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1 Measure theory

1.1 Introduction

Measure theory seeks to generalize the notions of length, area, volume to more general sets:
this new notion is called a measure. This also allows us to generalize the notion of Riemann
integration to a broader class of functions.

Recall that continuous functions, or at least functions with finitely many discontinuities
on a closed interval are Riemann integrable. The Dirichlet function, which is discontinuous
everywhere, is not.

1, ifzeqQ,

0, ifxzégQ.

This is simply because every non-empty interval contains at least one rational and one irrational
number, so the Darboux lower sum is always 0 and the upper sum is always 1 regardless of the
choice of partition.

On the other hand, if we had to assign a particular value to this integral, intuition tells us
that it ought to be zero. After all, the function f attains a non-zero value only on the countable
set QN [0, 1]; it is zero almost everywhere. Formally, we will show that f is non-zero on a set
of zero Lebesgue measure, which will allow us to set this Lebesgue integral to zero. We will

T R—=>R, :Ul—){
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see that with this new formulation of integration, we end up partitioning the range of f rather
than it’s domain, and write

[ =0 u0 @+ 1 ul0. 10 Q) =0

Theorem 1.1 (Lebesgue criterion). A function f: [a,b] — R is Riemann integrable if and
only if it is bounded and its set of discontinuities has Lebesque measure zero. This means
that the set of discontinuities of f must be coverable by countably many intervals (z;,y;)
such that the sum of lengths y; — x; can be made arbitrarily small.

1.2 Basic definitions

Definition 1.1. Let X be a set, and let M be a collection of subsets of X. We say that
M is a g-algebra over X if it satisfies the following.

1. M contains X.
2. M is closed under complementation.

3. M is closed under countable unions.

Remark. The first condition can be replaced by forcing M to be non-empty.

Remark. The following properties follow immediately.

1. M contains 0.
2. M is closed under countable intersections.

3. M is closed under differences.

Example. Given a set X, its power set forms a o-algebra over X.
Ezample. Given a set X, the set {0}, X} forms a o-algebra over X.

Ezample. Given an uncountable set X, the following set forms the co-countable o-algebra
over X.
{FE C X : E is countable or E° is countable}.

Definition 1.2. Let X be a set, and let M be a g-algebra over X. We say that a function
p: M — RU{—00,+00} is called a measure if it satisfies the following.

1. p is non-negative.
2. (@) =o0.

3. u is additive over countable unions of disjoint sets, i.e. for any countable collection
{E;}?2, such that E; N E; = for all pairs, we have

I (U Ez) = ZM(Ez’)-
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Ezxample. The trivial zero measure sends every set to zero.

Ezxample. In probability theory, we look at the event space £ as a og-algebra over the sample
space ). The probability function P is a measure on this event space such that P(Q2) = 1.

Ezxample. Let X be a set, and let M be its power set as a g-algebra over X. Fix g € X,

and define
1, ifxg€F,

: M — [0, 0], E
a [ ] {0, ifxogéE.

This is called the Dirac measure.

Ezample. Let X be a set, and let M be its power set as a g-algebra over X. Define

0, if £ =10,
p: M — [0, 00, E— ¢ |E|, if E is finite,
00, otherwise.

This is called the counting measure.

Ezample. Let X be an uncountable set, and let M be its co-countable sigma algebra. Define

0, if £ is countable,

1, if E°is countable.

w: M — [0, 00], E'—>{

Definition 1.3. Let (X, M, i) be a measure space.

1. We say that p is finite if p(E) is finite for all £ € M.
2. We say that p is o-finite if given F € M, we can write

D
E:UE
=1

for E; € M such that each u(FE;) is finite.

1.3 Basic properties

Lemma 1.2. Let (X, M, ) be a measure space. Then, the following properties hold.

1. If A, B € M such that A C B, then u(A) < u(B).
2. If A, B € M such that A C B and u(A) is finite, then u(B — A) = u(B) — u(A).
3. If {E;}32, such that E; € M, then

u@J&)S}ZME)
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Corollary 1.2.1. A measure p is finite if and only if u(X) is finite.

Theorem 1.3 (Continuity from below). Let (X, M, p1) be a measure space, and let {E;}°,
be a sequence of measurable sets such that E; C Ej for all i < j. Then,

o0
I <U Ez) = lim p(Ey).
=1

Proof. Define F; = E; — E;_1, denoting Ey = (). Thus,

p ( Ez) =p (U Fz) =) u(F).
i=1 i=1 i=1

Also note that

Since the infinite sum in the first part is the limit of partial sums, we have our result. O

Theorem 1.4 (Continuity from above). Let (X, M, u1) be a measure space, and let { E;}3°,
be a sequence of measurable sets such that E; O Ej for all i < j. Further assume that ji(Eh)

is finite. Then,
0
u <ﬂl E) = lim u(E,).

Proof. Define F; = Ey — E,, and note that F; C F} for all « < j. Thus,
[o.¢]
Z (U F) = g, ()
i=1

This can be rewritten as
o0
m <E1 -N E) = lim (B — Ey).
i=1

Using the subtractive property and the fact that each p(E;) is finite,

o0

p(Er) — p (ﬂ E> = lim p(Er) — p(En).

=1

Pulling the constant p(E7) out from the limit and subtracting from both sides gives our result.
O

Ezample. Consider the counting measure p on (N, P(N)), and define E,, = {n,n+1,...}.

Then,
o
1 (q EZ> =0, nh—>Holo w(Ey,) = oo.
1=
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1.4 The Borel o-algebra

Theorem 1.5. Let X be a set, and let S be a collection of subsets of X. Then, there exists
a smallest o-algebra containing S. This is called the o algebra generated by S, denoted

M(S).

Proof. Let Q be the collection of all o-algebras on X containing S. Note that  # (), since it
contains the power set of X. Consider the intersection of all the sigma algebras in €2,

M= () M.
MHLEQ

We claim that M is indeed a o-algebra. To see this, first note that X € M. Next, pick
E € M C Mj, so E¢ € M, for all My € , hence E° € M. Finally, pick {E;}3°, where
E; € M C M, which shows that the union of these F; is in every M, hence in M. O

Definition 1.4. Let (X, 7) be a topological space. The o algebra generated by 7 is called
the Borel o-algebra, Bx = M(1).

Remark. The Borel o-algebra Bx contains all open as well as all closed sets in X, as well
as their countable unions and intersections.

Theorem 1.6. Consider the collection B of open intervals in R, and the standard topology
7 on R. Then, both B and T generate the same Borel o-algebra Br.

Proof. This relies on the fact that every open set U C R can be written as a countable union of
open intervals. To see this, pick € U, and an open interval € (a,b) C U. Now pick p,q € Q
such that a < p < z < ¢ < b, hence x € (p,q) C U. Now, U is precisely the union of all such
intervals (p,q). This collection is countable, due to the countability of the rationals. O

Remark. The same holds if we consider the collection 5’ of closed intervals in R. This can be
shown using the standard trick

o)

(a.) = | [%i,b-ﬂ.

n=1

Indeed, we may also consider the collection of intervals of the form [a,b), or the collection of
intervals (a,b], or even the collection of intervals (a, o), or (—00,b), or [a,o0), or (—oc, b).

