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1 Rings

1.1 Basic definitions

Definition 1.1. A ring is a set R equipped with two binary operations, namely addition
and multiplication, such that

1. (R,+) is an abelian group.

(a) a+ b ∈ R for all a, b ∈ R.
(b) (a+ b) + c = a+ (b+ c) for all a, b, c ∈ R.
(c) a+ b = b+ a for all a, b ∈ R.
(d) There exists 0 ∈ R such that a+ 0 = a for all a ∈ R.
(e) For each a ∈ R, there exists −a ∈ R such that a+ (−a) = 0.

2. (R, ·) is a semi-group.

(a) a · b ∈ R for all a, b ∈ R.
(b) (a · b) · c = a · (b · c) for all a, b, c ∈ R.

3. Multiplication distributes over addition.

(a) a · (b+ c) = (a · b) + (a · c) for all a, b, c ∈ R.
(b) (b+ c) · a = (b · a) + (c · a) for all a, b, c ∈ R.

Remark. The following properties follow immediately,

1. 0 · a = 0 for all a ∈ R.
2. (−a) · b = −(a · b) = a · (−b) for all a, b ∈ R.
3. (na) · b = n(a · b) = a · (nb) for all a, b ∈ R.

Example. The integers Z form a ring, under the usual addition and multiplication.

Example. All fields, for instance the rational numbers Q or the real numbers R, are rings.

Example. The integers modulo n, namely Z/nZ, form a ring.

Example. If R is a ring, then the algebra of polynomials R[X] with coefficients from R form
a ring.

Example. If R is a ring, then the n× n matrices Mn(R) with entries from R form a ring.

Definition 1.2. If R is a ring and (R, ·) is a monoid i.e. has an identity, then this identity
is unique and called the unity of the ring R. Such a ring R is called a unit ring. Note that
we typically demand that this identity be distinct from the zero element.
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Example. The even integers 2Z form a ring, but do not contain the identity.

Example. The trivial ring {0} is typically not considered to be a unit ring, since 0 must
serve as the additive identity as well as the multiplicative identity.

Definition 1.3. If R is a ring and (R, ·) is commutative, then R is called a commutative
ring.

Definition 1.4. Let R be a unit ring. An element a ∈ R is called a unit if there exists
b ∈ R such that a · b = 1 = b · a. This b ∈ R is unique, and denoted by a−1.

Example. The units in Z are {1,−1}.

1.2 Subrings

Definition 1.5. Let R be a ring, and let S ⊆ R. We say S is a subring of R if the structure
(S,+, ·) is a ring, with addition and multiplication inherited from R.

Example. The rings nZ for n ∈ N are all subrings of Z.

Example. Consider the rings 2Z ⊂ Z. Here, Z is a unit ring but 2Z is not.

Example. Consider the rings 4Z/12Z ⊂ 2Z/12Z. Here, 2Z/12Z is not a unit ring but
4Z/12Z is.

Lemma 1.1. Let S be a subring of R. Since (R,+) is an abelian group, (S,+) is a normal
subgroup of (R,+). Thus, we can make sense of the quotient group (R/S,+).

Lemma 1.2. Let S be a subring of R. Then, the quotient (R/S,+, ·) is a ring with multi-
plication (a+ S) · (b+ S) = ab+ S if and only if ab− xy ∈ S for all a, b, x, y ∈ R such that
the cosets a+ S = x+ S, b+ S = y + S.

Example. Consider the ring Z and the subring nZ. Then, the quotient Z/nZ is indeed a
ring.

Example. Consider the ring Q and the subring Z. It can be shown that Q/Z is not a ring
under the ‘natural’ multiplication.
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1.3 Ideals

Definition 1.6. Let R be a ring and let I be a subset of R. We say that I is an ideal of
R if (I,+) is a subgroup of (R,+), and rx, xr ∈ I for all r ∈ R, x ∈ I.

Example. Consider the ring Z, and the subring nZ. This is an ideal of Z, since m(nZ) ⊆ nZ.
Indeed, every ideal of Z is of the form nZ. This will follow from Euclid’s Division Lemma.

Example. The subsets {0} and R of any ring R are trivial ideals.

Lemma 1.3. Let R be a ring, and I be an ideal of R. Then, the quotient R/I is a ring.

Proof. Note that whenever a − x ∈ I, b − y ∈ I, we demand that ab − xy ∈ I. This can be
rewritten as (a− x)b+ x(b− y) ∈ I, which is clearly true by the properties of the ideal I.

Definition 1.7. An ideal I ⊂ R is called finitely generated if there exist x1, x2, . . . , xn ∈ I
such that every element of I can be written as a finite linear combination

x = r1x1 + · · ·+ rnxn,

where ri ∈ R. We denote I = (x1, x2, · · · , xn).

Definition 1.8. An ideal generated by a single element is called a principal ideal.

Example. Every ideal of Z is a principal ideal.

Lemma 1.4. Let R be a unit ring, and I ⊆ R be an ideal. Then, I = R if and only if I
contains the identity.

Definition 1.9. The sum of two ideals I, J ⊂ R is defined

I + J = {x+ y : x ∈ I, y ∈ J}.

Their product is defined

IJ = {
n∑

i=1

xiyi : xi ∈ I, yi ∈ J}.

4 Updated on July 19, 2022



MA3202: Algebra II 1 RINGS

Lemma 1.5. The sum and product of two ideals of a ring are also ideals of that ring.

