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[8  Topological groups| 25

1 Introduction

1.1 Topological spaces

Definition 1.1. A topology on some set X is a family 7 of subsets of X, satisfying the
following.

1. 0, X er.
2. All unions of elements from 7 are in 7.

3. All finite intersections of elements from 7 are in 7.

The sets from 7 are declared to be open sets in the topological space (X, 7).

Ezample. Any set X admits the indiscrete topology 7,4 = {0, X}, as well as the discrete
topology 74 = P(X). Both of these are trivial examples.

Ezample. Let X be a set. The cofinite topology on X is the collection of complements of
finite sets, along with the empty set. Note that when X is finite, this is simply the discrete
topology.

Definition 1.2. Let 7,7 be two topologies on the set X. We say that 7 is finer than 7/ if
7 has more open sets than 7/. In such a case, we also say that 7/ is coarser than 7.

1.2 Topological bases

Definition 1.3. Let (X, 7) be a topological space. We say that § C 7 is a base of the
topology 7 such that every open set U € T is expressible as a union of elements from .

Definition 1.4. Let X be a set, and let 8 be a collection of subsets of X satisfying the
following.

1. For every x € X, there exists x € B € .

2. For every x € X such that x € B; N By, By, By € (3, there exists B € ( such that
r € BC ByNDBs.

Then, B generates a topology on X, namely the collection of all unions of elements of 5.

Lemma 1.1. Let 7 be a topology on X, and let B C 7 be a collection of open sets. Then,
B is a basis of T, or generates T, if for every x € U € 1, there exists B € [ such that
reBCU.
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Example. The collection of all open balls in R™ form a basis of the usual topology.

Lemma 1.2. Let X be equipped with the topologies T and 7', and let S and 3 be the
respective bases of these topologies. Then, T is finer than 7' if and only if given x € B’ €
there exists v € B € 8 such that B C B'.

Ezample. The collections of open balls in R™ generate the same topology as the collection
of all open rectangles in R™.

Ezample. Consider the topologies on R generated by the following bases.
1. 81 ={(a,b) :a,beR,a<b}.
2. B2 ={a,b) : a,b € R,a < b}.
3. B3 ={(a,b) :a,beR,a <b}U{(a,b)\ K} where K ={1/n:n € Z}.

We call the topology generated by (s the lower limit topology, denoted R,. The topology
generated by (B3 is denoted Ry . Both of these are strictly finer than the standard topology.

Definition 1.5. A sub-basis for some topology on X is a collection p of subsets of X
whose union is the whole of X. The topology generated by p is defined to be the topology
generated by the collection of all finite intersections of elements of p.

1.3 Product topology

Definition 1.6. Let (Xi,71), (X2,7) be topological spaces. Then 71 x 72 generates the
product topology on X; x Xo.

Ezample. The product topology on R x R, where R is equipped with the standard topology,
coincides with the standard topology on R2.

Lemma 1.3. If 81, B2 are bases of the topologies 71, T2, then B1 X By and 71 X 7o generate
the same product topology.

Proof. Given (x1,x2) € U where U C X; x Xg is open in the product topology, recall that U
can be written as a union of the basic open sets Uy; x Ug;, where Uy; € 7 and Us; € 7. Suppose
that (x1,x9) € Uy x Us. Thus, we can choose By € 1, By € 33 such that z; € By C U; and
r9 € By C Us. Thus, (fL‘l,.IQ)EBlXBQgUlXUQgU. O

Definition 1.7. The projection maps are defined as m;: X7 x --- Xy — X, (z1,...,2) —
;.
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Lemma 1.4. The collection of elements of the form 771_1(U1) or 7r2_1(U2), where Uy € 7y
and Uy € 19, forms a sub-basis of the product topology on X1 x Xo.

Proof. Note that 7,1 (X;) = X1 x Xo. Now it is easy to see that finite intersections of elements
of the form U; x X5 or X7 x Uy where Uy, Uy are open, are all of the form U; x Uy which is
precisely a basis of the product topology. O

Corollary 1.4.1. We can restrict ourselves to the sub-basis of elements of the form Wfl(Bl)
or 7T2_1(B2), where By € B1, By € (8o for some bases (1, B2 of T1,Ts.

1.4 Subspace topology

Definition 1.8. Let (X, 7) be a topological space, and let Y C X. Then the collection
UNY forall U € 7 comprises the subspace topology 7y on Y induced by the topology 7
on X.

Lemma 1.5. If B is a basis for the topology on X, and Y C X, then the collection BNY
for all B € B8 generates the subspace topology on Y .

Lemma 1.6. An open set of Y is open in X if Y is open in X.

Proof. Let U CY be open in Y, then U =V NY for some open set V in X. If additionally Y
is open in X, this immediately shows that U is open in X. O

Theorem 1.7. Let (X, 7x), (Y,7y) be topological spaces, and let A C X, B CY. Then,
there are two ways of assigning a natural topology on A x B.

1. Take the product topology on X XY, and consider the subspace topology induced by it
on A x B.

2. Take the subspace topologies on A induced by 7x, B induced by Ty, and consider the
product topology generated by them on A X B.

These two methods generate the same topology on A X B.

Proof. Open sets in 1 look like (U x V)N (A x B), where U € 7x, V € 7y). Open sets in 2 look
like (U'NA) x (V'NB), where U’ € Tx, V' € 7y, which can be rewritten as (U’ x V)N (A x B).
It is easy to see that these describe precisely the same sets. O
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1.5 Order topology

Definition 1.9. Let X be a set with a simple order <. Then the collection of sets of the
form (a,b), [ap,b), (a,bp] where ag is the minimal element of X, by is the maximal element
of X, generate the order topology on X.

Example. The order topology on N is precisely the discrete topology.

