q ≤ ∞, f, g measurable,

‖fg‖1 ≤ ‖f‖p ‖g‖q,
1

p
+

1

q
= 1.

Proof. This is trivial when either f, g = 0, or p, q = 1. Otherwise, applying Young’s inequality
and integrating gives∫

X
|f(x)g(x)| dµ ≤ 1

p

∫
X
|f(x)|p dµ+

1

q

∫
X
|g(x)|q dµ.

When ‖f‖p = ‖g‖q = 1, this immediately gives the desired inequality since the right hand side
is 1. Otherwise, define F = f/‖f‖p, G = g/‖g‖q, upon which ‖F‖p = ‖G‖q = 1, hence

‖fg‖1 =
∫
X
|f(x)g(x)| dµ ≤ ‖f‖p‖g‖q.
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Example. Let f ∈ L2(R), and let each µ([n, n+ 1)) = 1. Then,

lim
n→∞

∫
[n,n+1)

f dµ = 0.

To show this, note that Hölder’s inequality for p = 1 = 2, also known as the Cauchy-Schwarz
inequality, gives

∫
[n,n+1)

|f | dµ ≤

(∫
[n,n+1)

|f |2 dµ

)1/2(∫
[n,n+1)

dµ

)1/2

=

(∫
[n,n+1)

|f |2 dµ

)1/2

.

Now, note that the following defines a measure ν on R.

ν(E) =

∫
E
|f |2 dµ.

Furthermore, this is a finite measure because ν(R) = ‖f‖22 <∞. Now, each ν([n, n+1)) ≤
ν([n,∞)); continuity from above now gives

lim
n→∞

∫
[n,n+1)

|f |2 dµ ≤ lim
n→∞

ν([n,∞)) = ν(∅) = 0.

Lemma 1.35 (Minkowski). For 1 ≤ p ≤ ∞, f, g measurable,

‖f + g‖p ≤ ‖f‖p + ‖g‖p.

Proof. This is trivial when p = 1,∞. Otherwise, for 1 < p <∞, note that

|f(x) + g(x)|p ≤ (|f(x) + g(x))p ≤ (2max(f(x), g(x)))p ≤ 2p (|f(x)|p + |g(x)|p) .

This shows that when f, g ∈ Lp(µ), we have f + g ∈ Lp(µ). Set F = |f + g|p−1, when the
triangle inequality followed by Hölder’s inequality gives

‖f + g‖pp ≤
∫
X
F (x)|f(x)| dµ+

∫
X
F (x)|g(x)| dµ ≤ ‖F (x)‖q‖f‖p + ‖F (x)‖q‖g‖p,

where q = 1− 1/p. Using (p− 1)q = p,

‖F (x)‖q =
(∫

X
|f(x) + g(x)|(p−1)q dµ

)1/q

=

(∫
X
|f(x) + g(x)|p dµ

)1−1/p

=
‖f + g‖pp
‖f + g‖p

.

This immediately gives the result.

Theorem 1.36. The spaces of functions Lp(µ) and L∞(µ) are complete metric spaces.
Remark. Two functions in such a space are identified if they are equal almost everywhere.

Corollary 1.36.1. Let fn → f in Lp(µ), where each fn ∈ Lp(µ), and 1 ≤ p ≤ ∞. Then,
there exists a subsequence {fnk

}k∈N such that fnk
→ f pointwise in C, almost everywhere

in X. Moreover, there exists h ∈ Lp(µ) such that |fnk
| ≤ h almost everywhere in X.
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Theorem 1.37. Let (X,M, µ) be a finite measure space, and let 1 ≤ p < q ≤ ∞. Then,
Lp(µ) ⊇ Lq(µ).

Proof. Set u = q/p > 1, v = 1− 1/u, whence

‖|f |p‖1 ≤ ‖|f |p‖u‖1‖v = ‖1‖v
(∫

X
|f |q dµ

)p/q

= µ(X)1/v‖f‖pq .

Thus,
‖f‖p = ‖|f |p‖1/q1 ≤ µ(X)1/p−1/q‖f‖q.

Example. Note that the map x 7→ 1/
√
x is in L1(0, 1), but not in L2(0, 1).

Example. Note that the map x 7→ 1/x(| log x| + 1)2 is in L1(0, 1), but not in any Lp(0, 1)
where p > 1.

Theorem 1.38. Let (X,M, µ) be a finite measure space. Then, L∞(µ) ⊆ Lp(µ) for all
1 ≤ p ≤ ∞, and

lim
p→∞

‖f‖p = ‖f‖∞.

Example. Consider the function

f : (0, 1) → R, x 7→ log x.

Then for 1 ≤ p <∞, we have

‖f‖pp =
∫
(0,1)

| log x|p dµ = lim
n→∞

∫
(0,1)

| log x|pχ(1/n,1) dµ.

