MA3201

Topology

Spring 2022

Satvik Saha 19MS154

Indian Institute of Science Education and Research, Kolkata, Mohanpur, West Bengal, 741246, India.

Contents

1	Intr	oduction	2	
	1.1	Topological spaces	2	
	1.2	Topological bases	2	
	1.3	Product topology	3	
	1.4	Subspace topology	4	
	1.5	Order topology	5	
	1.6	Closed sets	5	
	1.7	Interiors and closures	6	
	1.8	Convergence of sequences	7	
2	Continuous maps			
	2.1	Restricting and enlarging the domain	9	
	2.2	Homeomorphisms	9	
	2.3	Projection maps	10	
3	Metric spaces 1			
	3.1	Metrizable spaces	11	
4	Compactness			
	4.1	Compact subspaces	13	
	4.2	Products of compact spaces	13	
	4.3	Euclidean spaces	14	
	4.4	Limit point compactness	14	
5	Connectedness			
	5.1	Path connectedness	16	
6	Quotient topology 1			
	6.1	One-point compactification	18	
7	Countability and separation axioms			
	7.1		18	
	7.2		19	
	7.3		20	
	7.4		22	

1

8 Topological groups

1 Introduction

1.1 Topological spaces

Definition 1.1. A topology on some set X is a family τ of subsets of X, satisfying the following.

1. $\emptyset, X \in \tau$.

- 2. All unions of elements from τ are in τ .
- 3. All finite intersections of elements from τ are in τ .

The sets from τ are declared to be open sets in the topological space (X, τ) .

Example. Any set X admits the indiscrete topology $\tau_{id} = \{\emptyset, X\}$, as well as the discrete topology $\tau_d = \mathcal{P}(X)$. Both of these are trivial examples.

Example. Let X be a set. The cofinite topology on X is the collection of complements of finite sets, along with the empty set. Note that when X is finite, this is simply the discrete topology.

Definition 1.2. Let τ, τ' be two topologies on the set X. We say that τ is finer than τ' if τ has more open sets than τ' . In such a case, we also say that τ' is coarser than τ .

1.2 Topological bases

Definition 1.3. Let (X, τ) be a topological space. We say that $\beta \subseteq \tau$ is a base of the topology τ such that every open set $U \in \tau$ is expressible as a union of elements from β .

Definition 1.4. Let X be a set, and let β be a collection of subsets of X satisfying the following.

- 1. For every $x \in X$, there exists $x \in B \in \beta$.
- 2. For every $x \in X$ such that $x \in B_1 \cap B_2$, $B_1, B_2 \in \beta$, there exists $B \in \beta$ such that $x \in B \subseteq B_1 \cap B_2$.

Then, β generates a topology on X, namely the collection of all unions of elements of β .

Lemma 1.1. Let τ be a topology on X, and let $\beta \subseteq \tau$ be a collection of open sets. Then, β is a basis of τ , or generates τ , if for every $x \in U \in \tau$, there exists $B \in \beta$ such that $x \in B \subseteq U$.

Example. The collection of all open balls in \mathbb{R}^n form a basis of the usual topology.

Lemma 1.2. Let X be equipped with the topologies τ and τ' , and let β and β' be the respective bases of these topologies. Then, τ is finer than τ' if and only if given $x \in B' \in \beta'$, there exists $x \in B \in \beta$ such that $B \subseteq B'$.

Example. The collections of open balls in \mathbb{R}^n generate the same topology as the collection of all open rectangles in \mathbb{R}^n .

Example. Consider the topologies on \mathbb{R} generated by the following bases.

1.
$$\beta_1 = \{(a, b) : a, b \in \mathbb{R}, a < b\}.$$

2.
$$\beta_2 = \{[a, b) : a, b \in \mathbb{R}, a < b\}$$

3.
$$\beta_3 = \{(a,b) : a, b \in \mathbb{R}, a < b\} \cup \{(a,b) \setminus K\}$$
 where $K = \{1/n : n \in \mathbb{Z}\}$.

We call the topology generated by β_2 the lower limit topology, denoted \mathbb{R}_{ℓ} . The topology generated by β_3 is denoted \mathbb{R}_K . Both of these are strictly finer than the standard topology.

Definition 1.5. A sub-basis for some topology on X is a collection ρ of subsets of X whose union is the whole of X. The topology generated by ρ is defined to be the topology generated by the collection of all finite intersections of elements of ρ .

1.3 Product topology

Definition 1.6. Let (X_1, τ_1) , (X_2, τ_2) be topological spaces. Then $\tau_1 \times \tau_2$ generates the product topology on $X_1 \times X_2$.

Example. The product topology on $\mathbb{R} \times \mathbb{R}$, where \mathbb{R} is equipped with the standard topology, coincides with the standard topology on \mathbb{R}^2 .

Lemma 1.3. If β_1, β_2 are bases of the topologies τ_1, τ_2 , then $\beta_1 \times \beta_2$ and $\tau_1 \times \tau_2$ generate the same product topology.

Proof. Given $(x_1, x_2) \in U$ where $U \subseteq X_1 \times X_2$ is open in the product topology, recall that U can be written as a union of the basic open sets $U_{1i} \times U_{2i}$, where $U_{1i} \in \tau_1$ and $U_{2i} \in \tau_2$. Suppose that $(x_1, x_2) \in U_1 \times U_2$. Thus, we can choose $B_1 \in \beta_1$, $B_2 \in \beta_2$ such that $x_1 \in B_1 \subseteq U_1$ and $x_2 \in B_2 \subseteq U_2$. Thus, $(x_1, x_2) \in B_1 \times B_2 \subseteq U_1 \times U_2 \subseteq U$.

Definition 1.7. The projection maps are defined as $\pi_i: X_1 \times \cdots \times X_k \to X_i, (x_1, \ldots, x_k) \mapsto x_i$.

Lemma 1.4. The collection of elements of the form $\pi_1^{-1}(U_1)$ or $\pi_2^{-1}(U_2)$, where $U_1 \in \tau_1$ and $U_2 \in \tau_2$, forms a sub-basis of the product topology on $X_1 \times X_2$.

Proof. Note that $\pi_1^{-1}(X_1) = X_1 \times X_2$. Now it is easy to see that finite intersections of elements of the form $U_1 \times X_2$ or $X_1 \times U_2$ where U_1, U_2 are open, are all of the form $U_1 \times U_2$ which is precisely a basis of the product topology.

Corollary 1.4.1. We can restrict ourselves to the sub-basis of elements of the form $\pi_1^{-1}(B_1)$ or $\pi_2^{-1}(B_2)$, where $B_1 \in \beta_1$, $B_2 \in \beta_2$ for some bases β_1 , β_2 of τ_1, τ_2 .

1.4 Subspace topology

Definition 1.8. Let (X, τ) be a topological space, and let $Y \subset X$. Then the collection $U \cap Y$ for all $U \in \tau$ comprises the subspace topology τ_Y on Y induced by the topology τ on X.

Lemma 1.5. If β is a basis for the topology on X, and $Y \subset X$, then the collection $B \cap Y$ for all $B \in \beta$ generates the subspace topology on Y.

Lemma 1.6. An open set of Y is open in X if Y is open in X.

Proof. Let $U \subset Y$ be open in Y, then $U = V \cap Y$ for some open set V in X. If additionally Y is open in X, this immediately shows that U is open in X.

Theorem 1.7. Let (X, τ_X) , (Y, τ_Y) be topological spaces, and let $A \subseteq X$, $B \subseteq Y$. Then, there are two ways of assigning a natural topology on $A \times B$.

- 1. Take the product topology on $X \times Y$, and consider the subspace topology induced by it on $A \times B$.
- 2. Take the subspace topologies on A induced by τ_X , B induced by τ_Y , and consider the product topology generated by them on $A \times B$.

These two methods generate the same topology on $A \times B$.