Definition 1.10. Let X1, X5 be simply ordered sets. The dictionary order on X; x Xs is
defined as follows: (z1,x2) < (y1,y2) if 1 < y1, or if 1 = y; and x5 < yo.

Ezample. Consider X = {1,2} x N, where both {1,2} and N are endowed with the discrete
topology. Note that the product topology on X is the discrete topology.

Now consider the dictionary order on X. Here, (1,1) is the smallest element, so we can
list the elements of X in ascending order. Note that every (1,m) < (2,n), for all m,n € N.
Now, note that all singletons {(1,m)} are open in the order topology on X. The same is
true for the singletons {(1,n)} for all n > 1. However, the singleton {(2,1)} is not open in
the order topology.

Ezample. Consider R with the usual topology, and X = [0,1) U {2}. Then, {2} is open in
the subspace topology on X, but it is not open in the order topology on X.

Lemma 1.8. The open rays of the form (a,+o0) and (—oo,a) in X form a sub-basis of
the order topology on X.

Proof. Note that (a,b) = (—o0,b) N (a, +0), [ag,b) = (—o0,b), and (a, bg] = (a, +00). O

Definition 1.11. Let X be a simply ordered set, and ¥ C X. Then, we say that Y is
convex in X if given a,b € Y such that a < b, the interval (a,b) ={z € X :a <z <b} CY.

Theorem 1.9. Let Y be convexr in X. Then, the subspace topology and the order topology
on 'Y induced from the order topology on X coincide.

1.6 Closed sets

Definition 1.12. Let (X, 7) be a topological space. A set F' C X is said to be closed in X
if Fe=X\Fer.

5 Updated on May 8, 2022



MA3201: TorPoLOGY 1 INTRODUCTION

Ezample. The sets (), X are closed in every topological space (X, 7).

Ezample. In a set equipped with the discrete topology, every set is both open and closed.

Lemma 1.10. Arbitrary intersections, and finite unions of closed sets are closed.

Theorem 1.11. Let (X, 7) be a topological space, and let Y C X be equipped with the
subspace topology. Then, a set F' CY is closed in'Y if and only if F =Y NG, where G is
closed in X.

Proof. Let F CY. Now, Fisclosedin Y, Y\ F=YNF¢isopeninY, YNF¢=Y NU where
Uisopenin X, F=YNYNF)=YN(YNU)=YNU® where U€ is closed. The steps are
reversible. O

Lemma 1.12. A closed set of Y is closed in X if Y is closed in X.

1.7 Interiors and closures

Definition 1.13. Let A C X where (X, 7) is a topological space.

1. The interior of A is defined as the union of all open sets contained in A. This is
denoted by A°.

2. The closure of A is defined as the intersection of all closed sets containing A. This is

denoted by A.

Remark. The interior of a set is open, and the closure of a set is closed.

Lemma 1.13. Let Y C X be topological spaces, and let A CY. Also let Ax, Ay denote
the closures of A in X, Y respectively. Then, Ay = Ax NY.

Theorem 1.14. Let A C X. Then,

1. = € A if and only if every open set containing x has non-empty intersection with A.

2. x € A if and only if every basic open set containing x has non-empty intersection with
A, given that the topology on X is generated by those basic open sets.

6 Updated on May 8, 2022



MA3201: TorPoLOGY 1 INTRODUCTION

Definition 1.14. Let A C X where (X, 7) is a topological space. We say that = € X is a
limit point of X if for every open set U containing z, the deleted neighbourhood U \ {z}
has non-empty intersection with A. The set of limit points of A is denoted by A’.

Example. Let X be a set endowed with the discrete topology. Then, given any set A C X,
we have A’ = ().

Lemma 1.15. A closed set contains all its limit points.

Proof. Let F' C X be closed in X, and let z € F’. Then given any open set containing z, we
have UNF 2 (U\{z})NF # 0, hence x € F = F. O

Lemma 1.16. Let A C X where (X,7) is a topological space. Then, A= AU A’.

Proof. Tt is clear that A D AUA’. Now pick x € A. If x ¢ A, then we know that given any open
neighbourhood U of z, we have non-empty U N A. Furthermore, this intersection can never
contain x, hence x € A’. This proves that A C AU A’ O

1.8 Convergence of sequences

Definition 1.15. Let {z,}°2; be a sequence of points from (X,7), and let z € X. We
say that this sequence converges to x, denoted x,, — =z, if every open neighbourhood of x
contains the tail of this sequence. In other words, given U € 7 such that x € U, there must
exist NV € N such that z,, € U for all n > N.

Ezample. Let X = {a,b,c}, and 7 = {0, {b}, {a, b}, {b,c}, X}. Then, the constant sequence
of b’s converges to all three points a, b, c.

Ezample. Let X = R, and 7 be the collection of all intervals (—a,a) together with (), R.
Then, the constant sequence of 0’s converges to every point in R.

Definition 1.16. Let (X, 7) be a topological space. We say that this topological space is
Hausdorff if given any two distinct points x,y € X, there exist open sets U, V € 7 such that
reU,yeV,andUNV = 0.

Ezample. The real numbers under the standard topology is Hausdorff.
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Theorem 1.17. Let (X, 7) be a Hausdorff topological space, and let {x,}5° ; be a sequence
of points in X. Then, this sequence can converge to at most one point in X .

Proof. Suppose that {z,}°°; converges to distinct points x,y € X. Then there exist disjoint
open neighbourhoods U,V such that x € U, y € V. Convergence means that both U and V
contain a tail of the sequence, which is a contradiction. O

Lemma 1.18. The singleton sets in a Hausdorff space are closed.

Proof. Let x € X where (X, 1) is Hausdorff. Pick y # x, whence there exist Uy, V, € 7, such
that = € Uy, y € Vy, and Uy, NV, = (. In particular, {z} NV, = (. We now have

X\ fo} = U v
y#T

which is open. O

Theorem 1.19. The topology induced by a metric is Hausdorff.