Lemma 1.6. Let I, J ⊂ R be ideals in the commutative ring R. Then, IJ ⊂ I ∩ J .

Example. Note that for 2Z, 2Z ∈ Z, (2Z)(2Z) = 4Z but 2Z ∩ 2Z = 2Z. A related example
is R = 2Z, I = 4Z, J = 6Z.

Lemma 1.7. If I, J ⊂ R are ideals in a commutative unit ring R, and I + J = R, then
IJ = I ∩ J .

Proof. We already know that IJ ⊆ I + J . Since I + J = R, we can pick x ∈ I, y ∈ J such that
x+ y = 1. Now pick a ∈ I ∩ J , hence a · 1 = ax+ ay ∈ I ∩ J ; but this is also an element of IJ
proving I ∩ J ⊆ IJ .

1.4 Integral domains

Definition 1.10. Let R be a ring and a, b ∈ R, a, b 6= 0. If ab = 0, we call a a left zero
divisor and b a right zero divisor.

Example. Consider 2, 3 ∈ Z/6Z; then 2 · 3 = 6 ≡ 0.

Definition 1.11. A commutative ring R is called an integral domain if it has no zero
divisors.

Example. When p is prime, the rings Z/pZ are integral domains. Note that this set is a
group under both + and ·.

Lemma 1.8. Every field is an integral domain.

Theorem 1.9. Every finite integral domain is a field.

Proof. Let R = {x1, . . . , xn} be a finite integral domain. We first show that R contains an
identity 1. Pick x 6= 0, and note that xx1, xx2, . . . , xxn must all be distinct: otherwise xxi =
xxj would force x(xi − xj) = 0. This forces x = xxk for some xk 6= 0. Now, we claim
that xk is our identity. Indeed, given any y 6= 0, we write y = xxl for some xl 6= 0, hence
yxk = xxlxk = xl(xxk) = xlx = y.

Next, we show that every non-zero x ∈ R has an inverse. Indeed, 1 = xk must be one of the
xx1, . . . , xxn, hence 1 = xxm for some non-zero xm. This means that xm = x−1.
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Definition 1.12. Let R be a ring. The characteristic of R is the smallest positive integer
n such that nx = 0 for all x ∈ R. If no such number n exists, we say that the characteristic
of R is zero. We denote the characteristic of R by ch(R).

Example. We have ch(Z) = 0, ch(Z/nZ) = n.

Lemma 1.10. Let R be a unit ring. Then, ch(R) is the smallest positive integer n such
that n · 1 = 0; if no such n exists, then ch(R) is zero.

Theorem 1.11. Let R be an integral domain. Then, ch(R) is either zero or a prime.

Proof. Let R be an integral domain such that ch(R) = n 6= 0. If n is not a prime, write n = n1n2
for n1, n1 < n. Then for any non-zero x ∈ R, write 0 = n(x2) = (n1x)(n2x). This forces one of
n1x, n2x = 0; say n1x = 0. Now for any y ∈ R, we have x(n1y) = (n1x)y = 0. Since x 6= 0, we
have n1y = 0 for all y ∈ R, contradicting the minimality of n.

1.5 Simple rings

Definition 1.13. A simple ring is one which has no non-trivial ideals. We typically demand
that multiplication in R is non-trivial.

Lemma 1.12. Every field is a simple ring.

Proof. If R is a field and I ⊂ R is an ideal with non-zero a ∈ I, then a−1 ∈ R hence a−1a = 1 ∈ I.
This immediately forces I = R.

Lemma 1.13. If R is a commutative, simple, unit ring, then R is a field.

Proof. Pick non-zero a ∈ R, and set I = (a). Since R is simple, I = R, hence 1 ∈ I = (a). In
other words, 1 = ab for some b ∈ R.

1.6 Homomorphisms and isomorphisms
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Definition 1.14. Let R,S be rings, and let ϕ : R→ S. We say that ϕ is a ring homomor-
phism if

1. ϕ(x+ y) = ϕ(x) + ϕ(y) for all x, y ∈ R.
2. ϕ(xy) = ϕ(x)ϕ(y) for all x, y ∈ R.
3. ϕ(1R) = 1S .

We only insist on 3 if both R and S are unit rings.
Remark. The following properties follow immediately.

1. ϕ(0R) = 0S .
2. ϕ(−x) = −ϕ(x) for all x ∈ R.
3. ϕ(nx) = nϕ(x) for all x ∈ R, n ∈ Z.
4. ϕ(x− y) = ϕ(x)− ϕ(y) for all x, y ∈ R.

Example. The map ϕ : Z → Z/nZ, k 7→ k mod n is a homomorphism.

Definition 1.15. A bijective homomorphism between two rings is called an isomorphism.
If an isomorphism exists between two rings, we say that they are isomorphic.

Example. The map ϕ : Z → nZ, k 7→ nk is an isomorphism.

Example. The map ϕ : C → C, z 7→ z̄ is an isomorphism.

Example. The rings Z and Q are not isomorphic. If there did exist an isomorphism ϕ : Q →
Z, then set a = ϕ(1/2). We now demand a + a = ϕ(1/2 + 1/2) = 1; but there is no such
integer satisfying this property.

Lemma 1.14. The only isomorphism Z → Z is the identity map.

Theorem 1.15. The only isomorphism Q → Q is the identity map.