Proof. Open sets in 1 look like $(U \times V) \cap (A \times B)$, where $U \in \tau_X$, $V \in \tau_Y$). Open sets in 2 look like $(U' \cap A) \times (V' \cap B)$, where $U' \in \tau_X$, $V' \in \tau_Y$, which can be rewritten as $(U' \times V') \cap (A \times B)$. It is easy to see that these describe precisely the same sets.

1.5 Order topology

Definition 1.9. Let X be a set with a simple order <. Then the collection of sets of the form (a, b), $[a_0, b)$, $(a, b_0]$ where a_0 is the minimal element of X, b_0 is the maximal element of X, generate the order topology on X.

Example. The order topology on \mathbb{N} is precisely the discrete topology.

Definition 1.10. Let X_1, X_2 be simply ordered sets. The dictionary order on $X_1 \times X_2$ is defined as follows: $(x_1, x_2) < (y_1, y_2)$ if $x_1 < y_1$, or if $x_1 = y_1$ and $x_2 < y_2$.

Example. Consider $X = \{1, 2\} \times \mathbb{N}$, where both $\{1, 2\}$ and \mathbb{N} are endowed with the discrete topology. Note that the product topology on X is the discrete topology.

Now consider the dictionary order on X. Here, (1, 1) is the smallest element, so we can list the elements of X in ascending order. Note that every (1, m) < (2, n), for all $m, n \in \mathbb{N}$. Now, note that all singletons $\{(1, m)\}$ are open in the order topology on X. The same is true for the singletons $\{(1, n)\}$ for all n > 1. However, the singleton $\{(2, 1)\}$ is *not* open in the order topology.

Example. Consider \mathbb{R} with the usual topology, and $X = [0, 1) \cup \{2\}$. Then, $\{2\}$ is open in the subspace topology on X, but it is not open in the order topology on X.

Lemma 1.8. The open rays of the form $(a, +\infty)$ and $(-\infty, a)$ in X form a sub-basis of the order topology on X.

Proof. Note that $(a, b) = (-\infty, b) \cap (a, +\infty)$, $[a_0, b) = (-\infty, b)$, and $(a, b_0] = (a, +\infty)$.

Definition 1.11. Let X be a simply ordered set, and $Y \subseteq X$. Then, we say that Y is convex in X if given $a, b \in Y$ such that a < b, the interval $(a, b) = \{x \in X : a < x < b\} \subseteq Y$.

Theorem 1.9. Let Y be convex in X. Then, the subspace topology and the order topology on Y induced from the order topology on X coincide.

1.6 Closed sets

Definition 1.12. Let (X, τ) be a topological space. A set $F \subseteq X$ is said to be closed in X if $F^c = X \setminus F \in \tau$.

Example. The sets \emptyset , X are closed in every topological space (X, τ) .

Example. In a set equipped with the discrete topology, every set is both open and closed.

Lemma 1.10. Arbitrary intersections, and finite unions of closed sets are closed.

Theorem 1.11. Let (X, τ) be a topological space, and let $Y \subset X$ be equipped with the subspace topology. Then, a set $F \subseteq Y$ is closed in Y if and only if $F = Y \cap G$, where G is closed in X.

Proof. Let $F \subset Y$. Now, F is closed in $Y, Y \setminus F = Y \cap F^c$ is open in $Y, Y \cap F^c = Y \cap U$ where U is open in $X, F = Y \cap (Y \cap F^c)^c = Y \cap (Y \cap U)^c = Y \cap U^c$ where U^c is closed. The steps are reversible.

Lemma 1.12. A closed set of Y is closed in X if Y is closed in X.

1.7 Interiors and closures

Definition 1.13. Let $A \subseteq X$ where (X, τ) is a topological space.

- 1. The interior of A is defined as the union of all open sets contained in A. This is denoted by A° .
- 2. The closure of A is defined as the intersection of all closed sets containing A. This is denoted by \overline{A} .

Remark. The interior of a set is open, and the closure of a set is closed.

Lemma 1.13. Let $Y \subset X$ be topological spaces, and let $A \subseteq Y$. Also let \overline{A}_X , \overline{A}_Y denote the closures of A in X, Y respectively. Then, $\overline{A}_Y = \overline{A}_X \cap Y$.

Theorem 1.14. Let $A \subset X$. Then,

- 1. $x \in \overline{A}$ if and only if every open set containing x has non-empty intersection with A.
- 2. $x \in \overline{A}$ if and only if every basic open set containing x has non-empty intersection with A, given that the topology on X is generated by those basic open sets.

Definition 1.14. Let $A \subseteq X$ where (X, τ) is a topological space. We say that $x \in X$ is a limit point of X if for every open set U containing x, the deleted neighbourhood $U \setminus \{x\}$ has non-empty intersection with A. The set of limit points of A is denoted by A'.

Example. Let X be a set endowed with the discrete topology. Then, given any set $A \subseteq X$, we have $A' = \emptyset$.

Lemma 1.15. A closed set contains all its limit points.

Proof. Let $F \subseteq X$ be closed in X, and let $x \in F'$. Then given any open set containing x, we have $U \cap F \supseteq (U \setminus \{x\}) \cap F \neq \emptyset$, hence $x \in \overline{F} = F$.

Lemma 1.16. Let $A \subseteq X$ where (X, τ) is a topological space. Then, $\overline{A} = A \cup A'$.

Proof. It is clear that $\overline{A} \supseteq A \cup A'$. Now pick $x \in \overline{A}$. If $x \notin A$, then we know that given any open neighbourhood U of x, we have non-empty $U \cap A$. Furthermore, this intersection can never contain x, hence $x \in A'$. This proves that $\overline{A} \subseteq A \cup A'$.

1.8 Convergence of sequences

Definition 1.15. Let $\{x_n\}_{n=1}^{\infty}$ be a sequence of points from (X, τ) , and let $x \in X$. We say that this sequence converges to x, denoted $x_n \to x$, if every open neighbourhood of x contains the tail of this sequence. In other words, given $U \in \tau$ such that $x \in U$, there must exist $N \in \mathbb{N}$ such that $x_n \in U$ for all $n \geq N$.

Example. Let $X = \{a, b, c\}$, and $\tau = \{\emptyset, \{b\}, \{a, b\}, \{b, c\}, X\}$. Then, the constant sequence of b's converges to all three points a, b, c.

Example. Let $X = \mathbb{R}$, and τ be the collection of all intervals (-a, a) together with \emptyset, \mathbb{R} . Then, the constant sequence of 0's converges to every point in \mathbb{R} .

Definition 1.16. Let (X, τ) be a topological space. We say that this topological space is Hausdorff if given any two distinct points $x, y \in X$, there exist open sets $U, V \in \tau$ such that $x \in U, y \in V$, and $U \cap V = \emptyset$.

Example. The real numbers under the standard topology is Hausdorff.

Theorem 1.17. Let (X, τ) be a Hausdorff topological space, and let $\{x_n\}_{n=1}^{\infty}$ be a sequence of points in X. Then, this sequence can converge to at most one point in X.

Proof. Suppose that $\{x_n\}_{n=1}^{\infty}$ converges to distinct points $x, y \in X$. Then there exist disjoint open neighbourhoods U, V such that $x \in U, y \in V$. Convergence means that both U and V contain a tail of the sequence, which is a contradiction.

Lemma 1.18. The singleton sets in a Hausdorff space are closed.

Proof. Let $x \in X$ where (X, τ) is Hausdorff. Pick $y \neq x$, whence there exist $U_y, V_y \in \tau$, such that $x \in U_y, y \in V_y$, and $U_y \cap V_y = \emptyset$. In particular, $\{x\} \cap V_y = \emptyset$. We now have

$$X \setminus \{x\} = \bigcup_{y \neq x} V_y,$$

which is open.

Theorem 1.19. The topology induced by a metric is Hausdorff.

Proof. Given a metric space X and distinct points $x, y \in X$, we set r = |x - y|, U = B(x, r/3), V = B(y, r/3).

