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The initial value problem



The initial value problem

Given the derivative of a function y and an initial value y(x0),
we wish to reconstruct the curve y(x).

y′(x) = f (x, y(x)), y(x0) = y0.

For example,
y′(x) = y − x, y(0) = 2

3
.
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The analytic solution

If
y′(x) = p(x)y(x) + q(x), y(x0) = y0,

then

y(x) = y0 + g(x)
∫ x

x0

q(x)
g(x)

dx, g(x) = exp

∫ x

a
p(x) dx.

In our example,

y(x) = 2
3
+ ex

∫ x

0
xe−x dx = 1+ x − 1

3
ex.
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The big picture

Examine the differential equation

y′(x) = f (x, y(x)).

This can be read as follows.

Given a point (x, y) on a solution curve y(x), the tangent
drawn to the curve at that point has slope f (x, y).

Thus, we can assign a vector with slope f (x, y) to each point
(x, y) on the plane; this gives us a direction field. Any solution
y(x) will fit neatly into this field.

3





Joining the dots

1. Start at (x0, y0), and move along the tangent vector there
by a small step to reach (x1, y1).

2. Join these points, and repeat.

The resulting curve closely approximates a solution to the
initial value problem.

This ‘works’ because for a smooth curve y(x), the tangent line
closely approximates the curve.
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Iterative methods



Euler’s method

Recall that
y′(x) = lim

h→0

y(x + h)− y(x)
h

.

Thus, we can make the forward and backward approximations,

y′(x) ≈ y(x + h)− y(x)
h

≈ y(x)− y(x − h)
h

.
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Euler’s method

This gives two ways of stepping along the x-axis, an explicit
one and an implicit one.

y(x + h) ≈ y(x) + h · y′(x),
y(x + h) ≈ y(x) + h · y′(x + h).

More precisely, Taylor’s theorem gives us

y(x + h) = y(x) + h · y′(x) +O(h2).
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Euler’s method

Suppose that we wish to approximate the values of y(xi) for
xi = x0 + ih, 0 ≤ i ≤ N. Euler’s method gives the scheme

yi+1 = yi + h · f (xi, yi).

We claim that the values yi ≈ y(xi).
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Trapezoidal method

Recall our approximations

y(x + h) ≈ y(x) + h · y′(x),
y(x + h) ≈ y(x) + h · y′(x + h).

Taking their average,

y(x + h) ≈ y(x) + 1
2
h ·

[
y′(x) + y′(x + h)

]
.
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Trapezoidal method

The following problems are essentially equivalent.

y′(x) = f (x, y(x)), y(0) = y0,~�
y(x) = y0 +

∫ x

x0
f (x, y(x)) dx.

The problem of integration can be split up into smaller pieces,

y(xi+1)− y(xi) =
∫ xi+1

xi
f (x, y(x)) dx.
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Trapezoidal method

y(xi+1)− y(xi) =
∫ xi+1

xi
f (x, y(x)) dx

≈ 1
2
h ·

[
f (xi, y(xi)) + f (xi+1, y(xi+1))

]
.

This uses the trapezoidal method of approximating integrals,∫ b

a
f (x) dx ≈ b− a

2
·
[
f (a) + f (b)

]
.
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Trapezoidal method

The trapezoidal method gives the scheme

yi+1 = yi +
1
2
h ·

[
f (xi, yi) + f (xi+1, yi+1)

]
.

This does not give yi+1 explicitly. Instead, we seek the root of

g(t) = −t + yi +
1
2
h ·

[
f (xi, yi) + f (xi+1, t)

]
.
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Solving the implicit equation

One way of solving for yi+1 is using Newton’s method. Set up a
good initial guess using Euler’s method,

t0 = yi + h · f (xi, yi),

and proceed with

tj+1 = tj −
g(tj)
g′(tj)

.

We note that
g′(t) = −1+ 1

2
h · ∂f

∂y
(xi+1, t).
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An example by hand

Consider estimating y(1) in one step (using h = 1) for the IVP

y′(x) = y − x, y(0) = 2
3
.

We solve the implicit equation for y1.

y1 =
2
3
+
1
2

[
2
3
+ (y1 − 1)

]
, y1 = 1.

Our analytic solution gives

y(1) = 2− 1
3
e ≈ 1.094,

so we weren’t far off!
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An example by hand

Now try h = 0.5, so

y1 =
2
3
+
1
4

[
2
3
+

(
y1 −

1
2

)]
, y1 =

17
18

,

y2 =
17
18

+
1
4

[(
17
18

− 1
2

)
+ (y2 − 1)

]
, y2 =

29
27

.