The latter follows from the Monotone Convergence Theorem. Now, make the substitution
u = log x to evaluate the Riemann integral∫ 1

1/n
| log x|p dx =

∫ 0

− logn
|u|peu du =

∫ logn

0
upe−u du.

Indeed, the Monotone Convergence Theorem immediately shows that this converges to
Γ(p+1). Another way to show that this converges is to see that eu > uk/k!, upe−u ≤ k!up−k.
Choosing sufficiently large k so that k − p > 2, we have∫ logn

0
upe−u du ≤

∫ 1

0
du+ k!

∫ logn

1

1

u2
du = 1 + k!− k!

log n
.

Thus, we have
‖f‖pp =

∫
(0,1)

| log x|p dx ≤ 1 + k! <∞.

This shows that f ∈ Lp(µ) for all 1 ≤ p <∞. However, it is clear that f /∈ L∞(µ).
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Theorem 1.39. Let S be the set of all simple, measurable, complex valued functions which
are non-zero on a set of finite measure. Then, the closure of S in Lp(µ) is the whole of
Lp(µ), for 1 ≤ p <∞.

Theorem 1.40 (Lusin). Let f : Rn → C be measurable, and let A ⊆ Rn have finite measure,
with f = 0 on Rn\A. Given ε > 0, there exists a continuous function g on Rn with compact
support, such that

µ{x : f(x) 6= g(x)} < ε.

Moreover, g can be chosen such that

sup
x∈Rn

|g| ≤ ‖f‖∞.

Theorem 1.41. The set of all continuous functions on Rn with compact support is dense
in Lp(µ), for 1 ≤ p <∞.

Example. The set of all continuous functions on Rn with compact support is not dense
in L∞(µ); recall that the uniform limit of continuous functions is always continuous, i.e.
sequences of continuous functions can only converge to continuous functions in L∞(µ).
Instead, the closure of this set in L∞ consists of all continuous functions on Rn such such
given ε > 0, there exists compact K ⊂ Rn where |f | < ε on Rn \K.

Example. Let f ∈ L2[0, 1], and suppose that∫ 1

0
f(x)xn dx = 0

for all integers n ≥ 0. Then, f = 0 almost everywhere. To show this, note that we have∫ 1

0
f(x)(a0 + a1x+ · · ·+ anx

n) dx = 0,

∫ 1

0
f(x)p(x) dx.

for all polynomials p(x). By the Weierstrass Approximation Theorem, we have∫ 1

0
f(x)g(x) dx = 0

for all continuous functions h on [0, 1]. Now, f ∈ L2[0, 1], hence there exists a sequence of
continuous functions {hn}∞n=1 on [0, 1] so that hn → f in L2[0, 1]. By Cauchy-Schwarz,∣∣∣∣∫ 1

0
f(x)(hn(x)− f(x)) dx

∣∣∣∣ ≤ ‖f‖2 ‖hn − f‖2 → 0.
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Thus, ∫ 1

0
f2 dx = 0,

forcing f = 0 almost everywhere.

Theorem 1.42. The set of all smooth functions on Rn with compact support is dense in
Lp(µ), for 1 ≤ p <∞.

Theorem 1.43 (Egoroff). Let (X,M, µ) be a finite measure space, and let {fn}∞n=1 be a
sequence of complex measurable functions fn : X → C such that fn → f pointwise almost
everywhere on X. Then for every ε > 0, there exists E ⊆ X such that fn → f uniformly
on E and µ(X \ E) < ε.
Remark. The converse holds even without assuming µ(X) <∞.

Proof. Without loss of generality, let fn → f pointwise on X. Define

En,m =

∞⋂
i=n

{x ∈ X : |fi(x)− f(x)| < 1

m
}.

Then, each En,m ⊆ En+1,m. Furthermore, each fn(x) → f(x) forces each

∞⋃
n=1

En,m = X, lim
n→∞

µ(En,m) = µ(X).

Here, we have applied continuity from below. Let ε > 0. Thus, for each m, we can find Nm ∈ N
such that

µ(X)− µ(ENm,m) <
ε

2m
.

Relabel Em = ENm,m, and set

E =

∞⋂
m=1

Em, F = X \ E =

∞⋃
m=1

X \ Em, µ(F ) <

∞∑
m=1

ε

2m
= ε.

We claim that fn → f uniformly on E. Indeed, given any η > 0, we can find m ∈ N such
that mη > 1. Thus, for every x ∈ E ⊆ Em, we must have |fn(x) − f(x)| < 1/m < η for all
n ≥ Nm.

Example. Consider the counting measure on N, and the sequence of functions {fn}∞n=1

described by

fn : N → R, k 7→

{
1, if 1 ≤ k ≤ n,

0, otherwise.

Then, fn → 1 pointwise. Setting ε = 1/2, we demand fn → f uniformly on a set E with
µ(N \ E) < 1/2. This forces N \ E = ∅, i.e. E = N. However, the convergence fn → 1 is
not uniform on N.
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Example. Consider the sequence of functions {fn}∞n=1 described by

fn : [0, 1] → R, x 7→ xn.