Definition 1.5. A countable union of closed sets is called an F, set. A countable intersec-
tion of open sets is called a Gy set.

5 Updated on May 7, 2022



MA3203: ANALYsIs IV 1 MEASURE THEORY

1.5 Measurable functions

Definition 1.6. Let (X, Mx), (Y, My) be measure spaces. We say that a function f: X —
Y is (My, My) measurable if for every E € My, we have f~1(E) = M.

Ezxample. Consider the Borel o-algebra Bg on R, and fix E € Br. Define the characteristic

function
1, ifzek,

:R— R, T
X {o, its ¢ B

Then, xg is measurable. However, we can choose F to be closed and not open, so that xg
is not continuous.

Lemma 1.7. Let f: (X, Mx) — (Y, My), and let My be generated by S. Then f: X —Y
is measurable if for every E € S, we have f~'(E) € Mx.

Proof. Define
M={ECY:fYE)e Mx}.

Clearly, S € M. We now claim that M is a o-algebra over Y. First, Y € M since f~1(Y) =
X € Mx. Next if E € M, we have f~1(E°) = f~1(E)° € Mx. Finally, if {E;}°, such that
each E; € M, set E to be their union, whence

i E = B em
=1

Thus, M is indeed a o-algebra. Since S generates My, we have My C M, completing the
proof. O

Ezample. A function f: X — R is measurable if and only if f~!((a,00)) is measurable for

all a € R.

Theorem 1.8. Let f: X — Y be continuous. Then, f is (Bx,By) measurable.

Lemma 1.9. The composition of measurable functions is measurable. In other words,
if f+(X,Mx) — (Y, My) is surjective and (Mx, My) measurable, and g: (Y, My) —
(Z,Mz) is (My, Myz) measurable, then go f is (Mx, Myz) measurable.

Lemma 1.10. Let u,v: (X, M) — (R, Br) be (M, Bgr) measurable. Then, f: (X, M) —
(R2, Bg2), defined by x — (u(z),v(z)), is (M, Bg2) measurable.

Proof. Basic open sets in R? can be chosen as the open rectangles (a,b) x (c,d). The pre-image
of such an open set under f is u='((a,b)) Nv~!((c,d)), which is clearly a measurable set in
X. O

6 Updated on May 7, 2022
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Corollary 1.10.1. Let f,g: (X,M) — (R,Bgr) be (M, Bgr) measurable. Then the sum
[+ g and the product f - g are also (M, Bgr) measurable.

Proof. The maps (x,y) — = + y and (x,y) — zy are continuous, hence measurable. Thus, the
composite maps = — (f(x),g(x)) — f(z) + g(z) and = — (f(z),g(x)) — f(x)g(x) are also
measurable. O

Ezample. Let (X, M) be a measurable space, and let Ay,..., A, € M. Then the map
s: X =R,z Y axa (@)
i=1

is measurable. Such functions are called simple functions.

Lemma 1.11. The maximum and minimum of measurable functions are measurable.

Corollary 1.11.1. The positive and negative parts of a measurable function are measurable.

Remark. Recall that

f*zmax{f,O}, fﬁl:_min{.ﬂo}? f:er_fi-

Thus, in order to show that a result holds for all measurable functions, it suffices to show
the result only for all non-negative measurable functions.

Theorem 1.12. Let {f,,}°2 be a collection of measurable functions f,: X — RU{—o00, +00}.
Then, their supremum and infimum are measurable.

Theorem 1.13. Let {f,}>2, be a sequence of measurable functions fp: X — R. Then,
limsup,, .o fn and liminf, . fn are measurable.

Theorem 1.14. Let {f,}5°, be a sequence of measurable functions fn: X — R, and let
fn — f pointwise on X. Then, f is measurable.

Remark. This is a stronger result than the corresponding one regarding limits of continuous
functions.

1.6 Lebesgue integration

7 Updated on May 7, 2022



MA3203: ANALYsIs IV 1 MEASURE THEORY

Theorem 1.15. Let f: X — [0, 00| be measurable. Then, there exists a sequence of simple
functions sp: X — [0,00) such that

for alln e N, and s, — f.

Corollary 1.15.1. Any measurable function f: X — [—o00, 00| can be written as the limit
of a sequence of simple functions {s,}7>;, with s, — f.

Definition 1.7. When dealing with the extended reals in measure theory, we use the
convention 0-oco =00-0=0.

Remark. We want to have

/Owo =0+ u(f~1(0)) = 0- ([0, 00)) = 0.

Definition 1.8. Let (X, M, u) be a measure space, and let s: X — [0,00) be a simple,
measurable function, of the form

n
SZZOL’XA“ A, e M
i=1

where cy,...,c, are distinct values of s. Then, the Lebesgue integral of s on F € M is
defined as

n

/Esdu:Zci-,u(EﬂAi).

=1

FEzample. The Dirichlet function is the simple function xg. Thus, upon assigning a o-
algebra and a measure i on R, we will be able to assign its Lebesgue integral on R as the

value p(Q).

Definition 1.9. Let (X, M, 1) be a measure space, and let f: X — [0, 00) be a measurable
function. Then, the Lebesgue integral of f on E € M is defined as

/ fdu =sup {/ s du, for all simple functions s, where 0 < s < f} .
E E

8 Updated on May 7, 2022
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Theorem 1.16. Let f,g: X — [0, 00| be measurable functions.

Jran< [ gan
Jraus | o
[etu=c[ san
| tan=o.
| tan=o.

1. If0 < f < g, then
2. If A C B, then

3. For c e R,

4. If f =0, then

5. If wW(E) =0, then

Definition 1.10. We say that a statement is true almost everywhere on X if it is true
everywhere on X \ E for a measure zero set E.

Lemma 1.17. Let f: X — [0,00] be a measurable function. If

Léfdﬂz&

then f =0 almost everywhere.

Proof. We wish to show that the set E = f~1(0, 00] has measure zero. Now, note that this is
the union of the measurable sets E, = f~!(1/n,00]. Since E, C E C X, we have

1
/Wﬁ/f@é/fw
E, T En X

1
osnmEn)g/ fdp <0,

n

However, this is just

hence each p(E,) = 0. Continuity from below gives u(E) = 0. O

Lemma 1.18. Let (X, M,u) be a measure space, and let s: X — R be a non-negative
simple function. Define

Z/(E):/sd,u, Ee M.
E

Then, v is a measure on M.

9 Updated on May 7, 2022
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1.6.1 Monotone convergence

Theorem 1.19 (Monotone convergence). Let {f,}>° be a sequence of non-negative mea-
surable functions fn: X — R, such that fn, < fnt1, and f, — f pointwise. Then,

lim fndp = / fdu.
X X

n—0o0
Lemma 1.20. Let f,g: X — R be measurable functions. Then, f + g is measurable.