Proof. Given a metric space X and distinct points z,y € X, we set r = |x —y|, U = B(z,1/3),
V = B(y,r/3). O

2 Continuous maps

Definition 2.1. Let f: X — Y be a function between the topological spaces (X, 7x) and
(Y, 7y). We say that f is continuous if for every U € 7y, we have f~1(U) € 7x. In other
words, the pre-image of every open set in Y must be open in X.

Lemma 2.1. A function f: X — Y is continuous if and only if given a base 8 of Y, we
have f~Y(U) € Tx for every U € f3.

Ezxample. The identity function id: Ry — R is continuous, while the identity function
id: R — Ry is not. This is because the topology on Ry is strictly finer than that on R.

Lemma 2.2. A function f: X — Y is continuous if and only if for every closed set F C Y,
we have f~1(F) closed in X.

Lemma 2.3. A function f: X — Y is continuous if and only if given any x € X and an
open set V. C Y such that f(x) € V, there exists an open set U C X such that x € U,
fO) V.
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Theorem 2.4. The composition of continuous functions is continuous.

2.1 Restricting and enlarging the domain

Lemma 2.5. Let f: X — Y be continuous, and let A C X. Then the restriction of f to A
18 continuous.

Theorem 2.6. Let f: X — Y, and let X be the union of the collection of open sets
{Ax}rea. If the restrictions of f to each Ay are continuous, then f is continuous.

Proof. Pick z € X, hence x € A) for some A € A. Now if f(z) € V C Y, where V is open
in Y, then the continuity of the restriction of f to Ay gives us an open set U C A, such that
f(U) C V. Finally since Ay is open in X, so is U. O

Definition 2.2. Let X be the union of the collection of open sets {A)}rca. We say that
this collection is a locally finite cover of X if given z € X, there exists a neighbourhood U
of x such that U N A, is non-empty for only finitely many \ € A.

Theorem 2.7. Let f: X — Y, and let {Fx} e be a locally finite collection of closed sets
covering X . If the restrictions of f to each F)\ are continuous, then f is continuous.

Corollary 2.7.1 (Pasting lemma). Let X = AU B, with A, B closed in X. Let f: A =Y,
g: B =Y be continuous, with f(x) = g(x) on ANB. Then the function h: X —'Y, defined
by x — f(z) on A and x — g(x) on B, is continuous.

Definition 2.3. A path is a continuous function ~: [0,1] — X.

Lemma 2.8. Two paths v1,7v2 can be concatenated when ~y1(1) = v2(0).

2.2 Homeomorphisms

Definition 2.4. Let f: X — Y be a function between the topological spaces (X, 7x) and
(Y,7y). We say that f is a homeomorphism if f is continuous, f is bijective, and f~! is
continuous. We also say that X and Y are homeomorphic when such a homeomorphism
between them exists.

Ezample. The interval (—1, 1) is homeomorphic to R; for instance, the map = +— tan(wz/2)
on (—1,1) is a homeomorphism. A simpler construction is the map = + /(1 — z?).
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2.3 Projection maps

Theorem 2.9. The projection maps m;: X1 X --- X X — X; are continuous, when the
domain is equipped with the product topology. Furthermore, the product topology is the
coarsest topology on the domain for which the projection maps are continuous.

Lemma 2.10. Let f: A — Xy X--- X Xy, where the co-domain is equipped with the product
topology. Then, f is continuous if and only if the component functions f; = m; o f are
continuous.

Proof. Note that if f is continuous, the compositions 7; o f are immediately continuous. Con-
versely suppose that each f; is continuous, and write

f@) = (f1(8), - -, fr(1))-

The sets Uy X - - - x Uy, where each U; C X; is open, form a basis of the co-domain. Furthermore,
their pre-images under f are ffl(Ul) N---N f,;l(Uk), which are open in A. This shows that f
is continuous. O

Definition 2.5. Let J be an arbitrary index set. A J-tuple of elements in a set X is
a function z: J — X, formally denoted (z4)acs. If {Xa}aes is a family of sets, their
Cartesian product is defined as

I Xo={z: 7= | Xa: 2a € Xa}.
acJ acd

Remark. The fact that we can choose an element from each set in an uncountable collection
relies on the Axiom of Choice.

Definition 2.6. Let { X, },es be a collection of topological spaces. The topology generated
by [[.c.s Uas where each U, C X, is open, is called the box topology on [],c; Xa-

Definition 2.7. Let { X, }4cs be a collection of topological spaces. The topology generated

by the sub-basis 7,1 (U,), where each U, C X, is open, is called the product topology on

HaGJ XO"

Remark. The basic open sets are of the form m,c jU,, where all but finitely many U, = X,.
Thus, this is a coarser topology than the box topology.

Lemma 2.11. Let [[,c; Xo be equipped with the box or product topology. Then, [ Ao =
[T Aa, where each A, € X,.
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Lemma 2.12. Let f: A — [],c; Xa, where the co-domain is equipped with the product
topology. Then, f is continuous if and only if the component functions f, = wq o f are
continuous.

Remark. This fails when ] .; is equipped with the box topology. Consider f: R —
I[I[2,R, 2+ (z,z,...). Then, the product [[,2,(—1/n,1/n) is open in the box topology,
but its pre-image under f is ()2 ,(—1/n,1/n) = {0}, which is not open in R.

3 Metric spaces

Definition 3.1. A metric space (X, d) is a set equipped with a metric d: X x X — R, such
that

1. d(z,y) = 0 if and only if z = y.
2. d(z,y) = d(y, z)
3. d(x,z) < d(z,y) + d(y, 2).

Definition 3.2. An open ball in a metric spaces is the set of points

B(z,r) ={y € X : d(z,y) < r}.