Proof. Let ϕ : Q → Q be an isomorphism. We must have ϕ(1) = 1, which immediately gives
ϕ(n) = n for all n ∈ Z. Now for any rational p/q ∈ Q, note that 1 = ϕ(q · 1/q) = q · ϕ(1/q),
forcing ϕ(1/q) = 1/q. Thus, ϕ(p/q) = p/q, completing the proof.

Theorem 1.16. The only isomorphism R → R is the identity map.
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Proof. Let ϕ : R → R be an isomorphism. We must have ϕ(q) = q for all q ∈ Q.
First we show that ϕ is strictly increasing. Note that when x > 0, ϕ(x) = ϕ(

√
x)2 > 0.

Thus when x > y, ϕ(x− y) > 0, hence ϕ(x) > ϕ(y).
Now let x ∈ R; if ϕ(x) 6= x, we must have one of ϕ(x) > x or ϕ(x) < x. Assume the former,

and find q ∈ Q such that ϕ(x) > q > x. Now, q > x gives q = ϕ(q) > ϕ(x), a contradiction. An
analogous argument gives a contradiction when ϕ(x) < x, completing the proof.

Theorem 1.17. The only homomorphism R → R is the identity map.

Proof. If ϕ : R → R is a homomorphism, it is easy to check that ϕ−1(0) is an ideal. Since R
is simple, this must be {0} or R; the latter can be ruled out since ϕ(1) = 1. In other words,
ϕ−1 = {0} so ϕ is injective. Following the previous proof, ϕ must be an isomorphism, hence
the identity map.

Theorem 1.18. The only isomorphisms C → C which send R → R are the maps z 7→ z
and z 7→ z̄.

Proof. The previous theorem guarantees that any such isomorphism ϕ : C → C is completely
determined by ϕ(i). Now, −1 = ϕ(−1) = ϕ(i)2, forcing ϕ(i) = ±i.

Lemma 1.19. The kernel of a ring homomorphism ϕ : R → S is an ideal of R. Its image
is a subring of S.

Proof. If x ∈ kerϕ, then ϕ(x) = 0, hence for any r ∈ R we have ϕ(rx) = ϕ(r)ϕ(x) = 0. Thus,
rx ∈ ϕ−1(0). Also, recall that ϕ−1(0) is an additive subgroup of R.

Theorem 1.20 (First isomorphism theorem). Let ϕ : R → S be a surjective ring homo-
morphism. Then,

R/ kerϕ ∼= imϕ.

Proof. Denote I = kerϕ, so the elements of R/I are the cosets x + I for x ∈ R. This gives us
the natural map

φ : R/I → S, x+ I 7→ ϕ(x).

It can be shown that this map is well defined: if x+ I = y + I, then x− y ∈ I so ϕ(x− y) = 0,
or ϕ(x) = ϕ(y). Now, φ((x+ I)+ (y+ I)) = ϕ(x+ y) = ϕ(x)+ϕ(y) = φ(x+ I)+φ(y+ I), and
φ((x + I)(y + I)) = ϕ(xy) = ϕ(x)ϕ(y) = φ(x + I)φ(y + I). Additionally, if R and S are both
unit rings, then φ(1R + I) = ϕ(1R) = 1S . Thus, φ is a homomorphism. It is obvious that φ is
surjective; also observe that φ−1(0) = 0 + I, hence φ is also injective. This proves that φ is an
isomorphism, as desired.

Theorem 1.21. Let I, J ⊂ R be ideals. Then,

(I + J)/J ∼= I/(I ∩ J).
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Proof. The map φ : I → (I + J)/J , x 7→ x+ J can be shown to be a surjective homomorphism.
It’s kernel consists of the elements in I that get mapped to 0 + J , so kerφ = I ∩ J . Applying
the first isomorphism theorem gives the desired result.

Lemma 1.22. Let I ⊂ R be an ideal, and let ϕ : R→ S be a surjective ring homomorphism,
then ϕ(I) is an ideal in S.

Theorem 1.23 (Correspondence theorem). Let I ⊂ R be an ideal. Then there exists a
one-to-one correspondence between the ideals of R containing I with the ideals of R/I.

Proof. Use the surjective ring homomorphism φ : R → R/I, x 7→ x + I, which maps ideals
in R to ideals in R/I. Furthermore, given ideals J, J ′ ⊂ R such that ϕ(J) = ϕ(J ′), note
that x ∈ J implies ϕ(x) ∈ ϕ(J) = ϕ(J ′) so x ∈ J ′; this shows that J = J ′, hence our
map is injective. Finally, given an ideal K in R/I, its pre-image under our map is the ideal
L = {x ∈ R : x+ I ∈ K}.

Theorem 1.24 (Chinese remainder theorem). Let R be a commutative unit ring, and
I, J ⊂ R be ideals such that I + J = R. Then,

R/IJ ∼= R/I ×R/J.

Proof. Consider the map

ϕ : R→ R/I ×R/J, x 7→ (x+ I, x+ J).

It is clear that this is a ring homomorphism. Furthermore, ϕ is surjective: to see this, pick
a ∈ I, b ∈ J such that a+ b = 1. Then

ϕ(ay + bx) = (a(y − x) + x+ I, b(x− y) + y + J) = (x+ I, y + J).

Now, note that ϕ(x) = (I, J) forces x ∈ I ∩J ; but the latter is just IJ by a previous lemma.
Applying the first isomorphism theorem gives the desired result.

