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Exercise 1 Let R be a commutative ring, and consider the nilradical of R defined by
N ={z € R: 2" =0 for some n}.

Prove that IV is an ideal of R.

Solution It is clear that if z,y € N with 2™ = y™ = 0, then
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This is because in each term, either the power of x is at least m, or the power of y is at least n. Also,
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hence x 4+ y, xy € N. Finally, note that for even m,

g™ = (=)™ = (x4 (~x)) - (@™ =™ () + o = (m2)" ) =0,
and for odd m,

2" 4 (—2)™ = (x4 (—x) - (2™ =™ (=) - ()™ h) = 0.
Hence, (—x)™ = 0 giving —z € N. Finally, given a € R, we clearly have

(ax)™ =a™ - 2™ =0,

giving ax € N.

Exercise 2 Give examples of two rings R, S such that (R,+) and (S, +) are isomorphic, but (R, +, )
and (S, +,-) are not.

Solution It is clear that Z and 2Z are isomorphic as additive groups. However, they are not isomorphic
as rings; if ¢: Z — 27 were an isomorphism, then we demand ¢(1) = ¢(12) = ¢(1)? which is impossible
unless ¢(1) = 0, but this is no longer an isomorphism.

Exercise 3 True or false?

(i) Ring homomorphisms (non-trivial) map zero-divisors to zero-divisors.

(ii) Ring homomorphisms (non-trivial) map nilpotent elements to nilpotent elements.

Solution

(i) False. Consider the homomorphism ¢: Zy — Zso, n — n (mod 2). Then 2 € Z, is a zero-divisor
since 2 -2 =4 = 0. However, Z, has no zero-divisors.

(ii) True. Let ¢: R — S be a non-trivial ring homomorphism, and let a € R such that a™ = 0. Then,
p(a)" = p(a™) = ¢(0) =0.

Exercise 4 Let R be the ring of all 2 x 2 real matrices of the form

(o)

Prove that R is isomorphic to the ring of complex numbers C.



Solution We define the map

p:R—=C, (ab Z>|—>a+bi.

It can be checked that this is indeed an isomorphism.
Exercise 5 How many ring homomorphisms are there from Zs to Z;?

Solution There is only the trivial/zero homomorphism. Any other homomorphism must map 0 — 0,
1+ 1, hence 2 =1+ 1+ 2. Now, this requires 1+ 1+ 1+ 3, but 1 +1+ 1 = 0, a contradiction.

Exercise 6 Let R be a commutative ring and I C R be an ideal. Consider the radical
VI={z e R:az" I for some n}.
(i) Prove that /T is an ideal of R.
(ii) Let f: R — S be a surjective ring homomorphism such that ker f C I. Prove that f(v/T) = \/f(I).

Solution

(i) Let 2,y € VT such that ™, y™ € I. Then it is clear from previous arguments that —x, zy, z+y € I.
Furthermore, given a € R, we have (az)™ = a™z™ € I, hence ax € V1.

(ii) First, pick x € f(v/T). Thus, there exists y € VI, y" € I for some n, such that z = f(y). Thus,
™ = f(y™) € f(I), hence = € \/f(I).
Next, pick z € v/ f(I), with 2™ € f(I) for some m. Thus, there exists w € I such that 2™ = f(w).
From the surjectivity of f, there exists y € R such that z = f(y), hence 2™ = f(y™). This gives

us f(w—y™) =0, hence w — y™ € ker f C I. Since w € I, we are forced to have y™ € I, y € /1.
Thus, we have 2 = f(y) € f(V/1).

Exercise 7 Show that every field contains a subring isomorphic to Q or Z/pZ for some prime p.

Solution Let I be a field, and let 1 € F' be its multiplicative identity. Define a homomorphism ¢,
such that ¢(1) = 1. Then, the image of Z is a subring of F; if it is finite, then this image is a finite
integral domain, hence isomorphic to Z/pZ for some prime p. Otherwise, we have embedded Z inside F.
Now, extend ¢ so that ¢(1/n) =n~1in F, and ¢(p/q) = p-q~! in F. This gives an embedding of Q in
F.

Exercise 8 Let R and S be commutative rings with identities, and let T = R x S. Show that every
ideal I of T is of the form I = J x K, where J and K are ideals of R and S respectively.

Solution Let I be an ideal in Rx.S. Then given non-zero (r, s) € I, we demand (r,0) = (r,s)-(1,0) € I,
as well as (0,s) = (r,s) - (0,1) € I. Now if (r,s’") € I, we immediately have (r',s), (r,s") € I. In other
words, if we set J to be the set of first coordinates of elements in I, and K to be set of second coordinates
of elements in I, then I = J x K.

To show that J is an ideal in R, note that given any x,y € J, we have (z,0),(y,0) € I, hence
(—=2,0),(x +v,0), (zy,0) € I. By definition of J, we have —x,x + y,zy € I. A similar argument shows
that K is an ideal in S.

Exercise 9 How many isomorphisms ¢: C — C are there such that p(R) C R?

Solution Two. Note that ¢(1) = 1 forces ¢ to fix the integers, hence the rationals, hence the reals.
Now, ¢(i)? = ¢(i?) = ¢(—1) = —1, forcing one of (i) = +i. It can be checked that both choices
determine distinct isomorphisms.

Exercise 10 Let f: R — S be a ring homomorphism and I, J be ideals of R, S respectively. Assume
that f(I) C J. Show that f defined a homomorphism f: R/I — S/J. What is the kernel of f?



Solution Define the natural homomorphism
f:R/T—S/J,  x+Jw flzx)+J.
It is easily checked that this is indeed a homomorphism.

Suppose that z + I € ker f = K. In other words, z 4+ I — J, hence fl@)+J ~Jor f(x) € J. Thus,
rxe fYJ)DI,s0 K=f"1(J)/I.