Then, fn → χ{1} pointwise, and the convergence fn → 0 is uniform on every interval
[0, 1− δ] for δ > 0. However, we cannot have uniform convergence on any measure zero set.

Theorem 1.44. Let 1 ≤ p <∞, and let {fn}∞n=1 be a sequence of measurable functions on
[0, 1] such that fn → f pointwise and fn, f ∈ Lp(µ). Then, fn → f converges in Lp(µ) if
and only if ‖fn‖p → ‖f‖p.

Proof. First suppose that fn → f in Lp(µ), i.e. ‖fn − f‖p → 0. Now, Minkowski’s inequality
will show that

|‖fn‖p − ‖f‖p| ≤ ‖fn − f‖p,

hence we have ‖fn‖p → ‖f‖p by the Squeeze Theorem.
Next, suppose that ‖fn‖p → ‖f‖p. We first show that for α, β ∈ R,

(α+ β)p ≤ 2p−1(|α|p + |β|p).

Indeed, this follows immediately from the convexity of the map t 7→ |t|p and Jensen’s inequality,
whence (α/2 + β/2)p ≤ (|α|p + |β|p)/2. Thus,

|fn − f |p ≤ 2p−1|fn|p + 2p−1|f |p.

Now, |fn → f |p → 0 pointwise, and the right hand side of our inequality is in L1(µ). Thus, the
Dominated Convergence Theorem guarantees that

lim
n→∞

∫
[0,1]

|fn − f |p dµ =

∫
[0,1]

lim
n→∞

|fn − f |p dµ = 0.

Thus, ‖fn − f‖p → 0.

1.8 The Lebesgue measure

Definition 1.16. Let X be a set, and let P(X) denote its power set. We say that a function
µ∗ : P(X) → [0,∞] is called an outer measure if it satisfies the following.

1. µ∗(∅) = 0.
2. µ∗(A) ≤ µ∗(B) whenever A ⊆ B.
3.

µ∗

( ∞⋃
i=1

Ai

)
≤

∞∑
i=1

µ∗(Ai).

Example. Let ξ ⊆ P(X) such that ∅, X ∈ ξ, and let f : ξ → [0,∞] with f(∅) = 0. For
A ⊆ X, we may define

µ∗(A) = inf

{ ∞∑
i=1

f(Ei) : A ⊆
∞⋃
i=1

Ei, Ei ∈ ξ

}
.
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It can be verified that this is indeed an outer measure. The first property follows immedi-
ately, and the second follows from the fact that if A ⊆ B, all covers of B are also covers of
A. For the third, let

A =

∞⋃
i=1

Ai.

Then, for arbitrary ε > 0, we can choose Eij ∈ ξ such that

µ∗(Ai) +
ε

2i
≥
∑
j

f(Eij), Ai ⊆
⋃
j

Eij .

Now, the sets Eij all cover A, so

µ∗(A) ≤
∑
ij

f(Eij) ≤
∑
i

[
µ∗(Ai) +

ε

2i

]
=
∑
i

µ∗(Ai) + ε.

Since ε > 0 is arbitrary, we have the desired result,

µ∗(A) ≤
∑
i

µ∗(Ai).

Definition 1.17. A set A ⊆ X is called µ∗-measurable if for all E ⊆ X, we have

µ∗(E) = µ∗(E ∩A) + µ∗(E ∩Ac).

Remark. We need only check the ≥ direction, and we need only check sets E of finite outer
measure.

Theorem 1.45 (Carathéodory). Let X be non-empty with an outer measure µ∗, and let
M be the set of all µ∗-measurable subsets of X. Then, M forms a σ-algebra, and the
restriction of µ∗ to M is a measure µ. Moreover, µ is a complete measure.
Remark. A complete measure µ is such that given a measurable set A with µ(A) = 0, all
the subsets B ⊆ A are measurable, with µ(B) = 0.

Definition 1.18. Let ` be the length function for intervals in R. Extend this to an outer
measure m∗

1 as outlined previously, and use the Carathéodory Theorem to find a σ-algebra
L ⊂ P(R) and a complete measure m1 on L. Then, we call L the Lebesgue σ-algebra, and
m1 the Lebesgue measure on R. Note that

m∗
1(A) = inf

{ ∞∑
i=1

|bi − ai| : A ⊆
∞⋃
i=1

(ai, bi)

}
.

Remark. A similar process can be carried out using the volume function `n for rectangles
in Rn, yielding the Lebesgue σ-algebra Ln and the complete Lebesgue measure mn.
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Example. All singletons have Lebesgue measure zero. As a result, all countable sets also
have Lebesgue measure zero.

Theorem 1.46. We have the inclusion BR ⊂ L.
Remark. The restriction of m1 to BR is called the Borel measure mB.