1.7 Quotient fields

We recall the standard construction of Q from Z, and generalize this to the construction of the
field Q(R) from an integral domain R. Consider the equivalence relation on the set R×R \ {0}
defined by

(a, b) ∼ (c, d) ⇐⇒ ad = bc.

This partitions R×R\{0} into equivalence classes; let Q(R) be the collection of these equivalence
classes. Now define addition and multiplication of elements from Q(R) as

[a, b] + [c, d] = [ad+ bc, bd], [a, b] · [c, d] = [ac, bd].

It can be verified that this is well defined. Furthermore, we have an additive identity [0, a], a
multiplicative identity [a, a], and every non-zero element [a, b] has a multiplicative inverse [b, a].
The remaining properties can be checked to show that Q(R) is a field. We can now embed R
in Q(R) via the map

ι : R→ Q(R), x 7→ [ax, a].

It can also be shown that Q(R) is the smallest field containing R. Indeed if j : R → F is an
embedding of R in the field F , we can embed Q(R) in F using the map [a, b] 7→ j(a) · j(b)−1.
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Remark. We do not require R to have a multiplicative identity!

Definition 1.16. The field Q(R) constructed as above is called the field of fractions, or
quotient field of the integral domain R.

Lemma 1.25. The field of fractions Q(R) is the smallest field containing the integral
domain R.

Lemma 1.26. Let R1, R2 be integral domains. If R1
∼= R2, then Q(R1) ∼= Q(R2).

1.8 Prime and maximal ideals

Definition 1.17. An ideal I ⊆ R is called a prime ideal if it is proper, and xy ∈ I implies
that at least one of x, y ∈ I for all x, y ∈ R.

Lemma 1.27. An ideal I ⊆ P is prime if and only if JK ⊂ I forces either J ⊂ I or K ⊂ I
for all ideals J,K ⊆ R.

Example. The prime ideals of Z are {0} and pZ

Example. A commutative ring is an integral domain if and only if {0} is a prime ideal.

Theorem 1.28. Let R be a commutative ring, and I be a proper ideal. Then, I is a prime
ideal if and only if R/I is an integral domain.

Example. The quotients Z/pZ are integral domains precisely for primes p.

Definition 1.18. An ideal I ⊆ R is called maximal if it is proper, and for any ideal J ⊆ R
with I ⊆ J ⊆ R, either J = I or J = R.

Example. The maximal ideals of Z are pZ.
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Theorem 1.29. Let R be a commutative unit ring, and I be a proper ideal. Then I is a
maximal ideal if and only if R/I is a field.

Example. Note that 4Z is a maximal ideal in 2Z, but 2Z/4Z is not a field.

Lemma 1.30. Let R be a commutative unit ring. Then every maximal ideal is prime.

Example. Note that (X) is a prime ideal in Z[X], but not maximal.

Definition 1.19. A non-empty set S with a partial order ≤ is called a partial ordered set,
when we have

1. x ≤ x for all x ∈ S.
2. x ≤ y and y ≤ x forces x = y.
3. x ≤ y and y ≤ z forces x ≤ z.

Definition 1.20. A subset T of S is called a chain or totally ordered set if any two elements
are comparable. In other words, given x, y ∈ T , at least one of x ≤ y or y ≤ x.

Lemma 1.31 (Zorn’s Lemma). If S is a partially ordered set such that every chain C has
an upper bound in S, then for every element x ∈ S, there exists a maximal element z ∈ S
such that x ≤ z.

Theorem 1.32. Let R be a commutative unit ring. Then R contains a maximal ideal.

1.9 Divisibility

In this section, all rings are integral domains with a multiplicative identity.

Definition 1.21. Let a, b ∈ R, a 6= 0. We say that a divides b if there exists c ∈ R such
that b = ac. We denote this by a | b.

Example. In Z[i], 3 + i divides 10 because 10 = (3 + i)(3− i).
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Lemma 1.33. If a, b ∈ R, a 6= 0, then a | b if and only if (a) ⊇ (b).

Lemma 1.34. Suppose that a | b and b | a. Then, b = ua for some unit u ∈ R.

Definition 1.22. Two non-zero elements a, b ∈ R are called associates of each other if
b = ua for some unit u ∈ R.
Remark. This defines an equivalence relation on R− {0}.

Definition 1.23. A non-zero non-unit element a ∈ R is said to be irreducible if a = bc
forces either b, c to be a unit.
Remark. The only divisors of an irreducible element are its associates and units.

Definition 1.24. A non-zero non-unit element p ∈ R is said to be prime if for a, b ∈ R,
p | ab forces either p | a, p | b.

Lemma 1.35. All prime elements are irreducible.

Example. Consider x = 1 +
√
−5 ∈ Z[

√
−5]; this is irreducible, but not prime.

Theorem 1.36. Let p ∈ R be non-zero. Then, p is a prime if and only if (p) is a prime
ideal.

Theorem 1.37. Let x ∈ R be non-zero. Then, x is irreducible if (x) is maximal.

Example. Note that X is irreducible in Z[X], but (X) is not maximal.

Definition 1.25. Let a, b ∈ R be non-zero. An element d ∈ R is called a greatest common
divisor (gcd) of a and b if

1. d | a and d | b.
2. d′ | a and d′ | b forces d′ | d.
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Definition 1.26. Let a, b ∈ R be non-zero. An element l ∈ R is called a least common
multiple (lcm) of a and b if

1. a | l and b | l.
2. a | l′ and b | l′ forces l | l′.