2 Continuous maps

Definition 2.1. Let $f: X \to Y$ be a function between the topological spaces (X, τ_X) and (Y, τ_Y) . We say that f is continuous if for every $U \in \tau_Y$, we have $f^{-1}(U) \in \tau_X$. In other words, the pre-image of every open set in Y must be open in X.

Lemma 2.1. A function $f: X \to Y$ is continuous if and only if given a base β of Y, we have $f^{-1}(U) \in \tau_X$ for every $U \in \beta$.

Example. The identity function id: $\mathbb{R}_{\ell} \to \mathbb{R}$ is continuous, while the identity function id: $\mathbb{R} \to \mathbb{R}_{\ell}$ is not. This is because the topology on \mathbb{R}_{ℓ} is strictly finer than that on \mathbb{R} .

Lemma 2.2. A function $f: X \to Y$ is continuous if and only if for every closed set $F \subseteq Y$, we have $f^{-1}(F)$ closed in X.

Lemma 2.3. A function $f: X \to Y$ is continuous if and only if given any $x \in X$ and an open set $V \subseteq Y$ such that $f(x) \in V$, there exists an open set $U \subseteq X$ such that $x \in U$, $f(U) \subseteq V$.

Theorem 2.4. The composition of continuous functions is continuous.

2.1 Restricting and enlarging the domain

Lemma 2.5. Let $f: X \to Y$ be continuous, and let $A \subset X$. Then the restriction of f to A is continuous.

Theorem 2.6. Let $f: X \to Y$, and let X be the union of the collection of open sets $\{A_{\lambda}\}_{\lambda \in \Lambda}$. If the restrictions of f to each A_{λ} are continuous, then f is continuous.

Proof. Pick $x \in X$, hence $x \in A_{\lambda}$ for some $\lambda \in \Lambda$. Now if $f(x) \in V \subset Y$, where V is open in Y, then the continuity of the restriction of f to A_{λ} gives us an open set $U \subseteq A_{\lambda}$ such that $f(U) \subseteq V$. Finally since A_{λ} is open in X, so is U. \Box

Definition 2.2. Let X be the union of the collection of open sets $\{A_{\lambda}\}_{\lambda \in \Lambda}$. We say that this collection is a locally finite cover of X if given $x \in X$, there exists a neighbourhood U of x such that $U \cap A_{\lambda}$ is non-empty for only finitely many $\lambda \in \Lambda$.

Theorem 2.7. Let $f: X \to Y$, and let $\{F_{\lambda}\}_{\lambda \in \Lambda}$ be a locally finite collection of closed sets covering X. If the restrictions of f to each F_{λ} are continuous, then f is continuous.

Corollary 2.7.1 (Pasting lemma). Let $X = A \cup B$, with A, B closed in X. Let $f : A \to Y$, $g : B \to Y$ be continuous, with f(x) = g(x) on $A \cap B$. Then the function $h : X \to Y$, defined by $x \mapsto f(x)$ on A and $x \mapsto g(x)$ on B, is continuous.

Definition 2.3. A path is a continuous function $\gamma : [0, 1] \to X$.

Lemma 2.8. Two paths γ_1, γ_2 can be concatenated when $\gamma_1(1) = \gamma_2(0)$.

2.2 Homeomorphisms

Definition 2.4. Let $f: X \to Y$ be a function between the topological spaces (X, τ_X) and (Y, τ_Y) . We say that f is a homeomorphism if f is continuous, f is bijective, and f^{-1} is continuous. We also say that X and Y are homeomorphic when such a homeomorphism between them exists.

Example. The interval (-1, 1) is homeomorphic to \mathbb{R} ; for instance, the map $x \mapsto \tan(\pi x/2)$ on (-1, 1) is a homeomorphism. A simpler construction is the map $x \mapsto x/(1-x^2)$.

2.3 Projection maps

Theorem 2.9. The projection maps $\pi_i: X_1 \times \cdots \times X_k \to X_i$ are continuous, when the domain is equipped with the product topology. Furthermore, the product topology is the coarsest topology on the domain for which the projection maps are continuous.

Lemma 2.10. Let $f: A \to X_1 \times \cdots \times X_k$, where the co-domain is equipped with the product topology. Then, f is continuous if and only if the component functions $f_i = \pi_i \circ f$ are continuous.

Proof. Note that if f is continuous, the compositions $\pi_i \circ f$ are immediately continuous. Conversely suppose that each f_i is continuous, and write

$$f(t) = (f_1(t), \ldots, f_k(t)).$$

The sets $U_1 \times \cdots \times U_k$, where each $U_i \subseteq X_i$ is open, form a basis of the co-domain. Furthermore, their pre-images under f are $f_1^{-1}(U_1) \cap \cdots \cap f_k^{-1}(U_k)$, which are open in A. This shows that f is continuous.

Definition 2.5. Let J be an arbitrary index set. A J-tuple of elements in a set X is a function $x: J \to X$, formally denoted $(x_{\alpha})_{\alpha \in J}$. If $\{X_{\alpha}\}_{\alpha \in J}$ is a family of sets, their Cartesian product is defined as

$$\prod_{\alpha \in J} X_{\alpha} = \{ x \colon J \to \bigcup_{\alpha \in J} X_{\alpha} \colon x_{\alpha} \in X_{\alpha} \}.$$

Remark. The fact that we can choose an element from each set in an uncountable collection relies on the Axiom of Choice.

Definition 2.6. Let $\{X_{\alpha}\}_{\alpha \in J}$ be a collection of topological spaces. The topology generated by $\prod_{\alpha \in J} U_{\alpha}$, where each $U_{\alpha} \subseteq X_{\alpha}$ is open, is called the box topology on $\prod_{\alpha \in J} X_{\alpha}$.

Definition 2.7. Let $\{X_{\alpha}\}_{\alpha \in J}$ be a collection of topological spaces. The topology generated by the sub-basis $\pi_{\alpha}^{-1}(U_{\alpha})$, where each $U_{\alpha} \subseteq X_{\alpha}$ is open, is called the product topology on $\prod_{\alpha \in J} X_{\alpha}$.

Remark. The basic open sets are of the form $\pi_{\alpha \in J} U_{\alpha}$, where all but finitely many $U_{\alpha} = X_{\alpha}$. Thus, this is a coarser topology than the box topology.

Lemma 2.11. Let $\prod_{\alpha \in J} X_{\alpha}$ be equipped with the box or product topology. Then, $\overline{\prod A_{\alpha}} = \prod \overline{A}_{\alpha}$, where each $A_{\alpha} \in X_{\alpha}$.

Lemma 2.12. Let $f: A \to \prod_{\alpha \in J} X_{\alpha}$, where the co-domain is equipped with the product topology. Then, f is continuous if and only if the component functions $f_{\alpha} = \pi_{\alpha} \circ f$ are continuous.

Remark. This fails when $\prod_{\alpha \in J}$ is equipped with the box topology. Consider $f \colon \mathbb{R} \to \prod_{n=1}^{\infty} \mathbb{R}, x \mapsto (x, x, ...)$. Then, the product $\prod_{n=1}^{\infty} (-1/n, 1/n)$ is open in the box topology, but its pre-image under f is $\bigcap_{n=1}^{\infty} (-1/n, 1/n) = \{0\}$, which is not open in \mathbb{R} .

3 Metric spaces

Definition 3.1. A metric space (X, d) is a set equipped with a metric $d: X \times X \to \mathbb{R}$, such that

1. d(x, y) = 0 if and only if x = y.

2. d(x, y) = d(y, x).

3. $d(x, z) \le d(x, y) + d(y, z)$.

Definition 3.2. An open ball in a metric spaces is the set of points

$$B(x,r) = \{ y \in X : d(x,y) < r \}.$$

Lemma 3.1. The collection of open balls in a metric space generates its standard topology.