Proof. It is enough to show that sets of the form A = (a,∞) ∈ L. Pick a subset E ⊆ R, and
suppose that {In}∞n=1 is a cover of E with intervals (an, bn). Then, by the property of infimums,

∞∑
n=1

`(In ∩ (a,∞)) + `(In ∩ (−∞, a)) ≥ m∗
1(E ∩A) +m∗

1(E ∩Ac)

However, each
`(In) ≥ `(In ∩ (a,∞)) + `(In ∩ (−∞, a)).

Thus, summing and taking infimums again,

m∗
1(A) ≥ m∗

1(E ∩A) +m∗
1(E ∩Ac),

proving that A is m∗
1 measurable, hence A ∈ L.

Theorem 1.47. Let E ⊆ R be Lebesgue measurable. Then,

m1(E) = inf{m1(U) : E ⊆ U, U is open},
= sup{m1(K) : K ⊆ E, K is compact}.

Remark. The above relations describe the Lebesgue measure as a limit of sorts of the Borel
measure.

Proof. For the first part, note that for any open set U such that E ⊆ U , we immediately have
m1(E) ≤ m1(U), hence

m1(E) ≤ inf{m1(U) : E ⊆ U, U is open}.

We now show the reverse inequality. Note that if m1(E) = ∞, this is trivial. Otherwise, m1(E)
is finite, hence for ε > 0 we can find an open cover {In}∞n=1 of E such that

m1(E) + ε ≥
∞∑
n=1

`((an, bn)) =

∞∑
n=1

m1(In) ≥ m1

( ∞⋃
n=1

In

)
.

Since U =
⋃∞

n=1 In is an open set with E ⊆ U , we are done.
Note that when m1(E) is finite, we have found open U such that E ⊆ U , and m1(U \E) < ε.

But U \E = U ∩Ec = Ec \U c, and U c ⊆ Ec. Relabelling, we have shown that given Lebesgue
measurable E ⊆ R, we can find a closed set F such that F ⊆ E, and m1(E \ F ) < ε.

For the next part, note that for any compact set K such that K ⊆ E, we immediately have
m1(E) ≥ m1(K), hence

m1(E) ≥ sup{m1(K) : K ⊆ E, K is compact}.

24 Updated on May 7, 2022



MA3203: Analysis IV 1 MEASURE THEORY

We now show the reverse inequality. First, consider the case where E is bounded, so m1(E)
is finite. If E is closed, it is also compact, hence the result is trivial. Otherwise, the inclusion
E ⊂ E is strict, hence E \ E is non-empty and open. This gives

m1(E \ E) = inf{m1(U) : E \ E ⊆ U,U is open}.

Thus for ε > 0, there exists open U such that E \ E ⊆ U and

m1(E \ E) + ε ≥ m1(U), m1(E)− ε ≤ m1(E \ U).

Note that we could perform this rearrangement since the sets E,E,U all have finite measure.
This, we have found a suitable compact set K = E \ U with E ⊆ K, hence we are done.

If E is unbounded and m1(E) = ∞, set En = E ∩ [n, n + 1), whence E =
⋃

n∈ZEn. Now
the En are bounded, measurable, and disjoint. For ε > 0, find compact sets Kn such that each

m1(En)−
ε

3 · 2|n|
≤ m1(Kn).

Set
En =

⋃
−n≤i≤n

En, Kn =
⋃

−n≤i≤n

Ki

Note that each Kn is compact. Summing our inequality gives

m1(E
n)− ε ≤ m1(K

n).

Continuity from below gives
m1(E) = lim

n→∞
m1(E

n).

Thus, if m1(E) = ∞, we have m1(K
n) → ∞ with each Kn ⊆ E and Kn compact, hence we are

done.
Otherwise, m1(E) is finite. Find open U such that E ⊆ U , m1(U \ E) < ε/3. Setting

Un = U ∩ (−n, n), we have

U =

∞⋃
n=1

Un, m1(U) = lim
n→∞

m1(U
n),

hence m1(U \ Um) < ε/3 for sufficiently large m. This in turn gives m1(E \ Um) < ε/3. Next,
since m1(E), m1(U

m) are finite, we can find closed sets F1, F2 such that F1 ⊆ E, F2 ⊆ Um, and
m1(E \F1) < ε/3, m1(U

m \F2) < ε/3. Furthermore, F2 is closed and bounded, hence compact.
Set K = F1 ∩ F2, which is closed and bounded hence compact. Now, K ⊆ E, and

E \K ⊆ (E \ Um) ∪ (E \ F1) ∪ (Um \ F2).

This immediately gives m1(E \K) < ε, or m1(E)− ε < m1(K), hence we are done.

Corollary 1.47.1. If E ⊆ R is Lebesgue measurable and ε > 0, then there exists an open
set U such that E ⊆ U and m1(U \ E) < ε.