Example. Consider the ring Z[
√
−5], with a = 2(1 +

√
−5), b = 6 = (1 +

√
−5)(1−

√
−5).

Then, a and b have no gcd or lcm.

Lemma 1.38. If the gcd of a and b does exist, then it is unique upto associates. The same
applies for the lcm.

1.10 Factorisation domains

Definition 1.27. A unit integral domain R is called a factorisation domain if every non-
zero, non-unit x ∈ R can be expressed as a unit times a product of irreducible elements,
i.e. x = ux1x2 . . . xn where u is a unit and each xi is irreducible.

Example. The ring Z[
√
−5] is a factorisation domain.

Example. Consider the ring of entire complex functions, i.e.

R = {
∞∑
n=1

anz
n : an ∈ C, the series converges for all z ∈ C}.

Then, R is indeed a unit integral domain, and its units are those functions which vanish
nowhere. Furthermore, its irreducible elements are the associates of linear polynomials z−a.
Now if R were to be a factorisation domain, then every element would be an associate of a
polynomial function, and thus have finitely many zeroes. However, the entire function sin
has infinitely many zeroes.

Definition 1.28. A unit integral domain R is called a unique factorisation domain if R
is a factorisation domain and the factorisation of every element non-zero x ∈ R is unique
upto associates.

Example. The ring of integers Z is a unique factorisation domain.

Example. The ring Z[
√
−5] is not a unique factorisation domain.
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Theorem 1.39. A unit integral domain R is a unique factorisation domain if and only if
R is a factorisation domain in which every irreducible element is a prime.

Proof. First suppose that R is a unique factorisation domain. Let x be an irreducible element
in R, and let x | ab. We claim that x | a or x | b. Now, x | ab means that there exists y ∈ R,
xy = ab. We can factor a and b, and conclude that

xy = ab = (ua1 . . . al)(vb1 . . . bm),

where u, v are units and ai, bj are all irreducible. Since R is a unique factorisation domain and
the irreducible element x appears on the left, it must be an associate of one of the ai, bj . If
x = wai for some unit w, then x | ai hence x | a. Otherwise, x | bj hence x | b.

Next suppose that R is a factorisation domain where every irreducible element is prime.
Suppose that non-zero x ∈ R factorises into irreducible elements as

x = ux1 . . . xl = vy1 . . . ym.

Note that all xi, yj are primes. Suppose that l ≤ m. Now x1 | x implies that x1 | vy1 . . . ym,
hence x1 | yk for some yk. Without loss of generality, let x1 | y1; the irreducibility of y1 means
that x1 = u1y1 for some unit u1. Thus,

uu1x2 . . . xl = vy2 . . . ym.

Continuing this process, we will reach w = vyl+1 . . . ym for some unit w, which is a contradiction
if l < m. Thus, we are forced to have l = m, and all xi = uiyi for units ui.

Lemma 1.40. Let R be a unique factorisation domain. Then, any two non-zero elements
in R have a gcd and an lcm.

1.11 Principal ideal domains

Definition 1.29. A unit integral domain R is called a principal ideal domain if every ideal
of R is principal.

Example. The ring of integers Z is a principal ideal domain.

Theorem 1.41. Let R be a principal ideal domain, and let x ∈ R be non-zero. Then, x is
irreducible if and only if (x) is maximal.

Corollary 1.41.1. Let R be a principal ideal domain. Then, every non-zero prime ideal is
maximal.
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Example. Note that (0) is a prime ideal in Z, but is not maximal.

Lemma 1.42. Let R be a principal ideal domain. Then, every irreducible element is prime.

Theorem 1.43. Every principal ideal domain is a unique factorisation domain.

Corollary 1.43.1. Let R be a principal ideal domain. Then, any two non-zero elements
in R have a gcd and an lcm.

Example. The ring Z[X] is a unique factorisation domain, but not a principal ideal domain.

1.12 Euclidean domains

Definition 1.30. An integral domain R is called a Euclidean domain if there is a map
d : R− {0} → Z≥0 such that

1. d(a) ≤ d(ab) for all non-zero a, b ∈ R.
2. For all a ∈ R and non-zero b ∈ R, there exist q, r ∈ R such that a = bq+ r with either
r = 0 or d(r) < d(b).

The map d is called the algorithm map and the second property is called the division
algorithm.

Example. The ring of integers Z is a Euclidean domain, with d(n) = |n|.

Example. The ring of Gaussian integers Z[i] is a Euclidean domain, with d(a+ib) = a2+b2.

Example. Every field is a Euclidean domain, with d(x) = 1.

Lemma 1.44. Every ideal in a Euclidean domain is principal.

Proof. Let R be a Euclidean domain, and let I ⊆ R be an ideal. If I = 0, we trivially have
I = (0). Thus, let I 6= 0, and choose non-zero a ∈ I such that d(a) is minimal. We claim
that I = (a). Indeed, let b ∈ I, and exhibit q, r ∈ R such that b = aq + r. This shows that
r = b− aq ∈ I. Note that d(r) < d(a) contradicts the minimality of d(a), hence we must have
r = 0, and b = aq ∈ (a). Thus, I = (a) as desired.
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Lemma 1.45. Every Euclidean domain is a unit ring.