Theorem 1.21. Let {f,}>2, be a sequence of non-negative measurable functions fn: X —
R. Define

FiXoR f@)=) fala)
n=1

Then, f is measurable and

/deu=§l/xfndu-

Theorem 1.22 (Fatou). Let {f,}5°; be a sequence of non-negative measurable functions
fn: X = R. Then,

/ liminf f, dy < lim inf/ fn dp.
X n—oo X

n—oo

Corollary 1.22.1. If f, — f, then

/ fdu< liminf/ fn du.
X n—0oQ X

Corollary 1.22.2. If f,, — f and each 0 < f,, < f, then

/ fdu= liminf/ fn dp.
X n—oo X

Ezample. Consider the functions f, = X[n+1)- Now, f, — 0 pointwise, but the Lebesgue
integrals of f, are all 1.

10 Updated on May 7, 2022
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Lemma 1.23. Let {a;j}ijen be sequences of non-negative terms. Then,

Proof. Define f;(j) = a;j, and f =), f;. Using the counting measure,

/fi dp = § .
N -

J
Also,

f(j)zzaij, ZzaijZZf(j):/NfdMZZ/NfidMZZZGU- D

Theorem 1.24. Let f: X — [0,00] be a non-negative measurable function. Define
I/(E):/fdu, EeM.
E

Then, v is a measure on M. Furthermore, if g: X — [0, 00| is measurable, then
[aar=[ gt
X X

1.6.2 Dominated convergence

Definition 1.11. For a measurable function f: X — [—o0, 00|, we may define

/deuz/xfwu—/Xf—du,

as long as at least one of these terms is finite.

Definition 1.12. Let

L'(u) = {f: X — C: f is measurable, and /X |f| dw is finite}.

For f € L'(u), we may write f = u + iv where u, v are real valued measurable functions

and define
/fd,u:/ud,u+i/vdu.
X X X

11 Updated on May 7, 2022
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Lemma 1.25. When f,g € L*(n), a, B € C, we have
| at+sgdu=a [ fdu+p [ gdn
X X X

‘/deM‘S/Xﬂdu-

Theorem 1.26. The space of functions L'(u) is a vector space over C. The map
LW C o [ fd
X
is a linear map. Furthermore, L' (u) is a metric space, with

d(f,g) = /X f = gl du.

Remark. Observe that
IT(f) —T(g)l <d(f,9),

making 7" a Lipschitz continuous map.

Theorem 1.27 (Dominated convergence). Let {f,}72; be a sequence of complex measurable
functions f,: X — C, such that f, — [ pointwise on X. Furthermore, let g: X — [0, 00),
g € LY(p) such that |f,| < g. Then, f € L*(p),

lim/fn—fdzo, 1im/fnd :/fd.

Corollary 1.27.1 (Bounded convergence). Let {f,}52, be a sequence of complex measur-
able functions f,: X — C, such that f, — f pointwise on X. Furthermore let |f,| < M
for some M € R, and let u(X) < co. Then, f € L'(u),

lim/\fn—f\d,uzo, lim fndu:/fdu.
X X X

n—o0 n—oo

Ezxample. Consider
nx

1+ n2x?
Then, it can be shown that f, — 0 pointwise on [0,1]. Furthermore, each |f,| < 1 and
1([0,1]) = 1, hence

fn:[0,1] = R, T —

na
li —— du = 0.
00 1] 1 +n2z? a

12 Updated on May 7, 2022
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Theorem 1.28 (Fundamental theorem). Let F': [a,b] — R such that F' = f where f €
LY(u), |f| < c. Then,
[ b}fdu:F(b)—F(a).

Proof. Define
fn:la,b] = R, x—=n(F(x+1/n) — F(x)),

and note that f, — f. O

Theorem 1.29. Let f: X X [a,b] — C, where —oo < a < b < oo, and let each f(-,t) =
fi € LY (i, X). Define

F(t) = [ 7(o.0) du(o).
Suppose that Of /Ot exists, with g € L*(u, X) such that
L 0| < a0
Then, F' is differentiable, with

F(O) = [ @t dute).

Theorem 1.30. Let f: X — C, where f € L'(u). Then for every e > 0, there exists a
0 > 0 such that for all E € M with p(E) < 6, we have

[ fldu<e

lim / du = 0.
L E\fl 0

In other words,

Proof. Define
[f(@)l, i [f(z)] < n,

fn: X = C, w»—>{ )
n, if |f(x)| > n.

Then each |f,| < n, f, — |f| monotonically. Thus, the Monotone Convergence Theorem will
give

i [ fudi= [ 1f]dn
X X

n—oo

/X\fldu—/xfzvdu<

By restricting the domain of integration to £ C X,

[E\f\dﬂ—/EdeM<;

13 Updated on May 7, 2022
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Finally, set 0 = €¢/2N, so that for u(F) < ¢, we have

€ €
/Elfldu</Edeu+2<Nu(E)+2:6_

Theorem 1.31. Let f: X — C, where f € L'(u). Suppose that for all E € M, we have

[ du=o

Then, f =0 almost everywhere on X.

Theorem 1.32. Let f: [a,b] — R be bounded on the compact interval [a,b]. If f is Riemann
integrable, then f € L'(u) with
b
=] 1an
a [a,b]

Remark. The converse fails, since xg is not Riemann integrable, but it is Lebesgue inte-
grable.

Ezxample. Suppose that we wish to compute the integral

Loy 75
.
©0.1) VT

Note that the corresponding Riemann integral is improper. Thus, we define the functions
) 1
fn' (07 1) — R, T = ﬁX[l/n,l)(x)v

and note that f,(z) — 1/y/x on (0,1) monotonically. Thus, the Monotone Convergence
Theorem guarantees that

/ ! d li P d lim 2 (1 ! >

—dp = lim — dx = lim - =
(0,1) VT n—00 J1/n /T n—0o0 Vn
Ezample. Suppose that we wish to compute

1
~ .
/(1,oo> 2 N

1
fn: (1700) - R, T ?X(l,n)(x)

Again, define

Then f,(z) — 1/2% on (1, 00) monotonically, so

1 "1 1
— dp = lim —dr=lim1——=1.
(0.1) %2

n—oo [ x2 n—o0 n

14 Updated on May 7, 2022
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Ezample. Suppose that we wish to compute

n

lim (1 — E)n e 2% dx.
0

n—00 n
By setting
T\" _
fn:]0,00) — R, T — (1 - E> e 2$X[O,n} (2),
we have
. n T\ ) .
lim (1 — —) e “Tdr = lim fn dp.
n=ee Jo n 7700.J10,00)

Furthermore, |f,,(z)| < e~2* and the latter is in L'(p). Thus, the Dominated Convergence
Theorem guarantees that this limit is

o0 1
lim f, du = / e 3% dr = =
/[0,00) n—00 0 3

Remark. For any x € R, the sequence
n
en = (1 + E)
n
is increasing, with e,, — e®. To show this, consider the ratio
eni1 (1 + ni-&-l)n+1 14+ ni-&-l n+1 o T n+1 x
_ S(EYT e (e Y ),
en 1+ )" 1+ 7 n (n+1)(n+ x) n

Applying Bernoulli’s inequality, noting that |x/(n + x)| < 1,

€n n-+x n

Ezample. Suppose that we wish to compute

lim/ log(1 + nx) s
1

n—00 1+ 22logn
Observe that for x > 1,n > 1, we have nx < 1+ nx < 2nz so

logn + log x < log(1 + nx) < log2 + logn + log x
1+22logn — 1+a2logn — 1+ 22logn )

The Squeeze Theorem immediately gives

log(1+nx) 1

nl—>oo 1 —|—x210gn - ?