Lemma 3.1. The collection of open balls in a metric space generates its standard topology.

Ezxample. Consider a set X, equipped with the metric

0, ifx=y,

d: X x X - R, (z,y) —
1, ifx#y.

Then, this metric induces the discrete topology on X.

3.1 Metrizable spaces

Definition 3.3. A topological space (X, 7) is called metrizable if there exists a metric
d: X x X — R which induces the topology 7 on X.

Definition 3.4. Let A C X. The diameter of A is defined to be
diam(A) = sup{d(z,y) : z,y € A}.

If diam(A) is finite, we say that A is bounded.
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Example. The metric
[z —yl
1+ [z -yl
generates the standard topology on R. Note that R is unbounded in the standard metric,
but bounded in this one.

(z,y) —

Definition 3.5. Let (X, d) be a metric space. Then the standard bounded metric corre-
sponding to d is defined as

d: X x X - R, (z,y) — min{d(z,y),1}.
Lemma 3.2. Both d and d generate the same topology.

Theorem 3.3. The product topology on R =R X R X ... is metrizable, using the metric

D(,y) = sup {id(w, y)} :

Lemma 3.4 (Sequence lemma). Let A C X, let x € X, and let the sequence {xp}nen,
Ty € A converge with x,, — x. Then, x € A.

Remark. The converse holds if X is metrizable.

Ezample. Consider X = R“ equipped with the box topology. Choose A = {(x1,x2,...) :
x; > 0}. Then, 0 = (0,0,...) € A4; this is clear from the fact that any open set around 0 con-
tains the basic open set [[;(a;, b;) with a; < 0 < b;. However, there is no sequence {x, }nen,
x, € A, such that z,, — 0. Note that if this were the case, then each z, = (zp1,Zn2,...).
Now, B = [[;(—x, ;) contains none of the points z,, since the nth coordinate of B
eliminates the point n.

Corollary 3.4.1. R¥ equipped with the box topology is not metrizable.

4 Compactness

Definition 4.1. Let X be a topological space. We say that X is compact if every open
cover of X has a finite subcover.

Lemma 4.1. Let Y C X. Then, Y is compact if and only if every open cover of Y by open
sets in X has a finite subcover.
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4.1 Compact subspaces

Lemma 4.2. All compact sets in a metric space are bounded.

Proof. Let K C X be compact. Then, K admits an open cover of open balls B(0,n) from which
we can extract a finite subcover; however, this can be reduced to just one open ball B(0, N) for
some N. Thus K C B(0, N) is bounded. O

Lemma 4.3. A closed subset of a compact space is compact.

Proof. Let K be compact, and F' C K be closed. Consider an open cover {Uy}aecs of F. By
adding K \ F' to this collection, we have an open cover of K, from which we can extract a finite
subcover U;,,Us,, ..., U;,, K \ F. By discarding the latter, we have found a finite subcover of
F. O

Lemma 4.4. In a Hausdorff space, every compact set is closed.

Proof. Let X be Hausdorff, and K C X be compact. Fix g € X \ K, and note that given any
y € K, there exist open neighbourhoods Uy, V, such that zy € Uy, y € V,,, U, NV, = (). Thus,
the collection of all such {V,},cx is an open cover of K, from which we can extract a finite
subcover V., ..., V,,. Corresponding to this, g € Uy, N---NU,, € X\ K. Thus, z lies in the
interior of X \ K. This shows that X \ K is open, hence K is closed. O

Theorem 4.5. The image of a compact space under a continuous map is compact.

Lemma 4.6. Let f: X — Y be a continuous bijection. If X is compact andY is Hausdorff,
then f is a homeomorphism.

Proof. We need only show that f is a closed map; now every closed set F' C X is compact
because X is compact, hence f(K) C Y is compact. Since Y is Hausdorff, the compact set
f(K) is closed. O

Lemma 4.7. A topological space is compact if and only if for any collection of closed sets
6 with the finite intersection property, we have (\oeq C # 0.

4.2 Products of compact spaces

Lemma 4.8 (Tube lemma). Let X,Y be topological spaces, and let Y be compact. Let
xzo € X, and let {xg} x Y C N C X xY where N is open. Then, there exists an open set
W C X such that {xo} xY CW xY CN.
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Proof. Note that {zp} x Y is compact, being homeomorphic to Y. Thus, it can be covered with
basic open sets Uy x V7, ..., U XV}, such that each U; xV; C N. Simply set W = U1N---NU,. O

Theorem 4.9. Let X,Y be compact topological spaces. Then, X XY is compact.

Proof. Let {Uy}acs be an open cover of X x Y. Pick x € X, whence {z} x Y is compact and
admits a finite subcover Uy, , ..., Uy, . Denote their union by U,; the tube lemma guarantees
an open set W, C X such that {z} x Y C W xY C U,. Now, the collection {W,},cx
is an open cover of X, hence admits a finite subcover W,,,..., W, . This also means that
Wy xY,...,W;, xY is a finite cover of Y. However, each W,, x Y C U,, can be covered by
finitely many U, which means that we have a finite subcover of X x Y. O

4.3 Euclidean spaces

Lemma 4.10. Let X be a simply ordered set with the least upper bound property. Then,
the intervals [a,b] are compact.

Theorem 4.11 (Heine-Borel). Compact sets of R™ are precisely those which are closed and
bounded.

4.4 Limit point compactness

Definition 4.2. Let X be a topological space. We say that X is limit point compact if
every infinite subset of X has a limit point.

Lemma 4.12. A compact space is limit point compact.

