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The initial value problem



The initial value problem

Given the derivative of a function y and an initial value y(xo),
we wish to reconstruct the curve y(x).

Yy =foy),  y(x)=Yo.

For example,



The analytic solution

then

v =vo+900 [ T ax g0 = e [ ptx)ax.

In our example,

2 X 1
y(x):+ex/ xe ‘dx =1+4+x— e~
3 0 3



The big picture

Examine the differential equation
y' (%) = f(x,y(x))-

This can be read as follows.

Given a point (x,y) on a solution curve y(x), the tangent
drawn to the curve at that point has slope f(x,y).

Thus, we can assign a vector with slope f(x,y) to each point
(x,y) on the plane; this gives us a direction field. Any solution
y(x) will fit neatly into this field.
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Joining the dots

1. Start at (xo, o), and move along the tangent vector there
by a small step to reach (x1,y1).

2. Join these points, and repeat.

The resulting curve closely approximates a solution to the
initial value problem.

This ‘works’ because for a smooth curve y(x), the tangent line
closely approximates the curve.
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Iterative methods



Euler's method

Recall that ( h) %)
. y(x+h)—=y(x
"(x) = lim 22—/ Z\7/
y () hlno h

Thus, we can make the forward and backward approximations,

yi(x) & YN 2 V) y () Zyix = h)

~ ~

h h




Euler's method

This gives two ways of stepping along the x-axis, an explicit
one and an implicit one.

y(x+h)=y(x)+h-y(x),
y(x+h) = y(x)+h-y'(x+h).

~—

More precisely, Taylor's theorem gives us

y(x+h) =y(x) +h-y'(x) + O(h?).



Euler's method

Suppose that we wish to approximate the values of y(x;) for
X; = Xo +ih, 0 <1 < N. Euler's method gives the scheme

Yiz1 =VYi+h-f(x,vi).

We claim that the values y; = y(X;).
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Trapezoidal method

Recall our approximations

y(x+h)=y(x)+h-y'x),
y(x+h) ~y(x)+h-y'(x+h).

Taking their average,

YO+ h) & y() + 2h - [y 60+ 0+ )

n



Trapezoidal method

The following problems are essentially equivalent.

y'()=10y(x),  y(0)=yo,

T
y(X) = Yo + /Xf(X,y(X)) dx.

The problem of integration can be split up into smaller pieces,
Xt

y(Xir) —y(xi) = f(xy(x)) dx.

Xi
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Trapezoidal method

Y(Xiy1)

/XHA

h [f(x,,y( )+ £,y (i)

l\)\—\

This uses the trapezoidal method of approximating integrals,

/abf(x) dx =

2 [f(@) +£(0)]-

13



Trapezoidal method

The trapezoidal method gives the scheme

1
Vigr =VYi + ih : [f(xhyi) +f(Xi+17y/‘+1)}-

This does not give y;, 4 explicitly. Instead, we seek the root of

9(t) = ~t+ ¥i + 3 - [£06, 1) + F(xi02,8)]-

14



Solving the implicit equation

One way of solving for y;,4 Is using Newton’s method. Set up a
good initial guess using Euler's method,

to =yi+h-f(xi,vi),

and proceed with

G =1 —

We note that
g'(t) =1

a(t)
g(t)

1. of

+ 5h - o= (Xiga, 1)

2 0y

15
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An example by hand

Consider estimating y(1) in one step (using h = 1) for the IVP

We solve the implicit equation for y;.

2 112
)/1—34‘2[3‘1‘()/1_1)}7 yi=1

Our analytic solution gives
1
y(1) =2- e~ 1.09%,

so we weren't far off!



An example by hand

Now try h = 0.5, so
2 12 (] v
)/1—3 413 Y1 5 ) )/1—187
LA FALAN A _»
=3ty |\is72) W ’ 2=%-

This says y, ~ 1.074, off by 0.02 which is less than a quarter of
the previous error.
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Existence and uniqueness of
solutions




Picard’s theorem

Let f: R? — R? such that the following properties hold.

1. f is continuous on D = [xo, xn] X [vo — C,yo + CJ.
2. [f(x,¥0)| < K for x € [xo,Xn].

3. fis Lipschitz in the second variable, i.e. there exists L > 0
such that for all x € [xo, xn], U,V € [yo — C,yo + C], we have

F (6 u) = F V)| < Lu = vl

—~| =X

c> (eL(waxo) _ 1) .

20



Picard’s theorem

Then, there exists a unique function y € C'[xo, xy] solving the
IVP

1. y(X0) = Yo.
2. yl(X) :f(Xay)r on [XOaXN]
3. ly(x) — yol < Con [xo,Xn]

21



Convergence of iterative methods




General one-step iterative methods

Consider the scheme
Vigr1 = Yi+h-®(x;, v h).

Here, ® is continuous in all its variables.

For example, in Euler's method,
®(x,y;h) =f(x,y).

In the trapezoidal method,

d(x,y; h) = % f,y)+f(x+h,y+h-o(x,y;h))|.

22



Global and truncation errors

Define the global errors
e =y(Xi) — Vi

Define the truncation errors

Y(Xig) — ¥(X)

Ti= -

- d)(X/',y(X,'); h)

23



Global and truncation errors

Let ® be Lipschitz in its second variable, i.e. there exists Ly > 0
such that for all 0 < h < hy,

|®(x,u; h) — ®(x,v; h)| < Lo|u —v|.
Then, assuming that all |y; — vo| < C,

len| < Ll (eLd)(Xn_XO) - 1) )
®

where T = maxg<j<p | Ti|.