Furthermore,

log(1 + nx log2 logx logn
g( - )S g2 n g2 N g2 ’
1+ z%logn x T x
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and the latter is in L'(x). Indeed, logz < x yields log v/z < /z, hence log z/2? < 2273/2.
Thus, the Dominated Convergence Theorem guarantees that our limit is

lim/ log(l—l—nx)dx_/ idul:zl.
1 1

n—300 1+ 22logn x2

Ezample. Suppose that we wish to compute

) 00 n1/4e—mv2
lim . 9 dz.
n—oo fq 1+2x

Observe that the map t — te~* is bounded on (0, 00), attaining a maximum at t = 1/v/2
with the maximum M = e~'/*/y/2. Thus, putting t = n'/*z'/2, we have

n1/4e—nm2 - M/\/E

n1/4\/§€—nz4 §M7 1+ 2 — 1+ 2
x x

On the interval (0, 1), we have

1 1 |
- _dx < ——dr =2
/o V(1 +22) “—/o VR

and on (1,00), we have

o0 1 > 1
—t de< | Sdp=1
/1 Vol +22) 5”—/1 2
—na:2

Furthermore, n'/*e — 0 pointwise as n — oo. Thus, the Dominated Convergence
Theorem guarantees that

1/4

9] 7711/46—71552

Remark. Consider nl/me*mk; to bound this, we examine the map t — te~*" . This attains

. —_4m —tm . .
a maximum when e ?" — mt™e" = 0, i.e. t = 1/m'/™, hence a maximum value of

M = eil/m/ml/m. Thus, putting t = n!/mgk/™

nl/mxk/me—nxk < M, nl/me—nxk < M.Z‘_k/m

1.7 LP spaces

Definition 1.13. Let (X, M, i) be a measure space. For 1 < p < 0o, we define

LP(u) ={f: X — C: f is measurable, and / |f|P dp is finite}.
X

1/p
T ( [ dﬂ) .

Remark. We denote
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Definition 1.14. Let (X, M, u) be a measure space, and let f: X — C be measurable.
We define the essential supremum of f as

1flloe = If{M : pfz € X : |f(@)] > M} = 0}.

Remark. We have f < ||f||c almost everywhere in X.

Ezample. Note that for
f:(0,1) = R, x—1/x,

we have || f||cc = 00. By convention, inf ) = oo.

Definition 1.15. Let (X, M, u) be a measure space. We define the space of essentially
bounded functions as

L>*(p) ={f: X — C: f is measurable, and || f||o is finite}.

Lemma 1.33 (Young). For a,b>0, p,q > 1,

alP bl 1 1
ab < — 4+ —, 4 -=1.
b q b q

Proof. Using Jensen’s inequality on the logarithm,
log(ta? + (1 — t)b?) > tlog(a?) + (1 — t) log(b?).

Putting ¢t = 1/p and exponentiating immediately gives the result. ]

Lemma 1.34 (Holder). For 1 < p,q < oo, f,g measurable,

1 1
fallr < |l fllp llgllg, -+-=1
gl < I fllp llgllq e

Proof. This is trivial when either f,g = 0, or p,q = 1. Otherwise, applying Young’s inequality
and integrating gives

1 » 1 .
/X f@g)du< /X FP du+ L /X ()7 dp.

When || f|l, = ||l = 1, this immediately gives the desired inequality since the right hand side
is 1. Otherwise, define F' = f/| fllp, G = g/|lgllq, upon which ||F||, = ||G||q = 1, hence

1l = /X F@g(@) dx < [ Flllglla =
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Ezample. Let f € L?>(R), and let each u([n,n + 1)) = 1. Then,

lim fdu=0.

n—oo [n,n—i—l)

To show this, note that Holder’s inequality for p = 1 = 2, also known as the Cauchy-Schwarz
inequality, gives

1/2 1/2 1/2
[ ifldus (/ |f|2du> (/ du) - (/ |f!2du> .
[n,n+1) [n,n+1) [n,n+1) [n,n+1)

Now, note that the following defines a measure v on R.
o(E) = [ 17P d
E

Furthermore, this is a finite measure because v(R) = || f||3 < oo. Now, each v([n,n+1)) <
v([n, 00)); continuity from above now gives

lim |f|? dp < nh_)ngo v([n,00)) = v(0) = 0.

n—oo [n7n+1)

Lemma 1.35 (Minkowski). For 1 < p < oo, f,g measurable,

1+ glly <11 fllp + [lgllp-

Proof. This is trivial when p = 1, 00. Otherwise, for 1 < p < oo, note that

(@) + g(@)P < (If(2) + g(2))” < (2max(f(x), g(x)))” < 2" (|f ()" + |g(z)[")

This shows that when f,g € LP(u), we have f + g € LP(u). Set F = |f + g|P~!, when the
triangle inequality followed by Holder’s inequality gives

I +glly < /XF(ﬂs)\f(fL‘) du+/XF(x)lg(fC) dp < |[F@)lql[ fllp + 1) llqllgllp,

where g =1 —1/p. Using (p — 1)q = p,

1/q 1-1/p p
1F@)l, (/Xw )+ g(a) du) (/X|f( )+ g(a) du> Lredls

This immediately gives the result. O

Theorem 1.36. The spaces of functions LP(u) and L>(u) are complete metric spaces.

Remark. Two functions in such a space are identified if they are equal almost everywhere.

Corollary 1.36.1. Let f,, — f in LP(u), where each f, € LP(u), and 1 < p < oo. Then,
there exists a subsequence { fn, }ken such that fn, — f pointwise in C, almost everywhere
in X. Moreover, there exists h € LP(p) such that |fp,| < h almost everywhere in X.
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Theorem 1.37. Let (X, M, p) be a finite measure space, and let 1 < p < q < oo. Then,
LP(p) 2 L9(p).

Proof. Set w=¢q/p>1,v=1—1/u, whence

p/q
1A < Il 2l = 2] ( /X £ du) — 1OV 2.

Thus,
1£llp = IIFPIYY < u(X) P29 £, 0

Example. Note that the map = + 1/y/x is in L'(0,1), but not in L?(0,1).

Example. Note that the map z + 1/z(]logz| + 1)? is in L1(0,1), but not in any LP(0,1)
where p > 1.

Theorem 1.38. Let (X, M, u) be a finite measure space. Then, L*(u) C LP(u) for all
1 <p<oo, and

Tim £l = [1£llo

Ezample. Consider the function
f:(0,1) = R, x — logx.