Proof. We have already dealt with the case where m1(E) is finite. Otherwise, set En = E ∩
[n, n+ 1); each of these has finite measure, hence we can find open sets Un such that En ⊆ Un

and m1(Un \ En) < ε/3 · 2|n|. Set U =
⋃

n∈Z Un, whence U is open with E ⊆ U and

m1(U \ E) ≤
∑
n∈Z

m1(Un \ En) < ε.
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Corollary 1.47.2. If E ⊆ R is Lebesgue measurable with m1(E) < ∞ and ε > 0, then
there exists a compact set K such that K ⊆ E and m1(E \K) < ε.

Example. Note that we cannot necessarily find open sets U with U ⊆ E, or closed sets F
with E ⊆ K such that the differences have arbitrarily small measure. Note that the set
Qc of irrationals has empty interior although m1(Qc) = ∞, and the closure of the set Q of
rationals is the entirety of R although m1(Q) = 0.

Example. If U ⊆ R is Lebesgue measurable and non-empty, then m1(U) > 0. This is
because the non-empty open set U must contain a basic open interval of the form (a, b) ⊆ U ,
hence m1(U) ≥ m1((a, b)) = b− a > 0.

Example. If E ⊆ R is Lebesgue measurable with m1(E) = 0, then Ec = R. To see this, pick
x ∈ R and an open neighbourhood (x− δ, x+ δ). If (x− δ, x+ δ) ∩Ec = (x− δ, x+ δ) \E
were empty, that would force (x− δ, x+ δ) ⊆ E, hence m1(E) ≥ 2δ > 0, a contradiction.

Theorem 1.48. A set E ⊆ R is Lebesgue measurable if and only if we can write

E = G \N1 = F ∪N2,

where G is a Gδ set, F is an Fσ set, and N1, N2 have measure zero.
Remark. A Gδ set is a countable intersection of closed sets, and an Fσ set is a countable
union of open sets.

Proof. Let E ⊆ R be Lebesgue measurable. Then, we can find a sequence of open sets {Un}∞n=1

such that each E ⊆ Un and m1(Un \ E) < 1/n. Set

G =

∞⋂
n=1

Un, m1(G \ E) ≤ m1(Un \ E) <
1

n
.

This forces m1(G \ E) = 0. Thus, we write E = G \ (G \ E).
Next, we can find a sequence of closed sets {Fn}∞n=1 such that each Fn ⊆ E and m1(E\Fn) <

1/n. Again, set

F =
∞⋃
n=1

Fn, m1(E \ F ) ≤ m1(E \ Fn) <
1

n
.

This forces m1(E \ F ) = 0. Thus, we write E = F ∪ (E \ F ).

Corollary 1.48.1. Given any Lebesgue measurable set E ⊆ R, we can find Borel measurable
sets F,G such that F ⊆ E ⊆ G, and m1(G \ F ) = 0.
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Theorem 1.49. Let (X,M, µ) be a measure space. Then, there exists an extended σ-algebra
M̄ and an extended measure µ̄ such that µ̄ is a complete measure. Furthermore,

M̄ = {S ∪N : S ∈ M, N ⊆ N ′, µ(N) = 0},

and
µ̄(S ∪N) = µ(S).

Theorem 1.50. The completion of the Borel measure space (R,BR,mB) is the Lebesgue
measure space (R,L,m1).

Lemma 1.51. If E ⊆ R is Lebesgue measurable, so are the translations x + E and the
dilations rE. Moreover,

m1(x+ E) = m1(E), m1(rE) = |r|m1(E).

Example. The Cantor set defined as

C = [0, 1] \
∞⋃
n=0

3n−1⋃
k=0

(
3k + 1

3n+1
,
3k + 2

3n+1

)
,

or equivalently

C =

∞⋂
n=1

Cn, Cn =

3n−1⋃
k=0

([
3k

3n
,
3k + 1

3n

]
∪
[
3k + 2

3n
,
3k + 3

3n

])
is compact, and uncountable. Indeed it is Borel measurable, hence Lebesgue measurable
with m1(C) = 0.

Example. Consider R as an additive group, and examine the quotient group R/Q. Pick
exactly one representative element from each coset, ensuring that it belongs to the interval
[0, 1], and call this set V. This is a Vitali set, and it it not Lebesgue measurable. To see this,
suppose that it were. Enumerate the rationals in [−1, 1] as {qi}i∈N, and set Vi = qi+V. Note
that each Vi must also be Lebesgue measurable, with m1(Vi) = m1(V) due to translation
invariance. We claim that

[0, 1] ⊆
∞⋃
i=1

Vi ⊆ [−1, 2].

To see the former inclusion, pick arbitrary x ∈ [0, 1]. Then, x must belong to one of the
cosets of R/Q, say r+Q with r ∈ V. Thus, x− r ∈ Q, but −1 ≤ x− r ≤ 1 hence x− r = qi
for some i ∈ N. It immediately follows that x = qi + r ∈ qi + V = Vi.