Example. Consider a set X, equipped with the metric

$$d\colon X\times X\to \mathbb{R}, \qquad (x,y)\mapsto \begin{cases} 0, & \text{if } x=y,\\ 1, & \text{if } x\neq y. \end{cases}$$

Then, this metric induces the discrete topology on X.

3.1 Metrizable spaces

Definition 3.3. A topological space (X, τ) is called metrizable if there exists a metric $d: X \times X \to \mathbb{R}$ which induces the topology τ on X.

Definition 3.4. Let $A \subseteq X$. The diameter of A is defined to be

$$\operatorname{diam}(A) = \sup\{d(x, y) : x, y \in A\}.$$

If diam(A) is finite, we say that A is bounded.

Example. The metric

$$(x,y) \mapsto \frac{|x-y|}{1+|x-y|}$$

generates the standard topology on \mathbb{R} . Note that \mathbb{R} is unbounded in the standard metric, but bounded in this one.

Definition 3.5. Let (X, d) be a metric space. Then the standard bounded metric corresponding to d is defined as

 $\overline{d}: X \times X \to \mathbb{R}, \qquad (x, y) \mapsto \min\{d(x, y), 1\}.$

Lemma 3.2. Both d and \overline{d} generate the same topology.

Theorem 3.3. The product topology on $\mathbb{R}^{\omega} = \mathbb{R} \times \mathbb{R} \times ...$ is metrizable, using the metric

$$D(x,y) = \sup_{n} \left\{ \frac{1}{n} \bar{d}(x,y) \right\}.$$

Lemma 3.4 (Sequence lemma). Let $A \subseteq X$, let $x \in X$, and let the sequence $\{x_n\}_{n \in \mathbb{N}}$, $x_n \in A$ converge with $x_n \to x$. Then, $x \in \overline{A}$.

Remark. The converse holds if X is metrizable.

Example. Consider $X = \mathbb{R}^{\omega}$ equipped with the box topology. Choose $A = \{(x_1, x_2, \ldots) : x_i > 0\}$. Then, $0 = (0, 0, \ldots) \in \overline{A}$; this is clear from the fact that any open set around 0 contains the basic open set $\prod_i (a_i, b_i)$ with $a_i < 0 < b_i$. However, there is no sequence $\{x_n\}_{n \in \mathbb{N}}$, $x_n \in A$, such that $x_n \to 0$. Note that if this were the case, then each $x_n = (x_{n1}, x_{n2}, \ldots)$. Now, $B = \prod_i (-x_{ii}, x_{ii})$ contains none of the points x_n , since the *n*th coordinate of *B* eliminates the point *n*.

Corollary 3.4.1. \mathbb{R}^{ω} equipped with the box topology is not metrizable.

4 Compactness

Definition 4.1. Let X be a topological space. We say that X is compact if every open cover of X has a finite subcover.

Lemma 4.1. Let $Y \subseteq X$. Then, Y is compact if and only if every open cover of Y by open sets in X has a finite subcover.

4.1 Compact subspaces

Lemma 4.2. All compact sets in a metric space are bounded.

Proof. Let $K \subseteq X$ be compact. Then, K admits an open cover of open balls B(0, n) from which we can extract a finite subcover; however, this can be reduced to just one open ball B(0, N) for some N. Thus $K \subset B(0, N)$ is bounded.

Lemma 4.3. A closed subset of a compact space is compact.

Proof. Let K be compact, and $F \subseteq K$ be closed. Consider an open cover $\{U_{\alpha}\}_{\alpha \in J}$ of F. By adding $K \setminus F$ to this collection, we have an open cover of K, from which we can extract a finite subcover $U_{i_1}, U_{i_2}, \ldots, U_{i_k}, K \setminus F$. By discarding the latter, we have found a finite subcover of F.

Lemma 4.4. In a Hausdorff space, every compact set is closed.

Proof. Let X be Hausdorff, and $K \subseteq X$ be compact. Fix $x_0 \in X \setminus K$, and note that given any $y \in K$, there exist open neighbourhoods U_y, V_y such that $x_0 \in U_y, y \in V_y, U_y \cap V_y = \emptyset$. Thus, the collection of all such $\{V_y\}_{y \in K}$ is an open cover of K, from which we can extract a finite subcover V_{y_1}, \ldots, V_{y_k} . Corresponding to this, $x_0 \in U_{y_1} \cap \cdots \cap U_{y_k} \subseteq X \setminus K$. Thus, x_0 lies in the interior of $X \setminus K$. This shows that $X \setminus K$ is open, hence K is closed. \Box

Theorem 4.5. The image of a compact space under a continuous map is compact.

Lemma 4.6. Let $f: X \to Y$ be a continuous bijection. If X is compact and Y is Hausdorff, then f is a homeomorphism.

Proof. We need only show that f is a closed map; now every closed set $F \subseteq X$ is compact because X is compact, hence $f(K) \subseteq Y$ is compact. Since Y is Hausdorff, the compact set f(K) is closed.

Lemma 4.7. A topological space is compact if and only if for any collection of closed sets \mathscr{C} with the finite intersection property, we have $\bigcap_{C \in \mathscr{C}} C \neq \emptyset$.

4.2 Products of compact spaces

Lemma 4.8 (Tube lemma). Let X, Y be topological spaces, and let Y be compact. Let $x_0 \in X$, and let $\{x_0\} \times Y \subset N \subseteq X \times Y$ where N is open. Then, there exists an open set $W \subseteq X$ such that $\{x_0\} \times Y \subseteq W \times Y \subseteq N$.

Proof. Note that $\{x_0\} \times Y$ is compact, being homeomorphic to Y. Thus, it can be covered with basic open sets $U_1 \times V_1, \ldots, U_k \times V_k$ such that each $U_i \times V_i \subset N$. Simply set $W = U_1 \cap \cdots \cap U_k$. \Box

Theorem 4.9. Let X, Y be compact topological spaces. Then, $X \times Y$ is compact.

Proof. Let $\{U_{\alpha}\}_{\alpha \in J}$ be an open cover of $X \times Y$. Pick $x \in X$, whence $\{x\} \times Y$ is compact and admits a finite subcover $U_{xi_1}, \ldots, U_{xi_k}$. Denote their union by U_x ; the tube lemma guarantees an open set $W_x \subseteq X$ such that $\{x\} \times Y \subseteq W \times Y \subseteq U_x$. Now, the collection $\{W_x\}_{x \in X}$ is an open cover of X, hence admits a finite subcover W_{x_1}, \ldots, W_{x_n} . This also means that $W_{x_1} \times Y, \ldots, W_{x_n} \times Y$ is a finite cover of Y. However, each $W_{x_i} \times Y \subseteq U_{x_i}$ can be covered by finitely many U_{α} , which means that we have a finite subcover of $X \times Y$.

4.3 Euclidean spaces

Lemma 4.10. Let X be a simply ordered set with the least upper bound property. Then, the intervals [a, b] are compact.

Theorem 4.11 (Heine-Borel). Compact sets of \mathbb{R}^n are precisely those which are closed and bounded.

4.4 Limit point compactness

Definition 4.2. Let X be a topological space. We say that X is limit point compact if every infinite subset of X has a limit point.

Lemma 4.12. A compact space is limit point compact.

Proof. Let X be compact, and let $A \subseteq X$ have no limit points. Then, $A = A \cup A' = \overline{A}$ is closed in X, hence compact. Now given any $a \in A$, we know that a is not a limit point of A, hence we can choose an open neighbourhood U_a such that $U_a \cap A = \{a\}$. The collection $\{U_a\}_{a \in A}$ is now an open cover of A, and hence admits a finite subcover U_{a_1}, \ldots, U_{a_k} . Let U denote their union, whence $A = A \cap U = \{a_1, \ldots, a_k\}$ is finite. \Box

Example. Let $X = \mathbb{N} \times \{0, 1\}$, where \mathbb{N} has the discrete topology, and $\{0, 1\}$ has the indiscrete topology. Then, every subset of X has a limit point; indeed, given any $\{(n, b)\}$, we have a limit point (n, 1 - b). However, X is clearly not compact, since the open cover of sets $\{n\} \times \{0, 1\}$ does not admit any finite subcover.