Then for 1 < p < oo, we have

fp—/ log z|P du = lim/ log [P X (1/n.1) At
I = [ omaldp = tim [ 1ot

)

The latter follows from the Monotone Convergence Theorem. Now, make the substitution
u = log x to evaluate the Riemann integral

1 0 logn
/ |log z|P dx = / |ulPe* du = / uPe™ du.
1/n —logn 0

Indeed, the Monotone Convergence Theorem immediately shows that this converges to
['(p+1). Another way to show that this converges is to see that e > u* /k!, uPe™" < kluP~*.
Choosing sufficiently large k so that k — p > 2, we have

logn 1 logn 1 k!
/ upe_"dug/du+k:!/ —2du:1—|—k!— .
0 0 1 U logn

Thus, we have

|yf|yg:/ Hog 2P dz < 1 + k! < oo.
0

)

This shows that f € LP(p) for all 1 < p < co. However, it is clear that f ¢ L*(u).
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Theorem 1.39. Let S be the set of all simple, measurable, complex valued functions which
are non-zero on a set of finite measure. Then, the closure of S in LP(u) is the whole of
LP(u), for 1 <p < 0.

Theorem 1.40 (Lusin). Let f: R™ — C be measurable, and let A C R™ have finite measure,
with f =0 on R™\ A. Given € > 0, there exists a continuous function g on R™ with compact
support, such that

pl{z s f(z) # g(z)} <e.

Moreover, g can be chosen such that

sup |g] < | fllco-
zER™

Theorem 1.41. The set of all continuous functions on R™ with compact support is dense
in LP(u), for 1 <p < oo.

Ezample. The set of all continuous functions on R™ with compact support is not dense
in L>(u); recall that the uniform limit of continuous functions is always continuous, i.e.
sequences of continuous functions can only converge to continuous functions in L*(u).
Instead, the closure of this set in L°° consists of all continuous functions on R™ such such
given € > 0, there exists compact K C R™ where |f| < e on R\ K.

Ezample. Let f € L?[0,1], and suppose that

1
/ f(z)a"dz =0
0
for all integers n > 0. Then, f = 0 almost everywhere. To show this, note that we have
1 1
/ f(z)(ao+ a1z + -+ apx™) do =0, / f(z)p(z) dz.
0 0

for all polynomials p(z). By the Weierstrass Approximation Theorem, we have

1
/ f(@)g(z) dz = 0
0

for all continuous functions h on [0,1]. Now, f € L?[0, 1], hence there exists a sequence of
continuous functions {h,}°; on [0, 1] so that h, — f in L?[0,1]. By Cauchy-Schwarz,

1
/0 f(@)(hn(z) = f(2)) dx| < || fll2[[hn = fll2 = 0.
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Thus,

1
/ f?dx =0,
0

forcing f = 0 almost everywhere.

Theorem 1.42. The set of all smooth functions on R™ with compact support is dense in
LP(u), for 1 <p < oco.

Theorem 1.43 (Egoroff). Let (X, M, pu) be a finite measure space, and let {f,}52, be a
sequence of complex measurable functions f,: X — C such that f, — [ pointwise almost
everywhere on X. Then for every e > 0, there exists E C X such that f, — f uniformly
on E and p(X \ E) < e.

Remark. The converse holds even without assuming p(X) < oco.

Proof. Without loss of generality, let f,, — f pointwise on X. Define

Fnm = (o€ X : 1fie) ~ f)] < ).

i=n

Then, each Ey, ,; € Epi1,m. Furthermore, each fy,(x) — f(x) forces each

oo
U Bum = X, lim i(Epm) = p(X).
n=1

n—0o0

Here, we have applied continuity from below. Let € > 0. Thus, for each m, we can find N, € N

such that .

M(X) - N(ENm,m) < 27m

Relabel E,, = En,, m, and set
[oe)
£

o0 (0.9}
E=()En F=X\E=|JX\E,, M(F)<22m:6.
m=1 m=1 m=1

We claim that f, — f uniformly on E. Indeed, given any 1 > 0, we can find m € N such
that mn > 1. Thus, for every x € E C E,,, we must have |f,(z) — f(z)| < 1/m < n for all
n > Np,. O

Ezample. Consider the counting measure on N, and the sequence of functions {f,}5°
described by
1, ifl<k<n,

0, otherwise.

fn N—=R, k»—>{

Then, f, — 1 pointwise. Setting ¢ = 1/2, we demand f,, — f uniformly on a set E with
u(N'\ E) < 1/2. This forces N\ E = (), i.e. E = N. However, the convergence f, — 1 is
not uniform on N.
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Ezample. Consider the sequence of functions { f,}>°; described by
fn:0,1] = R, x ="

Then, f, — Xxq1) pointwise, and the convergence f, — 0 is uniform on every interval
[0,1— 6] for 6 > 0. However, we cannot have uniform convergence on any measure zero set.

Theorem 1.44. Let 1 < p < oo, and let {f,}5°; be a sequence of measurable functions on
[0,1] such that f, — f pointwise and f,, f € LP(u). Then, f, — f converges in LP(u) if
and only if || fullp = [ fllp-

Proof. First suppose that f, — f in LP(u), i.e. |[fn — fl[p = 0. Now, Minkowski’s inequality
will show that

[ fally = £ Wl < 1 fn = Fllps

hence we have ||f,|l, — || fll, by the Squeeze Theorem.
Next, suppose that || fn|l, = || fll,. We first show that for a, 5 € R,

(a+ B <227 H(|al? + |BI7).

Indeed, this follows immediately from the convexity of the map ¢ — |¢[P and Jensen’s inequality,
whence (a/2 4 5/2)P < (|a|P + |5|P)/2. Thus,

|[fn = FIP <2270 fulP + 2P £IP.

Now, |f, — f[P — 0 pointwise, and the right hand side of our inequality is in L'(p). Thus, the
Dominated Convergence Theorem guarantees that

fim [ A S dp= [l [ 1P du =0,

)

Thus, || fu — fllp — 0. =

1.8 The Lebesgue measure

Definition 1.16. Let X be a set, and let P(X) denote its power set. We say that a function
p*: P(X) — [0,00] is called an outer measure if it satisfies the following.

0
2. p*(A) < p*(B) whenever A C B.

w* (U Ai) <> ut(Ad).
i=1 i=1

Ezample. Let £ C P(X) such that 0, X € &, and let f: & — [0,00] with f(()) = 0. For
A C X, we may define

1 (A) —inf{Zf(Ei) tAC UEz',Ez' € f}-
i=1

=1
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It can be verified that this is indeed an outer measure. The first property follows immedi-
ately, and the second follows from the fact that if A C B, all covers of B are also covers of
A. For the third, let
oo
A=A
i=1

Then, for arbitrary € > 0, we can choose E;; € £ such that

€

p(Ai) + o5 > f(Ey),  AiC|JEy.
J J
Now, the sets Fj; all cover A, so
k k € *
pHA) S DB < 3 [ () + 5| = oA + e
ij i i

Since € > 0 is arbitrary, we have the desired result,

p(A) < Zu*(Az‘)-

Definition 1.17. A set A C X is called p*-measurable if for all £ C X, we have
W (B) = 1" (B 01 A) + it (B 1 A°).