Proof. The previous lemma shows that if R is a Euclidean domain, then R = (a) for some
a ∈ R. Since a ∈ R, we must have a = a0a for some a0 ∈ R. We claim that a0 is the identity in
R. Indeed, for x ∈ R = (a), we must have x = ra for some r ∈ R, hence x = ra0a = a0(ra) =
a0x.

Theorem 1.46. Every Euclidean domain is a principal ideal domain.

Example. The ring Z[(1+
√
19)/2] is a principal ideal domain, but not a Euclidean domain.

Corollary 1.46.1. Every Euclidean domain is a unique factorisation domain.

Corollary 1.46.2. Let R be a Euclidean domain. Then, any two non-zero elements in R
have a gcd and an lcm.

Lemma 1.47. Let R be a Euclidean domain, and let a, b ∈ R. If a is a proper divisor of
b, then d(a) < d(b).

1.13 Polynomial rings

Theorem 1.48 (Eisenstein’s criterion). Let R be a unique factorisation domain, and

f(x) =

n∑
i=0

aix
i ∈ R[X].

Suppose that there is a prime p ∈ R such that a | ai for 0 ≤ i < n, p - an, and p2 - a0.
Then, f(x) is irreducible.

Corollary 1.48.1. Let p be a prime and let n > 1. Then, xn − p ∈ Z[X] is irreducible.

Lemma 1.49 (Gauss lemma). Let R be a unique factorisation domain, and let F be the
field of fractions of R. Let f(x) ∈ R[X] be irreducible in R[X]. Then, f(x) is irreducible in
F [X].

Theorem 1.50 (Gauss theorem). Let R be a unique factorisation domain. Then, R[X] is
also a unique factorisation domain.
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2 Modules

2.1 Basic definitions

Definition 2.1. Let R be a ring. A left R-module is an abelian group (M,+) together
with a map R ×M → M given by (a, x) 7→ ax such that for all a, b ∈ R, m,n ∈ M , the
following hold.

1. a(m+ n) = am+ an.
2. (a+ b)m = am+ bm.
3. a(bm) = (ab)m.
4. 1m = m.

Remark. When R is commutative, we simply call this structure an R-module.

Example. Any abelian group is a Z-module.

Example. Any vector space V over a field F is an F -module.

Example. Any ring R is an R-module over itself. Indeed, given an ideal I ⊆ R, we see that
I is an R-module.

Example. Let M be an S-module. If ϕ : R → S is a ring homomorphism, we can treat M
as an R-module, with scalar multiplication (a,m) 7→ ϕ(a)m for a ∈ R, m ∈M .

In particular, S is an R-module, with (r, s) 7→ ϕ(r)s for r ∈ R, s ∈ S.
Using this idea, suppose that I ⊆ R is an ideal, and π : R → R/I is the canonical

homomorphism. Then R/I is an R-module, with (r, s+ I) 7→ rs+ I for r, s ∈ R.

2.2 Submodules

Definition 2.2. Let M be a module. A subset N ⊆M is called a submodule of M if N is
a subgroup of (M,+), and rx ∈ N for all r ∈ R, x ∈ N .

Example. Any subspace of a vector space is a submodule.

Example. All polynomials of degree at most n is a submodule of the R module R[x].

Example. The submodules of a commutative ring R are precisely the ideals of R.

Lemma 2.1. Let M1,M2 ⊆M be submodules. Then, M1 ∩M2 is a submodule of M .
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Definition 2.3. LetM1,M2 ⊆M be submodules. The smallest submodule ofM containing
M1 ∪M2 is called the submodule generated by M1,M2.

Lemma 2.2. The submodule generated by M1,M2 ⊆M is

M1 +M2 = {x+ y : x ∈M1, y ∈M2}.

2.3 Homomorphisms and isomorphisms

Definition 2.4. Let R be a ring, and let M,N be R-modules. A map ϕ : M → N is called
a homomorphism if for all r ∈ R, m,m′ ∈M , the following hold.

1. ϕ(m+m′) = ϕ(m) + ϕ(m′).
2. ϕ(rm) = rϕ(m).

The set of all R-module homomorphisms ϕ : M → N is denoted HomR(M,N).

Example. Any linear transformation between vector spaces over a field F is a homomor-
phism of F -modules.

Definition 2.5. A bijective homomorphism is called an isomorphism.

Definition 2.6. A homomorphism ϕ : M → M is called an endomorphism. The set of all
R-module endomorphisms ϕ : M → N is denoted EndR(M,N) = HomR(M,M).

Definition 2.7. A bijective endomorphism is called an automorphism.

Lemma 2.3. Let ϕ : M → N be a homomorphism of R-modules. Then, the following hold.

1. The set kerϕ is a submodule of M .
2. The set imϕ is a submodule of N .
3. The map ϕ is a injective if and only if kerϕ = {0}.

Theorem 2.4. Let M be an R-module, and N ⊆ M be a submodule. Then, the quotient
group M/N is an R-module, with r[m] 7→ [rm] for r ∈ R, m ∈M .

Theorem 2.5. If ϕ ∈ HomR(M,M ′), then M/ kerϕ ∼= imϕ.
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2.4 Cyclic modules

Definition 2.8. An R-module M is called cyclic if M = Rx for some x ∈M .

Definition 2.9. The annihilator of an R-module M is defined as

Ann(M) = {a ∈ R : aM = 0}.