Our set of inclusions implies that

m1([0, 1]) ≤
∞∑
i=1

m1(Vi) ≤ m1([−1, 3]).
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Thus, 1 ≤
∑∞

i=1m1(V) ≤ 3, which is absurd.
Remark. The construction of V invokes the Axiom of Choice.

Lemma 1.52. The following inclusions are strict.

BR ⊂ L ⊂ P(R).

Remark. The Borel σ-algebra has the cardinality of the continuum, c. However, note that
the uncountable Cantor set C is Lebesgue measurable withm1(C) = 0, hence all of its subsets
are also Lebesgue measurable. This shows that the Lebesgue σ-algebra has cardinality 2c,
strictly greater than that of the Borel σ-algebra.

Theorem 1.53. If E ⊆ R is Lebesgue measurable with m1(E) > 0, then E contains a
non-measurable subset.

Proof. First, we show that any measurable subset of a Vitali set V has measure zero. Indeed if
A ⊆ V is Lebesgue measurable, then set Ai = qi +A for all rationals qi ∈ [−1, 1]. Furthermore,
the sets Ai are all mutually disjoint. From Ai ⊆ [−1, 2], we have

∞∑
i=1

m1(A) =

∞∑
n=1

m1(Ai) ≤ 3,

hence m1(A) = 0.
Now, let E ⊆ [0, 1] be Lebesgue measurable, and m1(E) > 0. Then, if all the sets Ei = E∩Vi

were to be measurable, each m1(Ei) = 0 hence the union

m1(E) = m1

( ∞⋃
i=1

Ei

)
= 0,

a contradiction. Thus, at least one of the Ei must be non-measurable.
Finally, given E ⊆ R Lebesgue measurable with m1(E) > 0, we must have some m1(E ∩

[n, n+1)) > 0, whence we apply the same argument on the shifted set (E ∩ [n, n+1))− n.

Corollary 1.53.1. Let E ⊆ R be Lebesgue measurable, such that all of its subsets are also
Lebesgue measurable. Then, m1(E) = 0.

1.9 Product measures

Definition 1.19. Let (X,M, µ) and (Y,N , ν) be measure spaces.

1. The sets A×B with A ∈ M, B ∈ N are called measurable rectangles.
2. Finite unions of disjoint measurable rectangles are called elementary sets.
3. Let E be the collection of all elementary rectangles. The product σ-algebra M×N

is the σ-algebra generated by E .
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Definition 1.20. A collection A ⊆ P(X) is called a monotone class if the following hold.

1. Given {An}n∈N with each An ∈ A and An ⊆ An+1, the union

A =

∞⋃
n=1

An ∈ A.

2. Given {Bn}n∈N with each Bn ∈ A and Bn ⊇ Bn+1, the intersection

B =

∞⋂
n=1

Bn ∈ A.

Definition 1.21. The smallest monotone class containing a collection S of subsets of X is
called the monotone class generated by S, denoted A(S).

Lemma 1.54. Given a collection S of subsets of X, we have

S ⊆ A(S) ⊆ M(S) ⊆ P(X).

Definition 1.22. A collection F ⊆ P(X) is called an algebra over X if the following hold.

1. F contains X.
2. F is closed under complementation.
3. F is closed under finite unions.

Remark. The following properties follow immediately.

1. F contains ∅.
2. F is closed under finite intersections.
3. F is closed under differences.

Example. The collection of elementary sets E defined earlier forms an algebra over X × Y .

Theorem 1.55 (Monotone Class Theorem). If F is an algebra of sets over X, then
A(F) = M(F). In other words, the monotone class generated by F is precisely the σ-
algebra generated by F .

Proof. For each P ∈ F , define

AP = {Q ∈ A(F) : P ∪Q,P \Q,Q \ P ∈ A(F)}.
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We claim that each AP is a monotone class. Indeed, let {Qn}n∈N be an increasing sequence in
AP , and let Q be their union. Then, {P ∪ Qn}n∈N, {Qn \ P}n∈N are increasing sequences in
A(F), hence

P ∪Q =
⋃
n∈N

P ∪Qn ∈ A(F), Q \ P =
⋃
n∈N

Qn \ P ∈ A(F).

Also, {P \Qn}n∈N is a decreasing sequence in A(F), hence

P \Q =
⋂
n∈N

P \Qn ∈ A(F).

This shows that the union Q ∈ AP . The case for decreasing sequences is analogous.

Now, note that given P,Q ∈ F , we have P ∪Q,P \Q,Q \ P ∈ F ⊆ A(F). Thus, Q ∈ AP ,
P ∈ AQ. This shows that F ⊆ AP ,AQ, so A(F) ⊆ AP ,AQ.