Remark. We need only check the > direction, and we need only check sets E of finite outer
measure.

Theorem 1.45 (Carathéodory). Let X be non-empty with an outer measure p*, and let
M be the set of all pw*-measurable subsets of X. Then, M forms a o-algebra, and the
restriction of u* to M is a measure p. Moreover, v is a complete measure.

Remark. A complete measure p is such that given a measurable set A with u(A) = 0, all
the subsets B C A are measurable, with p(B) = 0.

Definition 1.18. Let ¢ be the length function for intervals in R. Extend this to an outer
measure m] as outlined previously, and use the Carathéodory Theorem to find a o-algebra
L C P(R) and a complete measure m; on £. Then, we call £ the Lebesgue o-algebra, and
m1 the Lebesgue measure on R. Note that

mﬂ@zﬂM{E:wrwm:AgLﬂwﬁﬁ}.
=1 =1

Remark. A similar process can be carried out using the volume function ¢, for rectangles
in R", yielding the Lebesgue o-algebra L£,, and the complete Lebesgue measure my,.
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Ezxample. All singletons have Lebesgue measure zero. As a result, all countable sets also
have Lebesgue measure zero.

Theorem 1.46. We have the inclusion Bgr C L.

Remark. The restriction of mq to By is called the Borel measure mg.

Proof. Tt is enough to show that sets of the form A = (a,00) € L. Pick a subset F C R, and
suppose that {I,}°°; is a cover of E with intervals (ay, b,). Then, by the property of infimums,

iﬁ([n N (a,00)) + (I, N (—00,a)) > mi(ENA)+mi(ENA)
n=1

However, each
0(1,) > £(I, N (a,00)) + £(I, N (—o0,a)).
Thus, summing and taking infimums again,

mi(A) > mi(ENA) +mi(En A%,

proving that A is m] measurable, hence A € L. O

Theorem 1.47. Let E C R be Lebesgue measurable. Then,

mi(E) =inf{m,(U) : E C U, U is open},
=sup{mi(K) : K C E, K is compact}.

Remark. The above relations describe the Lebesgue measure as a limit of sorts of the Borel
measure.
Proof. For the first part, note that for any open set U such that £ C U, we immediately have
mi1(E) <my(U), hence
mi(E) <inf{mi(U) : E C U, U is open}.

We now show the reverse inequality. Note that if m;(E) = oo, this is trivial. Otherwise, m;(E)
is finite, hence for € > 0 we can find an open cover {I,}°°; of E such that

my(E)+ €= U(an, b)) =D mi(l) >my (U In> .
n=1 n=1

n=1

Since U = |J;2; I, is an open set with £ C U, we are done.

Note that when mq (E) is finite, we have found open U such that E C U, and m1(U\ E) < e.
But U\ E=UnNE®=E°\U¢ and U¢ C E°. Relabelling, we have shown that given Lebesgue
measurable £ C R, we can find a closed set F' such that FF C E, and mi(E \ F) < e.

For the next part, note that for any compact set K such that K C E, we immediately have
m1(E) > my(K), hence

m1(F) > sup{m(K) : K C E, K is compact}.
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We now show the reverse inequality. First, consider the case where E is bounded, so m;(E)
is finite. If E is closed, it is also compact, hence the result is trivial. Otherwise, the inclusion
E C FE is strict, hence E'\ E is non-empty and open. This gives

m1(E\ E) =inf{my(U) : E\ E C U,U is open}.
Thus for € > 0, there exists open U such that E\ E C U and
ml(E\E)+62m1(U), ml(E)—egml(E\U).

Note that we could perform this rearrangement since the sets E, E, U all have finite measure.
This, we have found a suitable compact set K = E'\ U with E C K, hence we are done.

If £ is unbounded and m1(E) = oo, set £, = EN[n,n+ 1), whence E = |,z En. Now
the FE, are bounded, measurable, and disjoint. For € > 0, find compact sets K,, such that each

€

= 3 g S M)

mi (En)

Set
E"= |J En K'= |J K

—n<i<n —n<i<n

Note that each K™ is compact. Summing our inequality gives
mi(E") —e <my(K").

Continuity from below gives
mi(E) = lim my(E").

n—o0

Thus, if mi1(E) = 0o, we have m3(K"™) — oo with each K™ C E and K™ compact, hence we are
done.

Otherwise, m;(FE) is finite. Find open U such that E C U, mi(U \ E) < €¢/3. Setting
U" =Un(—n,n), we have

n—oo

U= UU", m1(U) = lim my(U"),
n=1

hence m1(U \ U™) < €/3 for sufficiently large m. This in turn gives mi(E \ U™) < €/3. Next,
since m1(E), m1(U™) are finite, we can find closed sets Fi, F» such that F3 C E, F, C U™, and
mi(E\ F1) < €/3, m(U™\ F») < €/3. Furthermore, F; is closed and bounded, hence compact.
Set K = Fy N F,, which is closed and bounded hence compact. Now, K C F, and

E\KC(E\U™U(E\F)UU™\ F).

This immediately gives mi(E \ K) < ¢, or mi(E) — e < my(K), hence we are done. O

Corollary 1.47.1. If E C R is Lebesgue measurable and € > 0, then there exists an open
set U such that E C U and m1(U \ E) < e.

Proof. We have already dealt with the case where mq(F) is finite. Otherwise, set E, = E N
[n,n + 1); each of these has finite measure, hence we can find open sets U,, such that F,, C U,
and my(Uy, \ Ep) < €/3- 2"l Set U =, Un, whence U is open with E C U and

mi(U\E) <Y mi(Un\ En) < e O
nez
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Corollary 1.47.2. If E C R is Lebesgue measurable with mi(E) < oo and € > 0, then
there exists a compact set K such that K C E and mi(E\ K) < e.

Ezample. Note that we cannot necessarily find open sets U with U C FE, or closed sets F
with £ C K such that the differences have arbitrarily small measure. Note that the set
Q¢ of irrationals has empty interior although m;(Q¢) = co, and the closure of the set Q of
rationals is the entirety of R although m;(Q) = 0.

Ezample. If U C R is Lebesgue measurable and non-empty, then my(U) > 0. This is
because the non-empty open set U must contain a basic open interval of the form (a,b) C U,
hence m1(U) > m1((a,b)) =b—a > 0.

Example. If E C R is Lebesgue measurable with mq(E) = 0, then £ = R. To see this, pick
x € R and an open neighbourhood (z — §,x+6). If (x — 6,z + ) NE = (x — 4,z + )\ F
were empty, that would force (x — 0,z + 0) C E, hence m1(F) > 26 > 0, a contradiction.

Theorem 1.48. A set E C R is Lebesque measurable if and only if we can write
E:G\Nl = F U N>,

where G is a Gy set, F is an F, set, and N1, No have measure zero.

Remark. A Gg set is a countable intersection of closed sets, and an F, set is a countable
union of open sets.