Definition 2.10. A cyclic module M is called free if Ann(M) = 0.

Lemma 2.6. If M = Rx is free, then every element z ∈ M can be uniquely expressed as
z = ax for a ∈ R.

Definition 2.11. An R-module M is called finitely generated if M =M1 +M2 + · · ·+Mn

where each Mi is cyclic. If each Mi = Rxi, then {x1, . . . , xn} is called a generating set of
M .

Example. The module of polynomials overR of degree at most n is generated by {1, x, . . . , xn}.

2.5 Direct products and sums

Definition 2.12. Let I be an indexing set. A family (xi, i ∈ I) is a function whose value
at i is xi. Let Mi be R-modules. Their direct product

∏
i∈I Mi is the set of all families

(xi, i ∈ I) with xi ∈Mi. Addition and scalar multiplication are defined simply as

(xi) + (yi) = (xi + yi), r(xi) = (rxi),

Definition 2.13. The external direct sum of R-modules Mi, denoted
⊕

i∈I Mi, is the set
of all families (xi, i ∈ I) where all but finitely many xi = 0 for each index i ∈ I.

Definition 2.14. Let M1,M2 ⊆ M be submodules. We say that M is the internal direct
sum of M1,M2 if M =M1 +M2, M1 ∩M2 = {0}.

Lemma 2.7. If M is the internal direct sum of M1,M2, then M ∼=M1 ⊕M2.
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Definition 2.15. If M is an R-module and M ∼= M1 ⊕M2, then this is called a direct
decomposition of M . An indecomposable module M cannot be written as the direct sum
of non-zero modules.

Definition 2.16. An R-module M is called free if on a finite basis, it can be expressed as
a direct sum

M =M1 ⊕ · · · ⊕Mn

where each Mi is a free cyclic R-module. If Mi = Rxi, then the collection {x1, . . . , xn} is
called a basis of the free module M .

Lemma 2.8. If M is a free module with basis {x1, . . . , xn}, then each z ∈M can be uniquely
expressed as

z = a1x1 + · · ·+ anxn,

for ai ∈ R.

Example. Rn is a free R-module, with many choices of basis.

Example. Z/nZ is not a free Z-module, since n ∈ Ann(Z/nZ).

Lemma 2.9. Let R be a commutative unit ring. Then any two bases of a free R-module
have the same number of elements.

Definition 2.17. Let R be a commutative unit ring, and let F be a free R-module with a
basis of n elements. Then, n is defined as the rank of F .

Lemma 2.10. Let R be a principal ideal domain, and let M be a free R-module of rank n.
If N ⊆M is a submodule, then N is free with rank ≤ n.

Corollary 2.10.1. Any submodule of a finitely generated module over a principal ideal
domain is finitely generated.
Remark. Note that a finitely generated R-module M of rank n is isomorphic to Rn/K,
where Rn is a free module of rank n.
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Definition 2.18. An element x ∈ M is a called a torsion element of the R-module M if
ax = 0 for some non-zero a ∈ R.
Remark. The set of torsion elements in M , denoted t(M), is a submodule of M when R is
an integral domain.
Remark. If t(M) = 0, M is called a torsion-free module. If t(M) =M , M is called a torsion
module.

Example. Q⊕ Z/nZ is neither a torsion module, nor torsion-free.

Theorem 2.11. Let M be a finitely generated module over a principal ideal domain R.
Then, M can be expressed as

M = F ⊕ t(M),

where F is a free R-module. Moreover, F is unique up to isomorphism.

Definition 2.19. Let x ∈M and let Ann(x) = (a) ⊆ R. Then, a is called the period of x.
Remark. The period of an element x ∈M is unique up to units in R.

Definition 2.20. Let M be a finitely generated torsion module over a principal ideal
domain. If Ann(M) = (c), then c is called the exponent of M .
Remark. The exponent of M is unique up to units in R.

Lemma 2.12. Let M be a finitely generated torsion module over a principal ideal domain,
with exponent c = ab where gcd(a, b) = 1. Then, M =M1 ⊕M2, where

M1 = {x ∈M : ax = 0}, M2 = {x ∈M : bx = 0}.

Corollary 2.12.1. Let M be a finitely generated torsion module over a principal ideal
domain, with exponent c = pα1

1 · · · pαk
k for primes p1, . . . , pk. Then, M can be expressed as

M =M1 ⊕ · · · ⊕Mk,

where each Mi = {x ∈M : pαi
i x = 0}.

Definition 2.21. A set of elements {y1, . . . , yn} ⊆M is called independent if
∑m

i=1 aiyi = 0
for ai ∈ R forces each aiyi = 0.
Remark. A linearly independent set is independent, but not all independent sets are linearly
independent.
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Lemma 2.13. Let M be a finitely generated torsion module over a principal ideal domain,
with exponent pr where p is a prime, r ≥ 1. Let x1 ∈M with period pr, let M =M/(x1), and
let y1, . . . , ym be independent elements of M . Then, for each i, there exists a representative
yi of yi such that the periods of yi and yi are the same. Furthermore, x1, y1, . . . , ym are
independent.

Lemma 2.14. Let M be a finitely generated torsion module over a principal ideal domain,
with exponent pr where p is prime, r ≥ 1. Then, M can be expressed as a direct sum of
cyclic modules

M = R/(pr1)⊕ · · · ⊕R/(prk),

with r1 ≥ · · · ≥ rk ≥ 1.