Theorem 4.13. Let X be a metrizable space. Then, X is limit point compact if and only if it is compact.

5 Connectedness

Definition 5.1. Let X be a topological space, and let $U, V \subseteq X$ be open, non-empty, disjoint, with $U \cup V = X$. We say that U, V form a separation of X.

Definition 5.2. A topological space X is said to be connected if it admits no separation.

Lemma 5.1. A topological space X is connected if and only if the only subsets that are both open and closed in it are \emptyset, X .

Lemma 5.2. Let X be a topological space, and let $Y \subseteq X$ be a subspace. Then, a separation of Y is a pair of open sets $A, B \subseteq X$ such that $\overline{A} \cap B = \emptyset$, $A \cap \overline{B} = \emptyset$.

Lemma 5.3. Let C, D form a separation of X, and let $Y \subseteq X$ be a connected subspace. Then, either $Y \subseteq C, Y \subseteq D$.

Lemma 5.4. The union of a collection of connected spaces with a common point is connected.

Proof. Let $\{X_{\alpha}\}_{\alpha \in J}$ be a collection of connected spaces, with the common point x_0 , and let X be their union. Suppose that U, V is a separation of X; then each of the connected X_{α} must be contained in one of U, V. However, since all X_{α} share the common point x_0 , they must all lie in the same half, say U, forcing $V = \emptyset$, a contradiction.

Lemma 5.5. Let $A \subseteq X$ be connected, and let $A \subseteq B \subseteq \overline{A}$. Then, B is connected.

Theorem 5.6. The image of a connected space under a continuous maps is connected.

Theorem 5.7. A finite Cartesian product of connected spaces is connected.

Proof. Let X, Y be connected spaces. Fix $(a, b) \in X \times Y$. Now, $X \times \{b\}$ is connected, being homeomorphic to X. Furthermore, each $\{x\} \times Y$ is connected, for each $x \in Y$. Now, the set $T_x = \{x\} \times Y \cup X \times \{b\}$ is connected, being the union of connected spaces with the common point (x, b). Finally, the union of all such T_x is connected, being the union of connected spaces with the common point (a, b). This union is just $X \times Y$, which is thus connected. \Box

Example. The countable product \mathbb{R}^{ω} with the box topology is disconnected. Consider

 $A = \text{set of all bounded sequences}, \quad B = \text{set of all unbounded sequences}.$

Now, $A \cap B = \emptyset$, $A \cup B = \mathbb{R}^{\omega}$, $A, B \neq \emptyset$. It can also be shown that A, B are open.

Example. The countable product \mathbb{R}^ω with the product topology is connected. To show this, define

$$\tilde{R}^n = \{ (x_1, \ldots, x_n, 0, 0, \ldots) : x_i \in \mathbb{R} \}.$$

Then, set $X = \bigcup_{n=1}^{\infty} \tilde{R}^n$, and note that since each $\tilde{R}^n \cong \mathbb{R}^n$ is connected with all of them sharing the common point $(0, 0, \ldots)$, X must be connected. We now show that $\overline{X} = \mathbb{R}^{\omega}$. Indeed, given $x = (x_1, x_2, \ldots) \in \mathbb{R}^{\omega}$, an open neighbourhood of x looks like $U = U_1 \times U_2 \times \ldots$, where all but finitely many $I_i = \mathbb{R}$. In other words, there exists sufficiently large $N \in \mathbb{N}$ such that for all $n \geq N$, $U_n = \mathbb{R}$. Thus, the point $(x_1, x_2, \ldots, x_n, 0, 0, \ldots) \in U \cap \tilde{R}^N$.

Lemma 5.8. The closed intervals $[a, b] \subset \mathbb{R}$ are connected.

5.1 Path connectedness

Definition 5.3. A topological space X is said to be path connected if there exists a path joining any two points in X. In other words, given $a, b \in X$, there always exists a continuous map $\gamma: [0, 1] \to X$ such that $\gamma(0) = a, \gamma(1) = b$.

Lemma 5.9. All path connected spaces are connected.

Proof. Note that if $X = U \cup V$ is a separation of the path connected space X, then $[0,1] = \gamma^{-1}(U) \cup \gamma^{-1}(V)$ is a separation of the connected interval [0,1], a contradiction.

Lemma 5.10. The image of a path connected space under a continuous map is path connected.

Example. The unit sphere S^{n-1} is path connected. Note that the map

$$f: \mathbb{R}^n \setminus \{0\} \to S^{n-1}, \qquad x \mapsto x/\|x\|$$

is continuous and surjective. Thus, it maps the path connected set $\mathbb{R}^n \setminus \{0\}$ to S^{n-1} , which must be path connected.

Example. The set \overline{S} , called the topologist's sine curve, is connected but not path connected.

$$S = \{ (x, \sin(1/x)) : 0 < x \le 1 \}.$$

Note that S is the continuous image of the connected interval (0, 1], hence connected. This further shows that \overline{S} is connected. Now,

$$\overline{S} = S \cup \{(0, y) : -1 \le y \le 1\}.$$

However, \overline{S} is not path connected, since there exists no path joining (0,0) and $(1/\pi,0)$. Indeed, given any path $\gamma: [0,1] \to \overline{S}$ starting at (0,0), it cannot escape $\{0\} \times [-1,1]$. To see this, write $\gamma = (\gamma_1, \gamma_2), \gamma_2(0) = 0$. By continuity of γ_2 , we can choose $\delta > 0$ such that $|\gamma_2(t)| < 1/2$ for all $0 \le t \le \delta$. Suppose that $\gamma_1(t^*) = \tau > 0$ for some $0 \le t \le \delta$. By the intermediate value theorem, γ_1 takes all the values between 0 and τ in the interval $[0, t^*]$. Choose N such that $2/\pi(2N+1) < \tau$. Again, there must exist some $0 < t_0 < t^*$ such that $\gamma_1(t_0) = 2/\pi(2n+1)$. Now, $\gamma_2(t_0) = \sin(1/\gamma_1(t_0)) = 1 > 1/2$, a contradiction. This means that $\gamma_1(t) = 0$ for all $t \in [0, \delta]$.

6 Quotient topology

Definition 6.1. Let X be a topological space, and let \sim be an equivalence relation on X. Then X/\sim denotes the set of all equivalence classes with respect to \sim . Its elements are of the form $[x] = \{y \in X : x \sim y\}$, for $x \in X$. Define the map

$$\pi \colon X \to X/\sim, \qquad x \mapsto [x].$$

The quotient topology on X/\sim is the finest topology such that π is continuous. In other words, $U \subseteq X/\sim$ is open if $\pi^{-1}(U)$ is open in X.

Lemma 6.1. Let $f: X \to Y$ be a continuous surjection, with X compact and Y Hausdorff. Define an equivalence relation \sim on X such that $x \sim x' \Leftrightarrow f(x) = f(x')$. Then, $g: X/\sim \to Y$, $[x] \mapsto f(x)$ is a homeomorphism.

Example. Consider the interval [0, 1], with the equivalence relation ~ which identifies $0 \sim 1$, and leaves all other points undisturbed. Then, the quotient space $[0, 1]/\sim$ is homeomorphic to the circle S^1 .

Note that the quotient map on [0, 1] is not open, since the image of the open set [0, 1/2) is not open in $[0, 1]/\sim$.

Example. Let $X = \mathbb{R}^{n+1} \setminus \{0\}$, and define an equivalence relation on X which identifies points on the same line through the origin together. Then, the resulting quotient space is called the real projective space, denoted $\mathbb{R}P^n$.