Proof. Let X be compact, and let A C X have no limit points. Then, A = AU A’ = A is closed
in X, hence compact. Now given any a € A, we know that a is not a limit point of A, hence
we can choose an open neighbourhood U, such that U, N A = {a}. The collection {U,}4c4 is
now an open cover of A, and hence admits a finite subcover U,,,...,U,,. Let U denote their
union, whence A = ANU = {ay,...,ax} is finite. O

Ezample. Let X = N x {0,1}, where N has the discrete topology, and {0,1} has the
indiscrete topology. Then, every subset of X has a limit point; indeed, given any {(n,b)},
we have a limit point (n,1 — b). However, X is clearly not compact, since the open cover
of sets {n} x {0,1} does not admit any finite subcover.

Theorem 4.13. Let X be a metrizable space. Then, X is limit point compact if and only
if it is compact.
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5 Connectedness

Definition 5.1. Let X be a topological space, and let U,V C X be open, non-empty,
disjoint, with U UV = X. We say that U,V form a separation of X.

Definition 5.2. A topological space X is said to be connected if it admits no separation.

Lemma 5.1. A topological space X is connected if and only if the only subsets that are
both open and closed in it are (), X .

Lemma 5.2. Let X be a topological space, and lej Y C X bea s@space. Then, a separation
of Y is a pair of open sets A, B C X such that ANB =0, AnNB = .

Lemma 5.3. Let C, D form a separation of X, and let Y C X be a connected subspace.
Then, eitherY CC,Y C D.

Lemma 5.4. The union of a collection of connected spaces with a common point is con-
nected.

Proof. Let {X,}acs be a collection of connected spaces, with the common point xg, and let X
be their union. Suppose that U,V is a separation of X; then each of the connected X, must be
contained in one of U, V. However, since all X, share the common point x(, they must all lie
in the same half, say U, forcing V = (), a contradiction. ]

Lemma 5.5. Let A C X be connected, and let A C B C A. Then, B is connected.

Theorem 5.6. The image of a connected space under a continuous maps is connected.

Theorem 5.7. A finite Cartesian product of connected spaces is connected.

Proof. Let X,Y be connected spaces. Fix (a,b) € X x Y. Now, X x {b} is connected, being
homeomorphic to X. Furthermore, each {x} x Y is connected, for each x € Y. Now, the set
T, ={z} xY UX x {b} is connected, being the union of connected spaces with the common
point (x,b). Finally, the union of all such T, is connected, being the union of connected spaces
with the common point (a,b). This union is just X x Y, which is thus connected. O
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Ezxample. The countable product R¥ with the box topology is disconnected. Consider
A = set of all bounded sequences, B = set of all unbounded sequences.

Now, ANB=0, AUB=RY¥, A, B # (). It can also be shown that A, B are open.

Ezample. The countable product R¥ with the product topology is connected. To show this,
define i
R" ={(z1,...,2,,0,0,...) : z; € R}.

Then, set X = ;2 R", and note that since each R" = R" is connected with all of
them sharing the common point (0,0,...), X must be connected. We now show that
X = R¥. Indeed, given x = (x1,72,...) € R¥, an open neighbourhood of z looks like
U = Uy xUsx. .., where all but finitely many I; = R. In other words, there exists sufficiently
large N € N such that for all n > N, U, = R. Thus, the point (z,z9,...,2,,0,0,...) €
UNRN.

Lemma 5.8. The closed intervals [a,b] C R are connected.

5.1 Path connectedness

Definition 5.3. A topological space X is said to be path connected if there exists a path
joining any two points in X. In other words, given a,b € X, there always exists a continuous
map v: [0,1] — X such that v(0) = a, v(1) = 0.

Lemma 5.9. All path connected spaces are connected.

Proof. Note that if X = U UV is a separation of the path connected space X, then [0,1] =
7~ HU)U~~L(V) is a separation of the connected interval [0, 1], a contradiction. O

Lemma 5.10. The image of a path connected space under a continuous map is path con-
nected.

Example. The unit sphere S”~! is path connected. Note that the map
FrRUN{0} = 5"z /|

is continuous and surjective. Thus, it maps the path connected set R™\ {0} to S"~!, which
must be path connected.
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Example. The set S, called the topologist’s sine curve, is connected but not path connected.
S ={(z,sin(1/z)) : 0 <z < 1}.

Note that S is the continuous image of the connected interval (0, 1], hence connected. This
further shows that S is connected. Now,

S=S5uU{0,y): -1 <y <1}

However, S is not path connected, since there exists no path joining (0,0) and (1/7,0).
Indeed, given any path v: [0,1] — S starting at (0,0), it cannot escape {0} x [—1,1]. To
see this, write v = (71,72), 72(0) = 0. By continuity of 2, we can choose § > 0 such that
|v2(t)] < 1/2 for all 0 < ¢ < 4. Suppose that v1(t*) = 7 > 0 for some 0 < ¢ < §. By the
intermediate value theorem, 7, takes all the values between 0 and 7 in the interval [0, ¢*].
Choose N such that 2/7(2N + 1) < 7. Again, there must exist some 0 < ¢y < t* such that
v1(to) = 2/m(2n 4+ 1). Now, ya(to) = sin(1/v1(tg)) = 1 > 1/2, a contradiction. This means
that 1 (t) = 0 for all t € [0, J].

6 Quotient topology

Definition 6.1. Let X be a topological space, and let ~ be an equivalence relation on X.
Then X/~ denotes the set of all equivalence classes with respect to ~. Its elements are of
the form [z] = {y € X : x ~ y}, for 2 € X. Define the map

m: X = X/~ x> [z].

The quotient topology on X/ ~ is the finest topology such that 7 is continuous. In other
words, U C X/~ is open if 7~1(U) is open in X.

Lemma 6.1. Let f: X — Y be a continuous surjection, with X compact and' Y Hausdorff.
Define an equivalence relation ~ on X such that x ~ 2’ < f(x) = f(2'). Then, g: X/~ —
Y, [z] = f(z) is a homeomorphism.