Lemma 2.15. Let R be a unique factorisation domain.

1. If gcd(a, b) = 1, then R/(ab) ∼= R/(a)⊕R/(b).
2. If p ∈ R is prime and b ∈ R is non-zero, then R/(p) ∼= bR/(bp).

Theorem 2.16 (Structure theorem). Let M be a finitely generated module over a principal
ideal domain R. Then, M can be expressed uniquely as

M ∼= F ⊕R/(q1)⊕ · · · ⊕R/(qk),

where F is a free R-module and q1, . . . , qk are non-zero elements of R with q1 | · · · | qk.
Moreover, F is unique up to isomorphism, and q1, . . . , qk are unique up to units.

Corollary 2.16.1. Let G be a finitely generated abelian group. Then, G can be expressed
uniquely as

G = F ⊕ Z/q1Z ⊕ · · · ⊕ Z/qkZ,

where F is a free abelian group and q1, . . . , qk are non-zero, with q1 | · · · | qk.
Remark. The rank of M is defined as the rank of F . The elements q1, . . . , qk are called the
invariant factors of M .

Example. In order to enumerate all abelian groups G of order 60 = 22 × 3 × 5 (up to
isomorphism), observe that G has no free part. The only abelian groups of order 22 are
Z/4Z and Z/2Z × Z/2Z, the only abelian group of order 3 is Z/3Z, and the only abelian
group of order 5 is Z/5Z. Thus, the invariant factors of G must be either 60, or 2, 30. This
gives us exactly two groups,

G ∼= Z/60Z ∼= Z/4Z× Z/3Z× Z/5Z,
G ∼= Z/2Z× Z/30Z ∼= Z/2Z× Z/2Z× Z/3Z× Z/5Z.
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2.6 Free modules

Theorem 2.17. For any set S and a ring R, there exists a free module FS and a map
ι : S ↪→ FS such that ι(S) is a basis of FS. This free module FS is unique up to isomor-
phism. Furthermore, this has the following universal property: given any map f : S → M
where M is an R-module, there exists a unique R-module homomorphism f∗ : F

S →M such
that f = f∗ ◦ ι. In other words, each f induces a map f∗ such that the following diagram
commutes.

S M

FS

f

ι
f∗

Proof. Define

FS = {g : S → R : g(a) = 0 for all but finitely many a ∈ S}.

This can be equipped with the R-module structure

(g + h)(a) = g(a) + h(a), (rg)(a) = rg(a)

for all r ∈ R, g, h ∈ FS , a ∈ S. Now, define

ι : S → FS , a 7→ ga,

where each ga(a) = 1, ga(x) = 0 for x 6= a. Then, it is clear that all such ga generate FS . Now,
given f : S →M , we may define

f∗ : F
S →M, ga 7→ f(a),

which is the required R-module homomorphism.

2.7 Tensor products

Definition 2.22. Let R be a commutative unit ring, and let M,N,X be R-modules. A
map f : M ×N → X is called R-bilinear if it is R-linear in each separate argument, i.e. for
all r ∈ R, x, y ∈M , z, w ∈ N , we have

1. f(x+ y, z) = f(x, z) + f(y, z).
2. f(x, z + w) = f(x, z) + f(x,w).
3. f(rx, z) = rf(x, z) = f(x, rz).
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Definition 2.23. Let R be a commutative unit ring, and let M,N be R-modules. A tensor
product of M and N is an R-module denoted M ⊗R N , together with an R-bilinear map
ι : M ×N →M ⊗RN such that for every R-bilinear map f : M ×N → X, there is a unique
R-linear map f∗ : M ⊗RN → X such that f = f∗ ◦ ι. In other words, each f induces a map
f∗ such that the following diagram commutes.

M ×N X

M ⊗R N

f

ι
f∗

We usually denote ι(x, y) ≡ x⊗ y.
Remark. The R-module M ⊗R N is generated by the tensors x⊗ y.

Theorem 2.18. The tensor product M ⊗R N of R-modules M,N exists, and is unique up
to isomorphism.

Example. We can show that Z/nZ ⊗Z Q = 0, by picking an arbitrary element x × y and
noting that

x⊗ y = n(x⊗ (y/n)) = (nx)⊗ (y/n) = 0⊗ (y/n) = 0(0⊗ (y/n)) = 0.

Example. We claim that Q⊗Z Q ∼= Q. Consider the maps

ϕ : Q → Q⊗Z Q, q 7→ q ⊗ 1,

ψ : Q×Q → Q, (p, q) 7→ pq.

It is clear that ϕ is Z-linear, ψ is Z-bilinear hence ψ∗ is Z-linear. Furthermore, ϕ◦ψ∗, ψ∗ ◦ϕ
are identity maps on their respective domains.

Example. If d = gcd(m,n), then

Z/mZ⊗Z Z/nZ ∼= Z/dZ.

To show this, we define the maps

ϕ : Z/dZ → Z/mZ⊗Z Z/nZ, n 7→ n(1⊗ 1),

ψ : Z/mZ× Z/nZ → Z/dZ, (x, y) 7→ xy.

It can be checked that these maps are indeed well-defined, ϕ is Z-linear, ψ is Z-bilinear
hence ψ∗ is Z-linear. Furthermore, ϕ ◦ ψ∗, ψ∗ ◦ ϕ are identity maps on their respective
domains.
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