Example. Let S^n denote the *n*-sphere in \mathbb{R}^{n+1} , and define an equivalence relation on S^n which identifies antipodal points. Then, the resulting quotient space is also $\mathbb{R}P^n$. The quotient map here is an open map.

Lemma 6.2. Let $f: X \to Y$ be an open, continuous, surjective map. Define an equivalence relation \sim on X such that $x \sim x' \Leftrightarrow f(x) = f(x')$. Then, $g: X/ \to Y$, $[x] \mapsto f(x)$ is a homeomorphism.

Example. By defining f as a composition of maps $\mathbb{R}^n \setminus \{0\} \to S^n \to S^n / \sim$, it can be shown that $\mathbb{R}P^n$ is compact.

6.1 One-point compactification

Definition 6.2. Let X be a compact topological space, and let $A \subset X$ be closed. The one-point compactification of $X \setminus A$ is defined by

$$Y = (X \setminus A) \cup \{\infty\},\$$

with the topology

 $\tau_Y = \{ U \subseteq X \setminus A \text{ is open} \} \cup \{ Y \setminus C \text{ where } C \text{ is compact in } X \setminus A \}.$

Lemma 6.3. If X is compact, Hausdorff, then so is the one-point compactification Y of $X \setminus A$.

Lemma 6.4. Let X be a compact, Hausdorff space and $A \subseteq X$ be a closed set. Define \sim on X by identifying $x \sim x'$ whenever $x, x' \in A$ and leaving the remaining points undisturbed. Then, X/\sim is homeomorphic to the one-point compactification $Y = X \setminus A \cup \{\infty\}$.

7 Countability and separation axioms

7.1 First countability

Definition 7.1. Let X be a topological space. A countable basis at a point $x \in X$ is a countable collection β of neighbourhoods of x such that for any neighbourhood U of x, there is a basis element $B \in \beta$ such that $x \in B \subseteq U$.

Definition 7.2. A topological space X in which every element $x \in X$ admits a countable basis is called a first countable space.

Example. All metrizable spaces are first countable. Given an element x, the collection of all open balls centred at x with rational radii forms a countable basis.

Example. The space \mathbb{R}_{ℓ} is a non-metrizable space which is first countable.

Lemma 7.1. The sequence lemma holds for first countable spaces, i.e. if X is first countable, $A \subseteq X$, and $x \in \overline{A}$, then there exists a sequence $\{x_n\}_{n \in \mathbb{N}}$, $x_n \in A$, such that $x_n \to x$.

Example. The space \mathbb{R}^{ω} with the box topology is not first countable.

7.2 Second countability

Definition 7.3. A topological space X which admits a countable basis is called a second countable space.

Example. The Euclidean spaces \mathbb{R}^n are second countable. The collection of all open balls with rational radii, centred at rational points, forms a countable basis.

Example. The space \mathbb{R}^{ω} with the product topology is second countable.

Lemma 7.2. If a topological space X is second countable, then any discrete subspace $A \subseteq X$ must be countable.

Proof. Let $\beta = \{B_n\}_{n \in \mathbb{N}}$ be a countable basis of X. For each $a \in A$, note that $\{a\}$ is open in the subspace topology A, hence there exists a basis element $B_a \in \beta$ such that $B_a \cap A = \{a\}$. Furthermore, this assignment $A \to \beta$, $a \mapsto B_a$ is injective, hence A must be countable. \Box

Example. The space \mathbb{R}^{ω} with the uniform topology is metrizable hence first countable, but not second countable. This topology is induced by the metric

$$\rho(x,y) = \sup_{i \in \mathbb{N}} \overline{d}(x_i, y_i) = \sup_{i \in \mathbb{N}} \min\{|x_i - y_i|, 1\}.$$

Consider the subspace $A \subset \mathbb{R}^{\omega}$, consisting of all binary sequences. This is clearly an uncountable set. However, for any two distinct members $x, y \in A$, we have d(x, y) = 1. This precisely describes the discrete topology on A. The contrapositive of the above lemma now shows that \mathbb{R}^{ω} with the uniform topology cannot be second countable.

Lemma 7.3. Let X be a second countable space. Then, every open cover of X admits a countable subcover.

Remark. A topological space in which every open cover admits a countable subcover is called a Lindelöf space.

Example. The space \mathbb{R}_{ℓ} is non-metrizable, first countable, and Lindelöf, but not second countable. To see the latter, let β be a basis of \mathbb{R}_{ℓ} . Note that every $x \in [x, x + 1) \subset \mathbb{R}_{\ell}$, hence there must exist $B_x \in \beta$, $x \in B_x \subseteq [x, x + 1)$. Now, the assignment $x \mapsto B_x$ is injective, hence β must be uncountable.

Lemma 7.4. Let X be a second countable space. Then, there exists a countable subset which is dense in X.

Remark. A topological space in which there exists a dense countable subset is called a separable space.

Proof. Let $\{B_n\}_{n \in X}$ be a countable basis of X. Pick one element $x_n \in B_n$ for each $n \in \mathbb{N}$, whence the set $\{x_n\}_{n \in \mathbb{N}}$ is countable and dense in X.

Lemma 7.5. Subspaces, countable products of first/second countable spaces are first/second countable.

Example. The space \mathbb{R}_{ℓ}^2 , called the Sorgenfrey plane, is not Lindelöf, even though \mathbb{R}_{ℓ} is. This can be shown by considering the line $L = \{(x, -x) : x \in \mathbb{R}\}$. Note that $L \subset \mathbb{R}_{\ell}^2$ is closed, hence $\mathbb{R}_{\ell}^2 \setminus L$ is open. Start with this, and add the sets $[x, x + 1) \times [x, x + 1)$ to our collection. This is an open cover of \mathbb{R}_{ℓ}^2 which admits no countable subcover.

7.3 Separation axioms

Definition 7.4. A topological space X in which any two distinct points $x, y \in X$ admit open sets U, V such that $x \in U, y \in V, U \cap V = \emptyset$, is called a Hausdorff space.

Definition 7.5. A topological space X in which any point $x \in X$ and a closed set $F \subseteq X$ (not containing x) can be separated is called a regular space.

Definition 7.6. A topological space X in which any point two disjoint closed sets $F, F' \subseteq X$ can be separated is called a normal space.

Lemma 7.6. Consider topological spaces in which singleton sets are closed. Then, all such normal spaces are regular, and all such regular spaces are Hausdorff.

Example. Consider the space \mathbb{R}_K , and note that K is closed. However, there is no separation of $0 \in \mathbb{R}$ and $K \subset \mathbb{R}$, hence \mathbb{R}_K is not regular.

Lemma 7.7. A space X is regular if and only if given any point x and an open set $U \subseteq X$ such that $x \in U$, there exists an open set V such that $x \in V \subseteq \overline{V} \subseteq U$.

Lemma 7.8. A space X is normal if and only if given any closed set F and an open set $U \subseteq X$ such that $F \subseteq U$, there exists an open set V such that $F \subseteq V \subseteq \overline{V} \subseteq U$.

Example. All metric spaces are regular.

Lemma 7.9. Products and subspaces of regular/Hausdorff spaces are also regular/Hausdorff.

Example. The space \mathbb{R}_{ℓ} is regular, but not metrizable, and so is \mathbb{R}_{ℓ}^2 .

Lemma 7.10. All metrizable spaces are normal.

Proof. Let X be metrizable, and let $A, B \subseteq X$ be closed, $A \cap B = \emptyset$. Then for each $a \in A$, $b \in B$, we can choose $\epsilon_a, \epsilon_b > 0$ such that

$$B(a, \epsilon_a) \cap B = \emptyset, \qquad B(b, \epsilon_b) \cap A = \emptyset.$$

This is because the complements $X \setminus A$, $X \setminus B$ are open. Now set

$$U = \bigcup_{a \in A} B(a, \epsilon_a/2), \qquad V = \bigcup_{b \in A} B(b, \epsilon_b/2).$$

It can be checked that these are open, with $A \subseteq U, B \subseteq V, U \cap V = \emptyset$.