Ezample. Consider the interval [0, 1], with the equivalence relation ~ which identifies 0 ~ 1,
and leaves all other points undisturbed. Then, the quotient space [0, 1]/~ is homeomorphic
to the circle S*.

Note that the quotient map on [0, 1] is not open, since the image of the open set [0, 1/2)
is not open in [0,1]/~.

Example. Let X = R""!\ {0}, and define an equivalence relation on X which identifies
points on the same line through the origin together. Then, the resulting quotient space is
called the real projective space, denoted RP™.

Example. Let S™ denote the n-sphere in R"*!, and define an equivalence relation on S™
which identifies antipodal points. Then, the resulting quotient space is also RP™. The
quotient map here is an open map.
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Lemma 6.2. Let f: X — Y be an open, continuous, surjective map. Define an equivalence
relation ~ on X such that v ~ 2’ < f(x) = f(2'). Then, g: X/ ~—Y, [z] = f(z) is a
homeomorphism.

Ezample. By defining f as a composition of maps R™\ {0} — S™ — 5™/~ it can be shown
that RP™ is compact.

6.1 One-point compactification

Definition 6.2. Let X be a compact topological space, and let A C X be closed. The
one-point compactification of X \ A is defined by

Y = (X \ A) U{oo},
with the topology

v ={U C X \ Ais open} U{Y \ C where C is compact in X \ A}.

Lemma 6.3. If X is compact, Hausdorff, then so is the one-point compactification Y of
X\ A.

Lemma 6.4. Let X be a compact, Hausdorff space and A C X be a closed set. Define ~ on
X by identifying v ~ ' whenever x,2’ € A and leaving the remaining points undisturbed.
Then, X/~ is homeomorphic to the one-point compactification Y = X \ AU {oo}.

7 Countability and separation axioms

7.1 First countability

Definition 7.1. Let X be a topological space. A countable basis at a point z € X is a
countable collection S of neighbourhoods of x such that for any neighbourhood U of z,
there is a basis element B € (8 such that x € B C U.

Definition 7.2. A topological space X in which every element x € X admits a countable
basis is called a first countable space.

Ezxample. All metrizable spaces are first countable. Given an element x, the collection of
all open balls centred at x with rational radii forms a countable basis.
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Ezxample. The space Ry is a non-metrizable space which is first countable.

Lemma 7.1. The sequence lemma holds for first countable spaces, i.e. if X is first count-
able, A C X, and x € A, then there exists a sequence {xy}nen, Tn € A, such that x,, — x.

Ezample. The space RY with the box topology is not first countable.

7.2 Second countability

Definition 7.3. A topological space X which admits a countable basis is called a second
countable space.

Ezxzample. The Euclidean spaces R™ are second countable. The collection of all open balls
with rational radii, centred at rational points, forms a countable basis.

Ezample. The space R¥ with the product topology is second countable.

Lemma 7.2. If a topological space X is second countable, then any discrete subspace A C X
must be countable.

Proof. Let 8 = {By}nen be a countable basis of X. For each a € A, note that {a} is open in
the subspace topology A, hence there exists a basis element B, € (8 such that B, N A = {a}.
Furthermore, this assignment A — 3, a — B, is injective, hence A must be countable. O

Ezample. The space RY with the uniform topology is metrizable hence first countable, but
not second countable. This topology is induced by the metric

p(x,y) = sup J(xi, y;) = sup min{|x; — y;|, 1}.
i€N €N

Consider the subspace A C R, consisting of all binary sequences. This is clearly an
uncountable set. However, for any two distinct members z,y € A, we have d(z,y) = 1.
This precisely describes the discrete topology on A. The contrapositive of the above lemma
now shows that R“ with the uniform topology cannot be second countable.

Lemma 7.3. Let X be a second countable space. Then, every open cover of X admits a
countable subcover.

Remark. A topological space in which every open cover admits a countable subcover is
called a Lindelof space.
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Ezample. The space Ry is non-metrizable, first countable, and Lindel6f, but not second
countable. To see the latter, let 8 be a basis of R,. Note that every z € [x,z + 1) C Ry,
hence there must exist B, € 8, ¢ € B, C [r,z + 1). Now, the assignment = — B, is
injective, hence 8 must be uncountable.

Lemma 7.4. Let X be a second countable space. Then, there exists a countable subset
which is dense in X.

Remark. A topological space in which there exists a dense countable subset is called a
separable space.

Proof. Let {B,}nex be a countable basis of X. Pick one element z,, € B, for each n € N,
whence the set {z,, },en is countable and dense in X. a

Lemma 7.5. Subspaces, countable products of first/second countable spaces are first/second
countable.

Example. The space R%, called the Sorgenfrey plane, is not Lindel6f, even though Ry is.
This can be shown by considering the line L = {(z,—z) : € R}. Note that L C R? is
closed, hence R \ L is open. Start with this, and add the sets [z,z + 1) X [z, 2 + 1) to our
collection. This is an open cover of ]R? which admits no countable subcover.

7.3 Separation axioms

Definition 7.4. A topological space X in which any two distinct points z,y € X admit
open sets U,V such that x € U, y € V, UNV =), is called a Hausdorff space.

Definition 7.5. A topological space X in which any point € X and a closed set FF C X
(not containing ) can be separated is called a regular space.

Definition 7.6. A topological space X in which any point two disjoint closed sets F, I/ C X
can be separated is called a normal space.

Lemma 7.6. Consider topological spaces in which singleton sets are closed. Then, all such
normal spaces are reqular, and all such regular spaces are Hausdorff.

Ezample. Consider the space Ry, and note that K is closed. However, there is no separation
of 0 € R and K C R, hence Ry is not regular.
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Lemma 7.7. A space X is reqular if and only if given any point x and an open set U C X
such that x € U, there exists an open set V such that x € V CV CU.

