MA3202: Algebra II

Satvik Saha, 19MS154 February 27, 2022

Exercise 1 Find all units in $\mathbb{Z}[i]$.

Solution Let $u, v \in \mathbb{Z}[i]$ be units with $uv = 1$. Further let $u = a + ib$, $v = c + id$. Then, taking square norms gives

$$
(a^2 + b^2)(c^2 + d^2) = 1,
$$

from which we must have $a^2 + b^2 = c^2 + d^2 = 1$. This forces $u = \pm 1, \pm i$, which are the only units in $\mathbb{Z}[i]$.

Exercise 2 Prove that $\mathbb{Z}[i]$ is a Euclidean domain.

Solution It can be shown that the map $d: \mathbb{Z}[i] \setminus \{0\} \to \mathbb{Z}_{n \geq 0}$, $a + ib \mapsto a^2 + b^2$ is an algorithm map. Let $x = a + ib$, $y = c + id$, whence $d(xy) = d(x)d(y)$ immediately gives $d(x) \leq d(xy)$. Next, note that

$$
\frac{x}{y} = \frac{a+ib}{c+id} = \frac{(a+ib)(c-id)}{c^2+d^2} = \frac{(ac+bd)+i(bc-ad)}{c^2+d^2}.
$$

Thus, we can set $x = (r + is)y$, where r, s are rational. Furthermore, we can choose integers m, n such that

$$
|r - m| \le \frac{1}{2}, \qquad |s - n| \le \frac{1}{2}.
$$

Set $q = m + in \in \mathbb{Z}[i],$

$$
w = \frac{x}{y} - q = (r - m) + i(s - n),
$$
 $wy = x - qy \in \mathbb{Z}[i].$

Thus, we claim that $x = qy + wy$, with $d(wy) < d(y)$. Indeed,

$$
d(w) = (r - m)^2 + (s - n)^2 \le \frac{1}{2^2} + \frac{1}{2^2} = \frac{1}{2},
$$

so

$$
d(wy) = d(w)d(y) \le \frac{1}{2}d(y) < d(y).
$$

Exercise 3 Show that if F is a field, then $F[X]$ is a Euclidean domain.

Solution The map which sends a polynomial to its degree is a Euclidean domain. Note that $\deg(pq)$ = $deg(p) + deg(q)$, so $deg(p) \leq deg(pq)$.

Exercise 4 Is 5 a prime element in $\mathbb{Z}[\sqrt{}]$ 2]?

Solution Suppose that $5 | xy$, with $x = a + b$ √ $2, y = c + d$ √ 2. Note that $xy = (ac + 2bd) + (ad + bc)$ √ 2. Define $d(x) = |a^2 - 2b^2|$, whence

$$
d(xy) = |(ac + 2bd)^2 - 2(ad + bc)^2| = a^2c^2 + 4b^2d^2 - 2a^2d^2 - 2b^2c^2,
$$

and $d(x)d(y) = a^2c^2 - 2a^2d^2 - 2b^2c^2 + 4b^2d^2$. In other words, $d(x)d(y) = d(xy)$. Thus, we must have $5^2 \mid |(a^2 - 2b^2)(c^2 - 2d^2)|$.

Without loss of generality, we have $5 \mid a^2 - 2b^2$. Now, $a, b \equiv 0, \pm 1, \pm 2 \pmod{5}$, hence $a^2 \equiv 0, \pm 1$ (mod 5). As a result, $a^2 - 2b^2 \equiv 0 \pmod{5}$ only when $a, b \equiv 0 \pmod{5}$. Thus, $5 | a + b\sqrt{2} = x$. This proves that 5 is prime in $\mathbb{Z}[\sqrt{2}]$.