Next, for P,Q ∈ A(F), we have P ∈ AQ, so P ∪Q,P \Q ∈ AQ ⊇ A(F). This is enough to
show that A(F) is an algebra.

Finally, let {En}n∈N be a countable collection of sets from A(F). Since the latter is an
algebra, the finite unions

Fn =

n⋃
i=1

Ei ∈ A(F).

Now, {Fn}n∈N is an increasing sequence in A(F), so⋃
n∈N

En =
⋃
n∈N

Fn ∈ A(F).

This shows that A(F) is a σ-algebra containing F , so M(F) ⊆ A(F). Thus, A(F) = M(F).

Corollary 1.55.1. The monotone class generated by the algebra of elementary sets E is
the product σ-algebra M×N .

Theorem 1.56. Let E ⊆ M×N . Define the sections

Ex = {y ∈ Y : (x, y) ∈ E}, Ey = {x ∈ X : (x, y) ∈ E}.

Then, Ex ∈ M, Ey ∈ N .

Proof. Let
Ω = {E ∈ M×N : Ex ∈ M for all x ∈ X} ⊆ M×N .

Note that Ω trivially contains all measurable rectangles, hence we have E ⊆ Ω. We claim that
Ω is a σ-algebra, whence M(E) ⊆ Ω forces Ω = M × N . To show this, first we clearly have
X × Y ∈ Ω. Next given E ∈ Ω, we have Ex ∈ N , hence

(Ec)x = {y ∈ Y : (x, y) ∈ Ec}
= {y ∈ Y : (x, y) /∈ E}
= Y \ {y ∈ Y : (x, y) ∈ E}
= Y \ Ex

30 Updated on May 7, 2022



MA3203: Analysis IV 1 MEASURE THEORY

gives (Ec)x = (Ex)
c ∈ N . Finally, if {Ei}i∈N are such that Ei ∈ Ω, then each (Ei)x ∈ N , hence( ∞⋃

i=1

Ei

)
x

= {y ∈ Y : (x, y) ∈
∞⋃
i=1

Ei}

=

∞⋃
i=1

{y ∈ Y : (x, y) ∈ Ei}

=

∞⋃
i=1

(Ei)x

gives (
⋃∞

i=1Ei)x =
⋃∞

i=1(Ei)x ∈ N .

Theorem 1.57. Let Z be a topological space, and let f : X × Y → Z be (M × N ,BZ)
measurable. Define the sections

fx : Y → Z, y 7→ f(x, y),

fy : X → Z, x 7→ f(x, y).

Then, fx, fy are measurable functions.

Proof. Let U ⊆ Z be open. Then, E = f−1(U) ∈ M×N by the measurability of f . It can be
shown that f−1

x (U) = Ex ∈ N and f−1
y (U) = Ey ∈ M, hence fx, fy are indeed measurable.

Definition 1.23. A measure space (X,M, µ) is called σ-finite if X can be written as the
countable, disjoint union of measurable sets of finite measure.

Definition 1.24. Let (X,M, µ) and (Y,N , ν) be σ-finite measure spaces. The product
measure on M×N is defined as

(µ× ν)(E) =

∫
X
ν(Ex) dµ =

∫
Y
µ(Ey) dν.

Lemma 1.58. The product measure is well-defined, and is indeed a measure on M×N .

Example. Consider X = [0, 1] with the Lebesgue measure, and Y = [0, 1] with the counting
measure. Set D = {(x, x) : x ∈ [0, 1]}, whence∫

X
ν(Dx) dµ =

∫
[0,1]

1 dµ = 1,

∫
Y
ν(Dy) dν =

∫
[0,1]

0 dµ = 0.
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Example. The product measure obtained from two complete measure spaces may not be
complete. Consider the product m1 ×m1 on [0, 1] × [0, 1], and the set {0} × [0, 1]. This
clearly has zero measure, but the subset {0} × V is not L × L measurable; if it were, the
section V would have to be Lebesgue measurable.

This shows in particular that m1 × m1 6= m2, where m2 is the Lebesgue measure
defined on R2 (via the Carathéodory process). However, it is true that the completion
m1 ×m1 = m2.

Theorem 1.59 (Fubini-Tonelli). Let (X,M, µ) and (Y,N , ν) be σ-finite measure spaces,
and let f : X × Y → C be measurable.

1. Let f ≥ 0. Then the functions

ϕ : X → [0,∞], x 7→
∫
Y
fx dν,

ψ : Y → [0,∞], y 7→
∫
X
fy dµ

are measurable, and ∫∫
X×Y

f d(µ× ν) =

∫
X
ϕ dµ =

∫
Y
ψ dν.

2. If f ∈ L1(µ× ν), then ϕ ∈ L1(µ), ψ ∈ L1(ν), and∫∫
X×Y

f d(µ× ν) =

∫
X
ϕ dµ =

∫
Y
ψ dν <∞.