Lemma 7.8. A space X is normal if and only if given any closed set F' and an open set
U C X such that FF C U, there exists an open set V such that F CV CV CU.

Ezample. All metric spaces are regular.

Lemma 7.9. Products and subspaces of reqular/Hausdorff spaces are also regular/Haus-

dorff.

Ezample. The space Ry is regular, but not metrizable, and so is R%.

Lemma 7.10. All metrizable spaces are normal.

Proof. Let X be metrizable, and let A, B C X be closed, AN B = (). Then for each a € A,
b € B, we can choose €4, €, > 0 such that

B(a,e,) N B =1, B(b,e) N A =0.

This is because the complements X \ A, X \ B are open. Now set

U=|]JB(a,e/2), V=_)Bben2.

acA beA

It can be checked that these are open, with AC U, BCV,UNV = . O

Ezample. The space Ry is normal, but not metrizable. However, R% is not normal.

Theorem 7.11. All compact, Hausdorff spaces are normal.

Theorem 7.12. All reqular, second countable spaces are normal.

Ezample. The space Ry is normal but not second countable.
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Ezample. The Sorgenfrey line L C R% has the discrete topology. Then, any subset A C L
is both open and closed, and A, L \ A are closed in ]R%. If Rf were normal, then we could
separate them in R% by open sets Ua,Vy with A C Uy, L\ A C Vy, UsNVy = 0. Let
D C R? be the set of all points with rational coordinates; this is dense in IR{?. Define

DNU,y, if0cCcACL,
0: P(L)— P(D), A<D, if A=1L,
0, if A=10.

Note that U4 N D is non-empty when A # () by the density of D. Pick A # B, then there
exists ¢ € A,x ¢ B hence x € L\ B or x € UsNVp. Thus, DNU4 and D N Vg are
non-empty. There must be points in D N U4 not in D N Up, hence 0 is injective. However,
this is already a contradiction, via cardinalities.

Ezxample. Let X be a metric space, and let A, B C X be closed and disjoint. We can define

d(z, A)

f: X =R, x}_)d(x,A)—i—d(m,B)'

Then, f is continuous, with f(A) =0 and f(B) = 1. This is a ‘functional separation’ of A
and B.
Note that if A and B were not closed, the denominator might have been zero.

Lemma 7.13 (Urysohn). A space X is normal if and only if given any two non-empty
closed disjoint sets A, B C X, there exists a continuous function f: X — [0,1] such that

f(A)=0, f(B) =1.

Definition 7.7. Let X,Y be topological spaces. An imbedding f: X — Y is a homeomor-
phism between X and f(X).

Theorem 7.14 (Urysohn metrization theorem). All regular, second countable spaces are
metrizable.

7.4 Compact manifolds

Definition 7.8. An n-manifold is a regular, second-countable space such that each point
has a neighbourhood homeomorphic to an open subset of R™.
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Ezxample. The real projective space RP™ is a compact manifold. Furthermore, it can be
covered by finitely many open sets, each of which is homeomorphic to an open subset of
R™. To see this, define

U = {[z] : = € R"™! z; # 0} c RP™.

It is clear that the collection of U; cover RP™. Now, define the maps

T Li—1 Tj4+1 i
goi:Ui—ﬂR", [aj‘]l—>(,, : , 2 ,...,n>.
Note that ¢; is injective; if o;([z]) = ¢i([y]), then each y;/y; = xj/x;, or y; = Az, but this
is precisely what it means for x ~ y, hence [z] = [y]. The map ¢; is also continuous, since
the maps
I Ti—1 Tit1 T

are continuous, and the quotient map R"*1\ {0} — RP" is open. It can also be shown that
©; is continuous, hence the maps ¢; are homeomorphisms.

Definition 7.9. Let X be a topological space, and let U = {Uy,...,U} be an open cover.
A partition of unity, dominated by 9, is a collection of continuous real functions 1, ..., ¥
on X such that each supp; C U; and Zle P = 1.

Lemma 7.15. Let X be a topological space, and let U = {Uy,...,Ux} be an open cover. If
X is normal, then there exists a partition of unity dominated by U .

Proof. First, we refine the open cover U and extract an open cover ¥ = {V1,..., Vi } such that
each V; C V; C U;. To do so, first define
Aq :X\(UQU"'UUk).

Then, A; C Uj is closed in X. By the normality of X, there exists open Vj such that A; C
Vi € Vi C U;. Now, the collection {Vi,Us,...,Ux} is still an open cover of X. This process
can be repeated; if at any point we have an open cover {Vi,...,V;,Ujt1,..., Ui}, set

Aj+1:X\(V1U---U‘/}UUj+2U~--UUk),

and argue as before to obtain open Vj 1 C A; 1, and the open cover {Vi,...,Vji11,Ujt1, ..., Ui}
Next, perform another refinement of ¥ and extract an open cover "W = {Wy,..., Wy}.
Now, apply the Urysohn Lemma and exhibit continuous functions ¢1,...,¢r on X such

that each ;(W;) = 1, p;(X \ Vi) = 0. Note that each supp p; C V; C U;. Finally, set
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Theorem 7.16. Any compact Hausdorff manifold can be imbedded into some Fuclidean
space.

Proof. Let U = {Uy,...,Ux} be an open cover of X, and let ¢;: U; — ¢;(U;) € R™ be home-
omorphisms. Since X is compact and Hausdorff, hence normal, choose a partition of unity
1, ..., dominated by %U. Set A; = suppv; C U;, and define

hi: X - R, x = pi(x) i (x).
It is clear that each h; is continuous, with h; = 0 on X \ A;. Now, define

fr X —=Rx---xRxR"x--- xR, x> (Y1(x),...,Yp(z), hi(x),. .. hi(z)).

k times k times

Then, f is continuous as well as injective; suppose that f(z) = f(y). Since U covers X, we must
have some v;(x) > 0; but ¥;(z) = ¢;(y) > 0, so x,y € A; C U;. Thus, from h;(x) = h;(y),
we can cancel 1;(z),1;(y) to obtain ¢;(z) = ¢;(y). The bijectivity of ¢; immediately gives
x = y. Thus, f is a continuous map from a compact space to a Hausdorff space, hence f is a
homeomorphism onto its image. In other words, f is an imbedding of X in R(t1k, O

Theorem 7.17. Any compact Hausdorff space without any isolated points is uncountable.