2%



Global and truncation errors

The truncation formula can be rearranged as
y(Xiy1) = Y(x;) + h - ©(x;, y(x;); h) + hT;.
Subtracting the iteration scheme, we have
€it1 = €+ h- |®(xi, y(xj); h) — ®(x;,y;; h) | + hT;.
Use the Lipschitz condition to estimate the bracketed term.

leira| < |ej| + hlelej| + h|Tj|
< (14 hLe)le] + hT.

25



Global and truncation errors

Denote r =1+ hle.

leo] =0,

ler] < hT

les| < rhT + hT = (r+1)hT

les] < r(rhT + hT) + hT = (r> + r + 1)hT

A = q

leal < (""" 4 4 r £ DAT = hT -

26



Global and truncation errors

User =1+ hlLe < efte, x, = xo + nh.

nhle _
|en‘ S hT . QT1 = LL (eL¢(XH_XO) — ']) X
P O]

27



We demand that the truncation errors vanish as h — 0. In
other words, our numerical method is said to be consistent
with the given ODE if for any € > 0, there exists he > 0 such
that for all 0 < h < h,, we have |Tj| < e for any choice of

0 <i < N, any solution curve y(x).

T = y(Xf+1)h_ y(Xi) _ q)(Xia)/(Xi); h)

Let h — 0, N — oo, such that x; — x. Using the continuity of
v,y ®, we have

0=y'(x) = ®(x,y(x);:0),  ®(x,y;0) =f(x,y).

28



Convergence

Let our IVP satisfy the conditions of Picard’s theorem, let the
one-step method generate approximations in the region D for
all h < hg. Recall that @ is continuous in all its variables, and
Lipschitz in the second variable. Also suppose that the
consistency condition is satisfied. Then, the successive
approximation sequences (y;), generated using finer and finer
meshes (decreasing h) converge to the solution of the IVP.

As h — 0, pick points x, — X € [Xo,Xn] @S N — oco. Then, the
corresponding y, — y(x).

29



Convergence

Choose h < hg, such that there are N mesh points. Then,

_ T ( ploliu—x0)
V) =il < - (e -1).

Use consistency to write

Y(Xn+1) — Y(Xn)
h
Y(Xn+1) — Y(xn)

= Y1) V) £,y ) )+

®(Xn,¥(Xn); 0) = ®(Xn, ¥ (Xn); )
)

Th = — ®(xn,y(Xn); h)

30



Convergence

Use the Mean Value theorem to choose &, € [xn, Xn41] such that
Y(Xn+1) — Y(Xn) = hy'(&n)-

Note that a continuous function on a compact set is also
uniformly continuous. Thus, we can choose hy such that for all
h < hy,

1
IV'(&€n) = V' (Xn)| < 56
and choose h, such that for all h < hy,

[©(Xn, Y(Xn); 0) — D(Xn, Y(Xn); )] < %e.

Putting h. = min(hs, hy), we see that for all h < h,,

Tn| <e

31



Convergence

Thus,
Y(X) = Yal < 1Y(X) = y(Xa)| + [y (Xn) — Vnl

_ € ([ ploln—x0) _
< () — vl + 1 (e 1).

As n — oo, Xp — X, the continuity of y gives y(x,) — y(x),
making the first term vanish. By making e arbitrarily small, the
second term also vanishes. This gives y, — y(x), as desired.

32



Application to Euler's method

We have
®(x,y;h) = f(x,y).
thus
T = V(Xi+1)h_ y(xi) V().
Assume y is twice continuously differentiable; use Taylor's
theorem to conclude that

1
y(Xipa) = y(x;) + hy'(x;) + ihzy”(&)
for & € [x;, Xj14], hence
1, ., 1
T = 5/7)/ &), T<3h sup |y (€)!.
Thus, the global error obeys

33



Application to the Trapezoidal method

We have
O(x,y: h) = 5 [F69) + £+ By + h - o(x,v;h))].
To see that @ satisfies the Lipschitz condition, we compute
|®(x,u; h) — ®(x,v; h)|
<170 u) — FO )+
1]]‘(x, u+ ho(x,u; h)) — f(x,v+ hd(x,v; h))|

2
1 1 1
SEL\U —Vv|+ 5L\u —Vv|+ ELh\d)(x, u; h) — &(x, v; h)|.

34



Application to the Trapezoidal method

Rearranging, we see that
|®(x,u; h) — d(x,v; h)| <

For sufficiently small h, we have Lh/2 < 1 so choose

lg< b
®=1"1lh/2

35



Application to the Trapezoidal method

Now, compute the truncation error

T, = y(X/-H)h_ y(Xf) _ % |:f(Xi,)/(Xj))+
£+ h,y(06) + h(x, y(); )]
= W) Y05 _ 5ty + i) +

h 2
P42, Y0612)) = £, ¥06) + 105,y )

36



Application to the Trapezoidal method

Note that if y is thrice continuously differentiable,

W - % 706,y 00)) + F 031, Y 06111))]

_ V(Xi—H)h— y(xi) % {Y'(X,‘) n )//(Xi+1)}
= V/06) + 3hy(6) + gh?y" ()~

3 [V 000+ v/ 06) + hy"09) + 5(@)
= R [2(6) - 3y"(6)]

37



Application to the Trapezoidal method

For the final term, use the Lipschitz condition to estimate

%|f(x,-+1,y(x,-+1)) = f (X, y () + ho(xi, ¥ (xi): h))|
< SLY064) = Y06) = RO,y 05); )

1
= SLh|T|

38



Application to the Trapezoidal method

Further imposing Lh/2 < 1/2, we can put these together to get

1 1
ITil < 5h712y"(&) = 3y"(G)] + SLhiTil

T < W suply(O)].

Thus, the global error obeys

len| o T = O(h).

39
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