Remark. If f : X × Y → C is measurable, we have |f | ≥ 0 measurable, hence

ϕ∗ : X → [0,∞], x 7→
∫
Y
|fx| dν,

ψ∗ : Y → [0,∞], y 7→
∫
X
|fy| dµ

measurable. This immediately gives∫∫
X×Y

|f | d(µ× ν) =

∫
X
ϕ∗ dµ =

∫
Y
ψ∗ dν.

If either ∫
X
ϕ∗ dµ <∞,

∫
Y
ψ∗ dν <∞,

we obtain f ∈ L1(µ× ν), and can use part 2.
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Corollary 1.59.1. Let {amn}(m,n)∈N×N be a doubly-indexed sequence.

1. If each amn ≥ 0, then
∞∑

m=1

∞∑
n=1

amn =
∞∑
n=1

∞∑
m=1

amn.

2. If each amn ∈ C but either
∞∑

m=1

∞∑
n=1

|amn| <∞,
∞∑
n=1

∞∑
m=1

|amn| <∞,

then the interchange of summations can be performed as in part 1.

Example. Consider the sequence defined as

amn =


1, if m = n,

−1, if m+ 1 = n,

0, otherwise.

Then,
∞∑

m=1

∞∑
n=1

amn = 0,

∞∑
n=1

∞∑
m=1

amn = 1.

Theorem 1.60. Let (X,M, µ) be a finite measure space and let f : X → C be measurable.
Set

E(t) = {x ∈ X : |f(x)| > t},

and define the distribution function of f as

F : [0,∞) → [0,∞], t 7→ µ(E(t)).

Then, ∫
[0,∞)

F dm1 =

∫
X
|f | dµ.

Proof. Using Fubini-Tonelli, write∫
[0,∞)

F dm1 =

∫
[0,∞)

∫
X
χE(t)(x) dµ(x) dm1(t) =

∫
X

∫
[0,∞)

χE(t)(x) dm1(t) dµ(x).

Now, note that

χE(t)(x) = χ[0,|f(x)|)(t) =

{
1, if |f(x)| > t,

0, otherwise.

Thus, ∫
[0,∞)

F dm1 =

∫
X

∫
[0,∞)

χ[0,|f(x)|)(t) dm1(t) dµ(x) =

∫
X
|f(x)| dµ(x).
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Theorem 1.61. Let

Φ: Rn \ {0} → (0,∞)× Sn−1, x 7→ (‖x‖, x/‖x‖).

This is clearly a homeomorphism. Define the measure

m′
n : B(0,∞)×Sn−1 → [0,∞], E 7→ mn(Φ

−1(E)).

Then, there exists a measure ρ on (0,∞) and a surface measure σ on Sn−1 such that m′
n

factors as the product
m′

n = ρ× σ.

Furthermore,
ρ : B(0,∞) → [0,∞], E 7→

∫
E
rn−1 dm1(r),

and
σ : BSn−1 → [0,∞], F 7→ n ·mn{rx : x ∈ F, 0 ≤ r ≤ 1}.

Lemma 1.62. If f : Rn → C is Borel measurable, and either f ≥ 0 or f ∈ L1(mn), then∫
Rn

f dmn =

∫
(0,∞)

∫
Sn−1

f(rx̂) rn−1 dσ(x̂) dm1(r).

Furthermore, if f is radial, i.e. f(x) = g(|x|) for some g : (0,∞) → C, then∫
Rn

f dmn = σ(Sn−1)

∫
(0,∞)

g(r) rn−1 dm1(r).

Example. Consider the integrals

In =

∫
Rn

e−‖x‖2 dmn.

For n = 2, we can apply the polar formula to write

I2 = σ(S1)

∫ ∞

0
e−r2r dr = π.

Note that we have used σ(S1) = 2m2(B
2) = 2π. Now, by repeated application of Fubini-

Tonelli, we have

In =

∫
R
· · ·
∫
R︸ ︷︷ ︸

n times

e−
∑n

i=1 x
2
i dm1 . . . dm1︸ ︷︷ ︸

n times

=
n∏

i=1

∫
R
e−x2

i dm1(xi) = In1 .

Thus, I2 = π gives I1 =
√
π, hence In = πn/2. The polar formula also gives

In = σ(Sn−1)

∫ ∞

0
e−r2rn−1 dx.
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Making the substitution r = x2 yields

πn/2 = σ(Sn−1) · 1
2

∫ ∞

0
e−uun/2−1 du =

1

2
σ(Sn−1) Γ

(n
2

)
.

Thus,

σ(Sn−1) =
2πn/2

Γ(n/2)
.

Using σ(Sn−1) = nmn(B
n), we have the volume of the unit n-ball

mn(B
n) =

πn/2

(n/2)Γ(n/2)
=

πn/2

Γ(n/2 + 1)
.

Putting n = 1, m1(B
1) = 2, we compute Γ(1/2) =

√
π.
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