Proof. First, we show that given any x € X and an open set U C X, we can always find
non-empty open V. C U with ¢ V. To show this, note that since x € U is not an isolated
point, we must have some distinct point y € U. Since X is Hausdorff, find disjoint open sets
Wy, Wy with © € Wy, y € Wa. Now we can set V = Wy NU. Note that we also have = ¢ Vv
since x € W1 C W3,

Now, we show that there is no surjection f: N — X. If there was such an f, denote
xn, = f(n). Set U = X, and use the above process to find non-empty open V4 C U, z1 ¢ V.
Next, set U = Vi, and find non-empty open V5 C Vi, x5 ¢ V5. In this manner, we can obtain a
chain of non-empty closed sets

VidV2---2Vi2....

These clearly have the finite intersection property, but n;ﬁlVZ = () since each z; ¢ V;. This
contradicts the compactness of X. ]

Theorem 7.18 (Lebesgue number). Let X be a compact metric space, and let U be an
open cover of X. Then, there exists a corresponding positive number § such that any subset
of X with diameter less than § is contained in one of the elements of U .

Proof. Note that for any A C X, the map x — d(z, A) is continuous. Now, using the compact-
ness of X, extract a finite subcover Uy, ..., U, from . Set F; = X \ U;, and define

1n
X =R — d(z, Fy).
f:X >R, mn;u, )

This map is continuous, and strictly positive. Since X is compact, this map must attain a
minimum § > 0. We now show that this ¢ is indeed the Lebesgue number for the open cover

U.
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Let B C X, diam B < §. Pick g € B, whence f(z9) > d. Suppose that all d(xg, F;) <
d(xo, Fy) for some k, then 0 < f(x¢) < d(xg, F). We have

d(zo, F,) > 6 = inf{d(zo,c) : c ¢ Uy} > 6.

If B Uy, then we could have chosen x € B, x ¢ Uy. From = € B, we have d(zg,z) < 0; this
contradicts the above. O

Corollary 7.18.1. Let X be a compact metric space. Then, all continuous functions
f: X =Y, whereY is a metric space, are uniformly continuous.

Proof. Let f: X — Y be continuous, and let € > 0. Set U = {f~(B,2(y)) : y € Y}, which is
clearly an open cover of X. Pick the corresponding Lebesgue number § > 0. Now, given any two
points z, 2’ € X such that dx(x,2’) < §, we have diam{z, 2’} < 6 hence {z,2'} C f_l(Bg/Q(y))
for some y € Y. Thus, f(z), f(z') € B/s(y), hence dy (f(x), f(z')) <e. O

8 Topological groups

Definition 8.1. A topological group G is a topological space that is also a group, such that
the product and inversion maps are continuous, i.e. the maps (z,y) + zy and x — 2~! are

continuous.

Remark. We also demand that G be Hausdorff.

Ezample. The group GL,(R) is a topological group. Here, we topologize G L,,(R) using the
Euclidean topology on R,

Remark. Note that the determinant map det: M, (R) — R is continuous, being a polynomial
in the entries of any given matrix. Thus, GL,(R) is open in M, (R), being the pre-image
of the open set R\ {0}.

Remark. Note that GL,(R) is not connected, being the disjoint union of det ™ (—o0, 0) and
det™1(0, 00). However, GL, (C) is path connected. To show this, pick A € GL,(C), and let

z € C such that |z| = 1, with no Az being an eigenvalue of A (this can be done since A has
only finitely many eigenvalues). Now, consider the map

v:[0,1] - GL,(C), t—tA+ (1 —1t)zl,.

Note that v is continuous and well-defined; v(0) = I, 7(1) = A both of which are in
GL,(C). Now if dety(t) = 0 for some 0 < ¢t < 1, there must be some non-zero vector
v € C" such that tAv + (1 — t)zl,v = 0, i.e. Av = —(1 —t)z/tv. However, z was chosen
such that none of its multiples are eigenvalues of A. Thus, « is a path joining I,, with A,
which shows that GL,(C) is indeed path connected.
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Ezample. The topological group of unitary matrices U,(C) is compact. Note that it is
sufficient to show that U, (C) is closed and bounded. First, the maps A — AA* — I,, and
A — A*A — I, are both continuous, hence U, (C) is closed, being the intersection of the
pre-images of {0} under these maps. Next, note that given U € U, (C), we have UU* = I,
hence the columns of U are orthonormal. Thus,

> Jul> =n,
i7j

showing that U is bounded.

Theorem 8.1. Let G be a topological group, and let H be a closed normal subgroup of G.
If G/H and H are connected, then G is connected.

Proof. Suppose that G is disconnected. Then there exists a continuous, surjective map ¢: G —
{0,1}. Since H C G is connected, one of ®(H) = 0,1. Now, the quotient map 7: G —
G/H induces the continuous surjection ®: G/H — {0,1}, ® = & o «r, which contradicts the
connectedness of G/H. Note that we have used the fact that 7 is open; to see this, if U C G is
open, we claim that 7(U) C G/H is open, i.e. 7~ !(w(U)) is open in G. But,

m(U) ={gH : g € U},

SO
7 Y x(U)) = {geG:gH =g H,g¢ cU}
= {geG:¢g'gcH g cU}
= |J vn
heH
which is open in G. O
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