Example. The space \mathbb{R}_{ℓ} is normal, but not metrizable. However, \mathbb{R}_{ℓ}^2 is not normal.

Theorem 7.11. All compact, Hausdorff spaces are normal.

Theorem 7.12. All regular, second countable spaces are normal.

Example. The space \mathbb{R}_{ℓ} is normal but not second countable.

Example. The Sorgenfrey line $L \subset \mathbb{R}^2_{\ell}$ has the discrete topology. Then, any subset $A \subseteq L$ is both open and closed, and $A, L \setminus A$ are closed in \mathbb{R}^2_{ℓ} . If \mathbb{R}^2_{ℓ} were normal, then we could separate them in \mathbb{R}^2_{ℓ} by open sets U_A, V_A with $A \subseteq U_A, L \setminus A \subseteq V_A, U_A \cap V_A = \emptyset$. Let $D \subset \mathbb{R}^2_{\ell}$ be the set of all points with rational coordinates; this is dense in \mathbb{R}^2_{ℓ} . Define

$$\theta \colon \mathcal{P}(L) \to \mathcal{P}(D), \qquad A \mapsto \begin{cases} D \cap U_A, & \text{if } \emptyset \subset A \subset L, \\ D, & \text{if } A = L, \\ \emptyset, & \text{if } A = \emptyset. \end{cases}$$

Note that $U_A \cap D$ is non-empty when $A \neq \emptyset$ by the density of D. Pick $A \neq B$, then there exists $x \in A, x \notin B$ hence $x \in L \setminus B$ or $x \in U_A \cap V_B$. Thus, $D \cap U_A$ and $D \cap V_B$ are non-empty. There must be points in $D \cap U_A$ not in $D \cap U_B$, hence θ is injective. However, this is already a contradiction, via cardinalities.

Example. Let X be a metric space, and let $A, B \subseteq X$ be closed and disjoint. We can define

$$f: X \to \mathbb{R}, \qquad x \mapsto \frac{d(x, A)}{d(x, A) + d(x, B)}.$$

Then, f is continuous, with f(A) = 0 and f(B) = 1. This is a 'functional separation' of A and B.

Note that if A and B were not closed, the denominator might have been zero.

Lemma 7.13 (Urysohn). A space X is normal if and only if given any two non-empty closed disjoint sets $A, B \subseteq X$, there exists a continuous function $f: X \to [0, 1]$ such that f(A) = 0, f(B) = 1.

Definition 7.7. Let X, Y be topological spaces. An imbedding $f: X \to Y$ is a homeomorphism between X and f(X).

Theorem 7.14 (Urysohn metrization theorem). All regular, second countable spaces are metrizable.

7.4 Compact manifolds

Definition 7.8. An *n*-manifold is a regular, second-countable space such that each point has a neighbourhood homeomorphic to an open subset of \mathbb{R}^n .

Example. The real projective space $\mathbb{R}P^n$ is a compact manifold. Furthermore, it can be covered by finitely many open sets, each of which is homeomorphic to an open subset of \mathbb{R}^n . To see this, define

$$U_i = \{ [x] : x \in \mathbb{R}^{n+1}, x_i \neq 0 \} \subset \mathbb{R}P^n$$

It is clear that the collection of U_i cover $\mathbb{R}P^n$. Now, define the maps

$$\varphi_i \colon U_i \to \mathbb{R}^n, \qquad [x] \mapsto \left(\frac{x_1}{x_i}, \dots, \frac{x_{i-1}}{x_i}, \frac{x_{i+1}}{x_i}, \dots, \frac{x_n}{x_i}\right).$$

Note that φ_i is injective; if $\varphi_i([x]) = \varphi_i([y])$, then each $y_j/y_i = x_j/x_i$, or $y_j = \lambda x_j$, but this is precisely what it means for $x \sim y$, hence [x] = [y]. The map φ_i is also continuous, since the maps

$$x \mapsto \left(\frac{x_1}{x_i}, \dots, \frac{x_{i-1}}{x_i}, \frac{x_{i+1}}{x_i}, \dots, \frac{x_n}{x_i}\right).$$

are continuous, and the quotient map $\mathbb{R}^{n+1} \setminus \{0\} \to \mathbb{R}P^n$ is open. It can also be shown that φ_i^{-1} is continuous, hence the maps φ_i are homeomorphisms.

Definition 7.9. Let X be a topological space, and let $\mathcal{U} = \{U_1, \ldots, U_k\}$ be an open cover. A partition of unity, dominated by \mathcal{U} , is a collection of continuous real functions ψ_1, \ldots, ψ_k on X such that each supp $\psi_i \subseteq U_i$ and $\sum_{i=1}^k \psi_i = 1$.

Lemma 7.15. Let X be a topological space, and let $\mathcal{U} = \{U_1, \ldots, U_k\}$ be an open cover. If X is normal, then there exists a partition of unity dominated by \mathcal{U} .

Proof. First, we refine the open cover \mathcal{U} and extract an open cover $\mathcal{V} = \{V_1, \ldots, V_k\}$ such that each $V_i \subseteq \overline{V_i} \subseteq U_i$. To do so, first define

$$A_1 = X \setminus (U_2 \cup \dots \cup U_k).$$

Then, $A_1 \subseteq U_1$ is closed in X. By the normality of X, there exists open V_1 such that $A_1 \subseteq V_1 \subseteq \overline{V_1} \subseteq U_1$. Now, the collection $\{V_1, U_2, \ldots, U_k\}$ is still an open cover of X. This process can be repeated; if at any point we have an open cover $\{V_1, \ldots, V_j, U_{j+1}, \ldots, U_k\}$, set

$$A_{j+1} = X \setminus (V_1 \cup \dots \cup V_j \cup U_{j+2} \cup \dots \cup U_k),$$

and argue as before to obtain open $V_{j+1} \subseteq A_{j+1}$, and the open cover $\{V_1, \ldots, V_{j+1}, U_{j+1}, \ldots, U_k\}$.

Next, perform another refinement of \mathcal{V} and extract an open cover $\mathcal{W} = \{W_1, \ldots, W_k\}$.

Now, apply the Urysohn Lemma and exhibit continuous functions $\varphi_1, \ldots, \varphi_k$ on X such that each $\varphi_i(\overline{W_i}) = 1$, $\varphi_i(X \setminus V_i) = 0$. Note that each supp $\varphi_i \subseteq \overline{V_i} \subseteq U_i$. Finally, set

$$\psi_i = \frac{\varphi_i}{\Phi}, \qquad \Phi = \sum_{i=1}^k \varphi_i.$$

Theorem 7.16. Any compact Hausdorff manifold can be imbedded into some Euclidean space.

Proof. Let $\mathcal{U} = \{U_1, \ldots, U_k\}$ be an open cover of X, and let $\varphi_i \colon U_i \to \varphi_i(U_i) \subseteq \mathbb{R}^n$ be homeomorphisms. Since X is compact and Hausdorff, hence normal, choose a partition of unity ψ_1, \ldots, ψ_k dominated by \mathcal{U} . Set $A_i = \operatorname{supp} \psi_i \subseteq U_i$, and define

$$h_i: X \to \mathbb{R}, \qquad x \mapsto \varphi_i(x) \,\psi_i(x).$$

It is clear that each h_i is continuous, with $h_i = 0$ on $X \setminus A_i$. Now, define

$$f: X \to \underbrace{\mathbb{R} \times \cdots \times \mathbb{R}}_{k \text{ times}} \times \underbrace{\mathbb{R}^n \times \cdots \times \mathbb{R}^n}_{k \text{ times}}, \qquad x \mapsto (\psi_1(x), \dots, \psi_k(x), h_1(x), \dots, h_k(x)).$$

Then, f is continuous as well as injective; suppose that f(x) = f(y). Since \mathcal{U} covers X, we must have some $\psi_j(x) > 0$; but $\psi_j(x) = \psi_j(y) > 0$, so $x, y \in A_j \subseteq U_j$. Thus, from $h_j(x) = h_j(y)$, we can cancel $\psi_j(x), \psi_j(y)$ to obtain $\varphi_j(x) = \varphi_j(y)$. The bijectivity of φ_j immediately gives x = y. Thus, f is a continuous map from a compact space to a Hausdorff space, hence f is a homeomorphism onto its image. In other words, f is an imbedding of X in $\mathbb{R}^{(n+1)k}$.

