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Exercise 1 Let R be a commutative ring, and consider the nilradical of R defined by

N = {x ∈ R : xn = 0 for some n}.

Prove that N is an ideal of R.

Solution It is clear that if x, y ∈ N with xm = yn = 0, then

(x+ y)m+n =

m+n∑
k=0

(
m+ n

k

)
xkym+n−k = 0.

This is because in each term, either the power of x is at least m, or the power of y is at least n. Also,

(xy)m+n = xm+n · ym+n = 0,

hence x+ y, xy ∈ N . Finally, note that for even m,

xm − (−x)m = (x+ (−x)) · (xm−1 − xm−2 · (−x) + · · · − (−x)m−1) = 0,

and for odd m,

xm + (−x)m = (x+ (−x)) · (xm−1 − xm−2 · (−x) + · · ·+ (−x)m−1) = 0.

Hence, (−x)m = 0 giving −x ∈ N . Finally, given a ∈ R, we clearly have

(ax)m = am · xm = 0,

giving ax ∈ N .

Exercise 2 Give examples of two rings R,S such that (R,+) and (S,+) are isomorphic, but (R,+, ·)
and (S,+, ·) are not.

Solution It is clear that Z and 2Z are isomorphic as additive groups. However, they are not isomorphic
as rings; if ϕ : Z → 2Z were an isomorphism, then we demand ϕ(1) = ϕ(12) = ϕ(1)2 which is impossible
unless ϕ(1) = 0, but this is no longer an isomorphism.

Exercise 3 True or false?

(i) Ring homomorphisms (non-trivial) map zero-divisors to zero-divisors.

(ii) Ring homomorphisms (non-trivial) map nilpotent elements to nilpotent elements.

Solution

(i) False. Consider the homomorphism ϕ : Z4 → Z2, n 7→ n (mod 2). Then 2 ∈ Z4 is a zero-divisor
since 2 · 2 = 4 ≡ 0. However, Z2 has no zero-divisors.

(ii) True. Let ϕ : R → S be a non-trivial ring homomorphism, and let a ∈ R such that an = 0. Then,
ϕ(a)n = ϕ(an) = ϕ(0) = 0.

Exercise 4 Let R be the ring of all 2× 2 real matrices of the form(
a b
−b a

)
.

Prove that R is isomorphic to the ring of complex numbers C.
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Solution We define the map

ϕ : R → C,
(

a b
−b a

)
7→ a+ bi.

It can be checked that this is indeed an isomorphism.

Exercise 5 How many ring homomorphisms are there from Z3 to Z7?

Solution There is only the trivial/zero homomorphism. Any other homomorphism must map 0 7→ 0,
1 7→ 1, hence 2 = 1 + 1 7→ 2. Now, this requires 1 + 1 + 1 7→ 3, but 1 + 1 + 1 ≡ 0, a contradiction.

Exercise 6 Let R be a commutative ring and I ⊂ R be an ideal. Consider the radical
√
I = {x ∈ R : xn ∈ I for some n}.

(i) Prove that
√
I is an ideal of R.

(ii) Let f : R → S be a surjective ring homomorphism such that ker f ⊂ I. Prove that f(
√
I) =

√
f(I).

Solution

(i) Let x, y ∈
√
I such that xm, yn ∈ I. Then it is clear from previous arguments that −x, xy, x+y ∈ I.

Furthermore, given a ∈ R, we have (ax)m = amxm ∈ I, hence ax ∈
√
I.

(ii) First, pick x ∈ f(
√
I). Thus, there exists y ∈

√
I, yn ∈ I for some n, such that x = f(y). Thus,

xn = f(yn) ∈ f(I), hence x ∈
√
f(I).

Next, pick x ∈
√
f(I), with xm ∈ f(I) for some m. Thus, there exists w ∈ I such that xm = f(w).

From the surjectivity of f , there exists y ∈ R such that x = f(y), hence xm = f(ym). This gives
us f(w − ym) = 0, hence w − yn ∈ ker f ⊂ I. Since w ∈ I, we are forced to have ym ∈ I, y ∈

√
I.

Thus, we have x = f(y) ∈ f(
√
I).

Exercise 7 Show that every field contains a subring isomorphic to Q or Z/pZ for some prime p.

Solution Let F be a field, and let 1 ∈ F be its multiplicative identity. Define a homomorphism ϕ,
such that ϕ(1) = 1. Then, the image of Z is a subring of F ; if it is finite, then this image is a finite
integral domain, hence isomorphic to Z/pZ for some prime p. Otherwise, we have embedded Z inside F .
Now, extend ϕ so that ϕ(1/n) = n−1 in F , and ϕ(p/q) = p · q−1 in F . This gives an embedding of Q in
F .

Exercise 8 Let R and S be commutative rings with identities, and let T = R × S. Show that every
ideal I of T is of the form I = J ×K, where J and K are ideals of R and S respectively.

Solution Let I be an ideal in R×S. Then given non-zero (r, s) ∈ I, we demand (r, 0) = (r, s)·(1, 0) ∈ I,
as well as (0, s) = (r, s) · (0, 1) ∈ I. Now if (r′, s′) ∈ I, we immediately have (r′, s), (r, s′) ∈ I. In other
words, if we set J to be the set of first coordinates of elements in I, and K to be set of second coordinates
of elements in I, then I = J ×K.

To show that J is an ideal in R, note that given any x, y ∈ J , we have (x, 0), (y, 0) ∈ I, hence
(−x, 0), (x+ y, 0), (xy, 0) ∈ I. By definition of J , we have −x, x+ y, xy ∈ I. A similar argument shows
that K is an ideal in S.

Exercise 9 How many isomorphisms ϕ : C → C are there such that ϕ(R) ⊂ R?

Solution Two. Note that ϕ(1) = 1 forces ϕ to fix the integers, hence the rationals, hence the reals.
Now, ϕ(i)2 = ϕ(i2) = ϕ(−1) = −1, forcing one of ϕ(i) = ±i. It can be checked that both choices
determine distinct isomorphisms.

Exercise 10 Let f : R → S be a ring homomorphism and I, J be ideals of R,S respectively. Assume
that f(I) ⊂ J . Show that f defined a homomorphism f̃ : R/I → S/J . What is the kernel of f̃?
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Solution Define the natural homomorphism

f̃ : R/I → S/J, x+ J 7→ f(x) + J.

It is easily checked that this is indeed a homomorphism.

Suppose that x+ I ∈ ker f̃ = K. In other words, x+ I 7→ J , hence f(x) + J ∼ J or f(x) ∈ J . Thus,
x ∈ f−1(J) ⊃ I, so K = f−1(J)/I.
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