Proof. Let E C R be Lebesgue measurable. Then, we can find a sequence of open sets {U, }° 4
such that each £ C U,, and m1(U, \ E) < 1/n. Set

G = ﬁ U, mi(G\E) < my(Uy\ E) < %
n=1

This forces m1(G \ E) = 0. Thus, we write E = G\ (G \ E).
Next, we can find a sequence of closed sets {F},}5° ; such that each F,, C E and m1(E\ F,,) <
1/n. Again, set

F= fj Fo,  mi(E\F)<mi(E\F) < %
n=1

This forces mi(E \ F') = 0. Thus, we write £ = FU(E\ F). O

Corollary 1.48.1. Given any Lebesgue measurable set E C R, we can find Borel measurable
sets F,G such that F C E C G, and mi(G\ F) = 0.
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Theorem 1.49. Let (X, M, 1) be a measure space. Then, there exists an extended o-algebra
M and an extended measure fi such that i is a complete measure. Furthermore,

M={SUN:SeM,NCN puN)=0}

and

A(SUN) = p(S).

Theorem 1.50. The completion of the Borel measure space (R, Bgr,mg) is the Lebesgue
measure space (R, L,m1).

Lemma 1.51. If E C R is Lebesgue measurable, so are the translations x + E and the
dilations rE. Moreover,

mi(z + E) = my(E), mi(rE) = |r|mi(E).

Ezample. The Cantor set defined as

oo 3n—1
3k+1 3k+2
:[071]\U U <3n+1’ 3n+1>’

n=0 k=0

or equivalently
00 3"—1
3k 3k+1 3k+2 3k+3
c:nﬂlcn, ankuzoqgn, o ]u[ T g D

is compact, and uncountable. Indeed it is Borel measurable, hence Lebesgue measurable
with m;(C) = 0.

Ezample. Consider R as an additive group, and examine the quotient group R/Q. Pick
exactly one representative element from each coset, ensuring that it belongs to the interval
[0, 1], and call this set V. This is a Vitali set, and it it not Lebesgue measurable. To see this,
suppose that it were. Enumerate the rationals in [—1, 1] as {¢; }sen, and set V; = ¢;+)V. Note
that each V; must also be Lebesgue measurable, with m1(V;) = m1(V) due to translation
invariance. We claim that -

0,1] C U

To see the former inclusion, pick arbitrary = € [0,1]. Then, 2 must belong to one of the
cosets of R/Q, say r+Q with r € V. Thus, x —r € Q,but —1 <x—r <1l hencez—r =¢;
for some ¢ € N. It immediately follows that t =¢; +1r € ¢; +V = V.

Our set of inclusions implies that

([0,1]) <Zm1 ) <mi([—1,3]).
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Thus, 1 <> 22, mi(V) < 3, which is absurd.

Remark. The construction of V invokes the Axiom of Choice.

Lemma 1.52. The following inclusions are strict.
Br C £ C P(R).

Remark. The Borel g-algebra has the cardinality of the continuum, ¢. However, note that
the uncountable Cantor set C is Lebesgue measurable with m;(C) = 0, hence all of its subsets
are also Lebesgue measurable. This shows that the Lebesgue o-algebra has cardinality 2°,
strictly greater than that of the Borel o-algebra.

Theorem 1.53. If E C R is Lebesque measurable with mi(E) > 0, then E contains a
non-measurable subset.

Proof. First, we show that any measurable subset of a Vitali set V has measure zero. Indeed if
A CV is Lebesgue measurable, then set A; = ¢; + A for all rationals ¢; € [—1,1]. Furthermore,
the sets A; are all mutually disjoint. From A; C [—1,2], we have

> my(A) =) ma(4y) <3,
=1 n=1

hence m;(A) = 0.
Now, let E C [0, 1] be Lebesgue measurable, and mj(E) > 0. Then, if all the sets F; = ENV;
were to be measurable, each m(E;) = 0 hence the union

ml(E) =mi (U EZ> == 0,
i=1

a contradiction. Thus, at least one of the F; must be non-measurable.
Finally, given E C R Lebesgue measurable with m;(FE) > 0, we must have some mq(E N
[n,n+ 1)) > 0, whence we apply the same argument on the shifted set (EN[n,n+1))—n. O

Corollary 1.53.1. Let E C R be Lebesgue measurable, such that all of its subsets are also
Lebesgue measurable. Then, mq(E) = 0.

1.9 Product measures

Definition 1.19. Let (X, M, u) and (Y, N, ) be measure spaces.

1. The sets A x B with A € M, B € N are called measurable rectangles.
2. Finite unions of disjoint measurable rectangles are called elementary sets.

3. Let £ be the collection of all elementary rectangles. The product o-algebra M x N
is the o-algebra generated by £.
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Definition 1.20. A collection A C P(X) is called a monotone class if the following hold.
1. Given {4, },en with each A, € A and A,, C A,41, the union

A=|J4 e

n=1
2. Given {B,}nen with each B, € A and B, D B,,+1, the intersection

B:ﬂBneA.

n=1

Definition 1.21. The smallest monotone class containing a collection S of subsets of X is
called the monotone class generated by S, denoted A(S).

Lemma 1.54. Given a collection S of subsets of X, we have

S C A(S) € M(S) C P(X).

Definition 1.22. A collection F C P(X) is called an algebra over X if the following hold.

1. F contains X.
2. F is closed under complementation.

3. F is closed under finite unions.
Remark. The following properties follow immediately.

1. F contains 0.
2. F is closed under finite intersections.

3. F is closed under differences.

Ezample. The collection of elementary sets £ defined earlier forms an algebra over X x Y.

Theorem 1.55 (Monotone Class Theorem). If F is an algebra of sets over X, then
A(F) = M(F). In other words, the monotone class generated by F is precisely the o-
algebra generated by F.

Proof. For each P € F, define

Ap={Q € A(F): PUQ,P\Q,Q\ P c AF)}.
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We claim that each Ap is a monotone class. Indeed, let {Qy}nen be an increasing sequence in
Ap, and let @ be their union. Then, {P U Qy}nen, {Qn \ P}nen are increasing sequences in
A(F), hence

Pu=JPuQueAF), Q\P=J@n\PcAPF).

neN neN

Also, {P \ Qn}nen is a decreasing sequence in A(F), hence

P\Q= () P\Quc AF).

neN

This shows that the union Q € Ap. The case for decreasing sequences is analogous.

Now, note that given P,Q € F, we have PUQ, P\ Q,Q\ P € F C A(F). Thus, Q € Ap,
P € Ag. This shows that F C Ap, Ag, so A(F) C Ap, Ag.

Next, for P,Q € A(F), we have P € Ag, so PUQ, P\ Q € Ag D A(F). This is enough to
show that A(F) is an algebra.

Finally, let {E,},en be a countable collection of sets from A(F). Since the latter is an
algebra, the finite unions

F, = O E; € ./4(.7'—)

i=1
Now, {F), }nen is an increasing sequence in A(F), so
U En= | Fnc AF).
neN neN

This shows that A(F) is a o-algebra containing F, so M(F) C A(F). Thus, A(F) = M(F). O

Corollary 1.55.1. The monotone class generated by the algebra of elementary sets £ is
the product o-algebra M x N .