This says y2 ≈ 1.074, off by 0.02 which is less than a quarter of
the previous error.
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Existence and uniqueness of
solutions



Picard’s theorem

Let f : R2 → R2 such that the following properties hold.

1. f is continuous on D = [x0, xN]× [y0 − C, y0 + C].
2. |f (x, y0)| ≤ K for x ∈ [x0, xN].
3. f is Lipschitz in the second variable, i.e. there exists L > 0
such that for all x ∈ [x0, xN], u, v ∈ [y0 − C, y0 + C], we have

|f (x,u)− f (x, v)| ≤ L|u− v|.

4.
C ≥ K

L

(
eL(xN−x0) − 1

)
.
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Picard’s theorem

Then, there exists a unique function y ∈ C1[x0, xN] solving the
IVP

1. y(x0) = y0.
2. y′(x) = f (x, y), on [x0, xN]
3. |y(x)− y0| ≤ C on [x0, xN]
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Convergence of iterative methods



General one-step iterative methods

Consider the scheme

yi+1 = yi + h · Φ(xi, yi;h).

Here, Φ is continuous in all its variables.

For example, in Euler’s method,

Φ(x, y;h) = f (x, y).

In the trapezoidal method,

Φ(x, y;h) = 1
2

[
f (x, y) + f (x + h, y + h · Φ(x, y;h))

]
.
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Global and truncation errors

Define the global errors

ei = y(xi)− yi.

Define the truncation errors

Ti =
y(xi+1)− y(xi)

h
− Φ(xi, y(xi);h).
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Global and truncation errors

Let Φ be Lipschitz in its second variable, i.e. there exists LΦ > 0
such that for all 0 ≤ h ≤ h0,

|Φ(x,u;h)− Φ(x, v;h)| ≤ LΦ|u− v|.

Then, assuming that all |yi − y0| ≤ C,

|en| ≤
T
LΦ

(
eLΦ(xn−x0) − 1

)
,

where T = max0≤i<n |Ti|.
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Global and truncation errors

The truncation formula can be rearranged as

y(xi+1) = y(xi) + h · Φ(xi, y(xi);h) + hTi.

Subtracting the iteration scheme, we have

ei+1 = ei + h ·
[
Φ(xi, y(xi);h)− Φ(xi, yi;h)

]
+ hTi.

Use the Lipschitz condition to estimate the bracketed term.

|ei+1| ≤ |ei|+ hLΦ|ei|+ h|Ti|
≤ (1+ hLΦ)|ei|+ hT.
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Global and truncation errors

Denote r = 1+ hLΦ.

|e0| = 0,
|e1| ≤ hT
|e2| ≤ rhT + hT = (r + 1)hT
|e3| ≤ r(rhT + hT) + hT = (r2 + r + 1)hT
...

...

|en| ≤ (rn−1 + rn−1 + · · ·+ r + 1)hT = hT · r
n − 1
r − 1

.
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Global and truncation errors

Use r = 1+ hLΦ ≤ ehLΦ , xn = x0 + nh.

|en| ≤ hT · e
nhLΦ − 1
hLΦ

=
T
LΦ

(
eLΦ(xn−x0) − 1

)
.
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Consistency

We demand that the truncation errors vanish as h→ 0. In
other words, our numerical method is said to be consistent
with the given ODE if for any ε > 0, there exists hε > 0 such
that for all 0 ≤ h ≤ hε, we have |Ti| ≤ ε for any choice of
0 ≤ i < N, any solution curve y(x).

Ti =
y(xi+1)− y(xi)

h
− Φ(xi, y(xi);h).

Let h→ 0, N→ ∞, such that xi → x. Using the continuity of
y, y′,Φ, we have

0 = y′(x)− Φ(x, y(x); 0), Φ(x, y; 0) = f (x, y).
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Convergence

Let our IVP satisfy the conditions of Picard’s theorem, let the
one-step method generate approximations in the region D for
all h ≤ h0. Recall that Φ is continuous in all its variables, and
Lipschitz in the second variable. Also suppose that the
consistency condition is satisfied. Then, the successive
approximation sequences (yi), generated using finer and finer
meshes (decreasing h) converge to the solution of the IVP.

As h→ 0, pick points xn → x ∈ [x0, xN] as n→ ∞. Then, the
corresponding yn → y(x).
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Convergence

Choose h ≤ h0, such that there are N mesh points. Then,

|y(xn)− yn| ≤
T
LΦ

(
eLΦ(xN−x0) − 1

)
.