Theorem 7.17. Any compact Hausdorff space without any isolated points is uncountable.

Proof. First, we show that given any $x \in X$ and an open set $U \subseteq X$, we can always find non-empty open $V \subseteq U$ with $x \notin V$. To show this, note that since $x \in U$ is not an isolated point, we must have some distinct point $y \in U$. Since X is Hausdorff, find disjoint open sets W_1, W_2 with $x \in W_1, y \in W_2$. Now we can set $V = W_2 \cap U$. Note that we also have $x \notin \overline{V}$ since $x \in W_1 \subseteq W_2^c$.

Now, we show that there is no surjection $f: \mathbb{N} \to X$. If there was such an f, denote $x_n = f(n)$. Set U = X, and use the above process to find non-empty open $V_1 \subseteq U$, $x_1 \notin \overline{V_1}$. Next, set $U = V_1$, and find non-empty open $V_2 \subseteq V_1$, $x_2 \notin \overline{V_2}$. In this manner, we can obtain a chain of non-empty closed sets

$$\overline{V_1} \supseteq \overline{V_2} \supseteq \cdots \supseteq \overline{V_i} \supseteq \dots$$

These clearly have the finite intersection property, but $\bigcap_{i=1}^{\infty} \overline{V_i} = \emptyset$ since each $x_i \notin V_i$. This contradicts the compactness of X.

Theorem 7.18 (Lebesgue number). Let X be a compact metric space, and let \mathcal{U} be an open cover of X. Then, there exists a corresponding positive number δ such that any subset of X with diameter less than δ is contained in one of the elements of \mathcal{U} .

Proof. Note that for any $A \subset X$, the map $x \mapsto d(x, A)$ is continuous. Now, using the compactness of X, extract a finite subcover U_1, \ldots, U_n from \mathcal{U} . Set $F_i = X \setminus U_i$, and define

$$f: X \to \mathbb{R}, \qquad x \mapsto \frac{1}{n} \sum_{i=1}^{n} d(x, F_i).$$

This map is continuous, and strictly positive. Since X is compact, this map must attain a minimum $\delta > 0$. We now show that this δ is indeed the Lebesgue number for the open cover \mathcal{U} .

Let $B \subseteq X$, diam $B < \delta$. Pick $x_0 \in B$, whence $f(x_0) \ge \delta$. Suppose that all $d(x_0, F_i) \le d(x_0, F_k)$ for some k, then $\delta \le f(x_0) \le d(x_0, F_k)$. We have

$$d(x_0, F_k) \ge \delta \implies \inf\{d(x_0, c) : c \notin U_k\} \ge \delta.$$

If $B \not\subseteq U_k$, then we could have chosen $x \in B$, $x \notin U_k$. From $x \in B$, we have $d(x_0, x) < \delta$; this contradicts the above.

Corollary 7.18.1. Let X be a compact metric space. Then, all continuous functions $f: X \to Y$, where Y is a metric space, are uniformly continuous.

Proof. Let $f: X \to Y$ be continuous, and let $\epsilon > 0$. Set $\mathcal{U} = \{f^{-1}(B_{\epsilon/2}(y)) : y \in Y\}$, which is clearly an open cover of X. Pick the corresponding Lebesgue number $\delta > 0$. Now, given any two points $x, x' \in X$ such that $d_X(x, x') < \delta$, we have diam $\{x, x'\} < \delta$ hence $\{x, x'\} \subseteq f^{-1}(B_{\epsilon/2}(y))$ for some $y \in Y$. Thus, $f(x), f(x') \in B_{\epsilon/2}(y)$, hence $d_Y(f(x), f(x')) < \epsilon$. \Box

8 Topological groups

Definition 8.1. A topological group G is a topological space that is also a group, such that the product and inversion maps are continuous, i.e. the maps $(x, y) \mapsto xy$ and $x \mapsto x^{-1}$ are continuous.

Remark. We also demand that G be Hausdorff.

Example. The group $GL_n(\mathbb{R})$ is a topological group. Here, we topologize $GL_n(\mathbb{R})$ using the Euclidean topology on \mathbb{R}^{n^2} .

Remark. Note that the determinant map det: $M_n(\mathbb{R}) \to \mathbb{R}$ is continuous, being a polynomial in the entries of any given matrix. Thus, $GL_n(\mathbb{R})$ is open in $M_n(\mathbb{R})$, being the pre-image of the open set $\mathbb{R} \setminus \{0\}$.

Remark. Note that $GL_n(\mathbb{R})$ is not connected, being the disjoint union of det⁻¹($-\infty$, 0) and det⁻¹($0, \infty$). However, $GL_n(\mathbb{C})$ is path connected. To show this, pick $A \in GL_n(\mathbb{C})$, and let $z \in \mathbb{C}$ such that |z| = 1, with no λz being an eigenvalue of A (this can be done since A has only finitely many eigenvalues). Now, consider the map

$$\gamma \colon [0,1] \to GL_n(\mathbb{C}), \qquad t \mapsto tA + (1-t)zI_n.$$

Note that γ is continuous and well-defined; $\gamma(0) = I_n$, $\gamma(1) = A$ both of which are in $GL_n(\mathbb{C})$. Now if det $\gamma(t) = 0$ for some 0 < t < 1, there must be some non-zero vector $v \in \mathbb{C}^n$ such that $tAv + (1-t)zI_nv = 0$, i.e. Av = -(1-t)z/tv. However, z was chosen such that none of its multiples are eigenvalues of A. Thus, γ is a path joining I_n with A, which shows that $GL_n(\mathbb{C})$ is indeed path connected.

Example. The topological group of unitary matrices $U_n(\mathbb{C})$ is compact. Note that it is sufficient to show that $U_n(\mathbb{C})$ is closed and bounded. First, the maps $A \mapsto AA^* - I_n$ and $A \mapsto A^*A - I_n$ are both continuous, hence $U_n(\mathbb{C})$ is closed, being the intersection of the pre-images of $\{0\}$ under these maps. Next, note that given $U \in U_n(\mathbb{C})$, we have $UU^* = I_n$, hence the columns of U are orthonormal. Thus,

$$\sum_{i,j} |u_{ij}|^2 = n,$$

showing that U is bounded.

Theorem 8.1. Let G be a topological group, and let H be a closed normal subgroup of G. If G/H and H are connected, then G is connected.

Proof. Suppose that G is disconnected. Then there exists a continuous, surjective map $\Phi: G \to \{0,1\}$. Since $H \subset G$ is connected, one of $\Phi(H) = 0, 1$. Now, the quotient map $\pi: G \to G/H$ induces the continuous surjection $\tilde{\Phi}: G/H \to \{0,1\}, \Phi = \tilde{\Phi} \circ \pi$, which contradicts the connectedness of G/H. Note that we have used the fact that π is open; to see this, if $U \subseteq G$ is open, we claim that $\pi(U) \subseteq G/H$ is open, i.e. $\pi^{-1}(\pi(U))$ is open in G. But,

$$\pi(U) = \{gH : g \in U\},\$$

 \mathbf{SO}

$$\pi^{-1}(\pi(U)) = \{g \in G : gH = g'H, g' \in U\}$$

= $\{g \in G : g'^{-1}g \in H, g' \in U\}$
= $\bigcup_{h \in H} Uh.$

which is open in G.