Theorem 1.56. Let E C M x N. Define the sections
E,={yeY:(z,y) € E}, E,={x e X:(z,y) € E}.

Then, Ey € M, E, e N.

Proof. Let
Q={EeMxN:E,eMforallz € X} C M xN.

Note that €2 trivially contains all measurable rectangles, hence we have £ C ). We claim that
Q2 is a o-algebra, whence M(E) C Q forces 2 = M x N. To show this, first we clearly have
X xY € Q. Next given E € Q, we have E, € N, hence

(B ={y €Y :(v,y) € EY
={yeY:(z,y) ¢ E}
=Y \{yeY:(z,y) € E}
=Y\ E,
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gives (E°), = (E;)¢ € N. Finally, if {E; };en are such that E; € Q, then each (E;), € N, hence

(QE> ={yeY | UE}

gives (U2, Ei)e = U, (Fi)s € N =

Theorem 1.57. Let Z be a topological space, and let f: X xY — Z be (M x N,By)
measurable. Define the sections

for Y = Z,  yw f(z,y),
fy: X = 2, x = fx,y).

Then, fz, fy are measurable functions.

Proof. Let U C Z be open. Then, E = f~1(U) € M x N by the measurability of f. It can be
shown that f,1(U) = E, € N and f;'(U) = E, € M, hence [y, f, are indeed measurable. []

Definition 1.23. A measure space (X, M, u) is called o-finite if X can be written as the
countable, disjoint union of measurable sets of finite measure.

Definition 1.24. Let (X, M, u) and (Y, N,v) be o-finite measure spaces. The product
measure on M x N is defined as

(a3 0)(B) = [ B du= | p(B,) dv

Lemma 1.58. The product measure is well-defined, and is indeed a measure on M x N.

Ezample. Consider X = [0, 1] with the Lebesgue measure, and Y = [0, 1] with the counting
measure. Set D = {(z,x) : x € [0, 1]}, whence

/ V(Dx)d,u:/ ldp =1, /U(Dy)dlj:/ 0dp =0.
X [0,1] Y [0,1]
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Ezxample. The product measure obtained from two complete measure spaces may not be
complete. Consider the product m; x m; on [0,1] x [0, 1], and the set {0} x [0,1]. This
clearly has zero measure, but the subset {0} x V is not £ x £ measurable; if it were, the
section V would have to be Lebesgue measurable.

This shows in particular that mi X mi # mo, where mso is the Lebesgue measure
defined on R? (via the Carathéodory process). However, it is true that the completion
my X my = ma.

Theorem 1.59 (Fubini-Tonelli). Let (X, M, pn) and (Y,N,v) be o-finite measure spaces,
and let f: X xY — C be measurable.

1. Let f > 0. Then the functions
v: X — [0, 00], x»—>/fxdy,
Y

Yoy [ fda

//Xxyfd(uXV)Z/Xsoduz/ywdu

2. If f € LY (u x v), then p € LY (n), v € L*(v), and

//Xxyfd(uxy)zfxwduzfywdu<oo.

Remark. If f: X xY — C is measurable, we have |f| > 0 measurable, hence

are measurable, and

o2 X — [0, 00, m/ \ful v,
Y
WY = [0,00], yt—)/X]fy\d,u

measurable. This immediately gives

//Xxy|f’d(#><l/):/XSO*dM:/YWdV-

/gp*d,u<oo, /1,[)*du<oo,
X Y

we obtain f € L!'(u x v), and can use part 2.

If either
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Corollary 1.59.1. Let {@mn}(mn)enxy be a doubly-indeved sequence.
1. If each apyn > 0, then
o o o o0
DD Amn =2 > dmn
m=1n=1 n=1m=1

2. If each amy € C but either

o o0 oo oo
ZZ\amnl < 00, ZZ‘CLWJ < 00,

m=1n=1 n=1m=1

then the interchange of summations can be performed as in part 1.

Ezample. Consider the sequence defined as

1, if m =n,
Amn =4 —1, ifm+1=n,
0, otherwise.

Then,

iiamnzo, iiamnzl.

m=1n=1 n=1m=1

Theorem 1.60. Let (X, M, u) be a finite measure space and let f: X — C be measurable.
Set

E(t) ={z e X :|f(z)| > t},
and define the distribution function of f as

F: [0,00) — [0, 0], t— u(E(t)).

/ de1:/|f]d,u.
[0,00) X

Proof. Using Fubini-Tonelli, write

JoFam= [ Jomo@anam = [ ] o am) i)

Now, note that
L if [f(z)] > ¢,

0, otherwise.

/ F dmy :/ / X[0,f(z))) (t) dm1(t) / |f(x)| du(x O
[0,00) X J[0,00)

XE@® (T) = X[, 1f@)) () = {
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Theorem 1.61. Let
: R\ {0} - (0,00) x §"1, @ (lla, 2/ |l]).
This is clearly a homeomorphism. Define the measure
My, : Bo,ooyxsn-1 = [0,00], E— m,(®7Y(E)).

Then, there exists a measure p on (0,00) and a surface measure o on S™~ ' such that m.,
factors as the product
m;, = p X o.

Furthermore,

p: B(o,00) = 0, 00], E / L dmy (r),
E

and
o: Bgn-1 — [0, 00], F—n-my{rz:xze€ F,0<r <1}

Lemma 1.62. If f: R" — C is Borel measurable, and either f >0 or f € L'(my,), then
fdm, = / / f(r&)r" Y do (&) dm(r).
R (0,00) J Sn—1
Furthermore, if f is radial, i.e. f(z) = g(|z|) for some g: (0,00) — C, then

fdm, = J(S”_l) / g(r) 1 dmy (r).

R (0,00)

Ezample. Consider the integrals

I, = / I

For n = 2, we can apply the polar formula to write
e 2
I, = U(Sl)/ e " rdr=m.
0

Note that we have used o(S') = 2m2(B?) = 27. Now, by repeated application of Fubini-
Tonelli, we have

n
]n:/,../e—Z?w? alml...dml:1_‘[/6_:”’12 dmq (z;) = I7.
R R " JR
N’ 1=

n times
n times

Thus, Iy = 7 gives I; = /7, hence I,, = 72 The polar formula also gives

I, = J(S’"_l)/ el dg.
0
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Making the substitution r = 2 yields

1 [ 1 n
n/2 n—1y . u, n/2—1 n—1
m =o(S") 2/0 e u du-20(S )F(Q).

Thus,
aely 27.[.71/2
o(S") = 711(71/2).

Using (5™~ 1) = nm, (B™), we have the volume of the unit n-ball

. /2 /2
malB) = Gy~ T2 1)

Putting n = 1, m1(B') = 2, we compute I'(1/2) = /7.

35 Updated on May 7, 2022



	Measure theory
	Introduction
	Basic definitions
	Basic properties
	The Borel -algebra
	Measurable functions
	Lebesgue integration
	Monotone convergence
	Dominated convergence

	Lp spaces
	The Lebesgue measure
	Product measures