Exercise 5 Show that $\mathbb{Z}[\sqrt{2}]$ 2] is a Euclidean domain. **Solution** We have already shown that the map defined by $d(a + b)$ √ It the map defined by $d(a + b\sqrt{2}) = |a^2 - 2b^2|$ is multiplicative, hence $d(x) \leq d(xy)$. Now, let $x = a + b\sqrt{2}$, $y = c + d\sqrt{2}$. Then note that

$$
\frac{x}{y} = \frac{a + b\sqrt{2}}{c + d\sqrt{2}} = \frac{(a + b\sqrt{2})(c - d\sqrt{2})}{c^2 - 2d^2} = \frac{(ac - 2bd) + (bc - ad)\sqrt{2}}{c^2 - 2d^2}.
$$

Thus, we can set $x = (r + s)$ $(2)y$, where r, s are rational. Furthermore, we can choose integers m, n such that

$$
|r - m| \le \frac{1}{2}
$$
, $|s - n| \le \frac{1}{2}$.

Set $q = m + n$ $\sqrt{2} \in \mathbb{Z}[\sqrt{2}]$ 2],

$$
w = \frac{x}{y} - q = (r - m) + (s - n)\sqrt{2}, \quad wy = x - qy \in \mathbb{Z}[\sqrt{2}].
$$

Thus, we claim that $x = qy + wy$, with $d(wy) < d(y)$. Indeed,

$$
d(w) = |(r - m)^2 - 2(s - n)^2| \le |r - m|^2 + 2|s - n|^2 \le \frac{1}{2^2} + 2 \cdot \frac{1}{2^2} = \frac{3}{4},
$$

so

$$
d(wy) = d(w)d(y) \le \frac{3}{4}d(y) < d(y).
$$

Exercise 6 Is a subring of a Euclidean domain a Euclidean domain? What about principal ideal domains?

Solution Note that $\mathbb{Z}[X]$ is not a principal ideal domain, since $(X, 2)$ is an ideal but not principal. Thus, $\mathbb{Z}[X]$ cannot be a Euclidean domain. However, $\mathbb{R}[X]$ is a Euclidean domain since $\mathbb R$ is a field, and $\mathbb{Z}[X] \subset \mathbb{R}[X]$ is a subring.

The same shows that a subring of a principal ideal domain need not be a principal ideal domain.

Exercise 7 Let R be a principal ideal domain, and P be a prime ideal of R. Show that R/P is a principal ideal domain. Is this true for Euclidean domains?

Solution Note that this is trivial if $P = \{0\}$. Otherwise, since R is a principal ideal domain and P is a prime ideal, P is a maximal ideal. Thus, R/P is a field, hence a simple ring with only two ideals (0) and (1), hence a principal ideal domain.

Note that this R/P is also a Euclidean domain, since it is a field with the trivial algorithm map $x \mapsto 1.$

Exercise 8 Let R be a Euclidean domain, and $x \in R$. Then, show that x is a unit if and only if $d(x) = d(1).$

Solution First suppose that x is a unit, with $xy = 1$. Then, $d(x) \leq d(xy) = d(1)$. On the other hand, $d(1) \leq d(1x) = d(x)$, hence $d(x) = d(1)$.

Next, suppose that $d(x) = d(1)$. Write $1 = qx + r$; if $r = 0$, then x is a unit. Otherwise, we demand $d(r) < d(1)$, but this is impossible since $d(1) \leq d(1r) = d(r)$.

Exercise 9 Let R be a factorisation domain in which any two elements have a gcd. Show that R is a unique factorisation domain.

Solution We need only show that every irreducible element is a prime. Let $p \in R$ be irreducible, and p | ab. Also suppose that $p \nmid a$; we claim that p | b. Note that $gcd(ab, pb) = gcd(a, p)b$, but $gcd(a, p) = 1$. Thus, $p | ab, pb$ shows that $p | gcd(ab, pb)$ so $p | b$.

Exercise 10 Let R be a principal ideal domain, S be an integral domain, and $\varphi: R \to S$ be a surjective ring homomorphism which is not one-one. Show that S is a field.

Solution Set $P = \ker \varphi$. Then, we have $R/P \cong S$ which is an integral domain, hence P is a prime ideal. Now P = 0 would imply that φ is an isomorphism. Thus, $P \neq 0$, hence P is maximal in R, hence $R/P \cong S$ is a field.