Use consistency to write

Tn =
y(xn+1)− y(xn)

h
− Φ(xn, y(xn);h)

=
y(xn+1)− y(xn)

h
− f (xn, y(xn))+

Φ(xn, y(xn); 0)− Φ(xn, y(xn);h)

=
[y(xn+1)− y(xn)

h
− y′(xn)

]
+[

Φ(xn, y(xn); 0)− Φ(xn, y(xn);h)
]
.

30



Convergence

Use the Mean Value theorem to choose ξn ∈ [xn, xn+1] such that
y(xn+1)− y(xn) = hy′(ξn).

Note that a continuous function on a compact set is also
uniformly continuous. Thus, we can choose h1 such that for all
h ≤ h1,

|y′(ξn)− y′(xn)| ≤
1
2
ε,

and choose h2 such that for all h ≤ h2,

|Φ(xn, y(xn); 0)− Φ(xn, y(xn);h)| ≤
1
2
ε.

Putting hε = min(h1,h2), we see that for all h ≤ hε, |Tn| ≤ ε.
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Convergence

Thus,

|y(x)− yn| ≤ |y(x)− y(xn)|+ |y(xn)− yn|

≤ |y(x)− y(xn)|+
ε

LΦ

(
eLΦ(xN−x0) − 1

)
.

As n→ ∞, xn → x, the continuity of y gives y(xn) → y(x),
making the first term vanish. By making ε arbitrarily small, the
second term also vanishes. This gives yn → y(x), as desired.
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Application to Euler’s method

We have
Φ(x, y;h) = f (x, y).

thus
Ti =

y(xi+1)− y(xi)
h

− y′(xi).

Assume y is twice continuously differentiable; use Taylor’s
theorem to conclude that

y(xi+1) = y(xi) + hy′(xi) +
1
2
h2y′′(ξi)

for ξ ∈ [xi, xi+1], hence

Ti =
1
2
hy′′(ξi), T ≤ 1

2
h sup |y′′(ξ)|.

Thus, the global error obeys

|en| ∝ T = O(h).
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Application to the Trapezoidal method

We have

Φ(x, y;h) = 1
2

[
f (x, y) + f (x + h, y + h · Φ(x, y;h))

]
.

To see that Φ satisfies the Lipschitz condition, we compute

|Φ(x,u;h)− Φ(x, v;h)|

≤ 1
2
|f (x,u)− f (x, v)|+

1
2
|f (x,u+ hΦ(x,u;h))− f (x, v + hΦ(x, v;h))|

≤ 1
2
L|u− v|+ 1

2
L|u− v|+ 1

2
Lh|Φ(x,u;h)− Φ(x, v;h)|.
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Application to the Trapezoidal method

Rearranging, we see that

|Φ(x,u;h)− Φ(x, v;h)| ≤ L
1− Lh/2

|u− v|.

For sufficiently small h, we have Lh/2 < 1 so choose

LΦ ≤ L
1− Lh/2

.
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Application to the Trapezoidal method

Now, compute the truncation error

Ti =
y(xi+1)− y(xi)

h
− 1
2

[
f (xi, y(xi))+

f (xi + h, y(xi) + hΦ(xi, y(xi);h))
]

=
y(xi+1)− y(xi)

h
− 1
2

[
f (xi, y(xi)) + f (xi+1, y(xi+1))

]
+

1
2

[
f (xi+1, y(xi+1))− f (xi+1, y(xi) + hΦ(xi, y(xi);h))

]
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Application to the Trapezoidal method

Note that if y is thrice continuously differentiable,

y(xi+1)− y(xi)
h

− 1
2

[
f (xi, y(xi)) + f (xi+1, y(xi+1))

]
=
y(xi+1)− y(xi)

h
− 1
2

[
y′(xi) + y′(xi+1)

]
= y′(xi) +

1
2
hy′′(xi) +

1
6
h2y′′′(ξi)−

1
2

[
y′(xi) + y′(xi) + hy′′(xi) +

1
2
h2y′′′(ζi)

]
=

1
12
h2
[
2y′′′(ξi)− 3y′′′(ζi)

]
.

37



Application to the Trapezoidal method

For the final term, use the Lipschitz condition to estimate

1
2
|f (xi+1, y(xi+1))− f (xi+1, y(xi) + hΦ(xi, y(xi);h))|

≤ 1
2
L|y(xi+1)− y(xi)− hΦ(xi, y(xi);h)|

=
1
2
Lh|Ti|.
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Application to the Trapezoidal method

Further imposing Lh/2 < 1/2, we can put these together to get

|Ti| ≤
1
12
h2|2y′′′(ξi)− 3y′′′(ζi)|+

1
2
Lh|Ti|,

T ≤ 5
6
h2 sup |y′′′(ζ)|.

Thus, the global error obeys

|en| ∝ T = O(h2).
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