MA3105 **Numerical Analysis**

Autumn 2021

Satvik Saha 19MS154

Indian Institute of Science Education and Research, Kolkata, Mohanpur, West Bengal, 741246, India.

Contents

1 Time complexity

1.1 Runtime cost

When designing or implementing an algorithm, we care about its efficiency – both in terms of execution time, and the use of resources. This gives us a rough way of comparing two algorithms. However, such metrics are architecture and language dependent; different machines, or the same

program implemented in different programming languages, may consume different amounts of time or resources while executing the same algorithm. Thus, we seek a way of measuring the 'cost' in time for a given algorithm.

For example, we may look at each statement in a program, and associate a cost c_i with each of them. Consider the following statements.

The total cost of running these statements can be calculated as $T = c_1 + c_2 + c_3$, simply by adding up the cost of each statement. Similarly, consider the following loop construct.

The total cost can be shown to be $T(n) = c_1 + c_2(n+1) + c_3n$; this time, we must take into account the number of times a given statement is executed. Note that this is linear. Another example is as follows.

The total cost can be shown to be $T(n) = c_1 + c_2(n+1) + c_3n(n+1) + c_4n^2$. Note that this is quadratic. Finally, consider the following recursive call.

The cost can be shown to be $T(n) = c_5 + (c_1 + c_2)(n+1) + c_3 + c_4n$. This turns out to be linear.

In all these cases, we care about our total cost as a function of the input size n . Moreover, we are interested mostly in the *growth* of our total cost; as our input size grows, the total cost can often be compared with some simple function of n . Thus, we can classify our cost functions in terms of their asymptotic growths.

1.2 Asymptotic growth

Definition 1.1. The set $O(g(n))$ denotes the class of functions f which are asymptotically bounded above by g. In other words, $f(n) \in O(g(n))$ if there exists $M > 0$ and $n_0 \in \mathbb{N}$ such that for all $n \geq n_0$,

$$
|f(n)| \le Mg(n).
$$

This amounts to writing

$$
\limsup_{n \to \infty} \frac{|f(n)|}{g(n)} < \infty.
$$

Example. Consider a function defined by $f(n) = an + b$, where $a > 0$. Then, we can write $f(n) \in O(n)$. To see why, note that for all $n \geq 1$, we have

$$
|f(n)| = |an + b| \le an + |b| \le (a + |b|)n.
$$

Thus, setting $M = a + |b| > 0$ completes the proof.

Example. Consider a polynomial function defined by

$$
f(n) = a_k n^k + a_{k-1} n^{k-1} + \dots + a_1 n + a_0,
$$

with some non-zero coefficient. Then, we can write $f(n) \in O(n^k)$. Like before, note that for all $n \geq 1$, we have

$$
|f(n)| \leq \sum_{i=0}^k |a_i| n^i \leq \sum_{i=0}^k |a_i| n^k = (|a_k| + |a_{k-1}| + \cdots + |a_0|) n^k.
$$

Thus, setting $M = |a_k| + \cdots + |a_0| > 0$ completes the proof.

Theorem 1.1. *If* $f_1(n) \in O(g_1(n))$ *and* $f_2(n) \in O(g_2(n))$ *, then*

 $f_1(n) + f_2(n) \in O(\max\{g_1(n), g_2(n)\}).$

Definition 1.2. The set $\Omega(g(n))$ denotes the class of functions f are asymptotically bounded below by g. In other words, $f(n) \in \Omega(g(n))$ if there exists $M > 0$ and $n_0 \in \mathbb{N}$ such that for all $n \geq n_0$,

$$
|f(n)| \ge Mg(n).
$$

This amounts to writing

$$
\liminf_{n \to \infty} \frac{f(n)}{g(n)} > 0.
$$

$$
M_1g(n) \le |f(n)| \le M_2g(n).
$$

This amounts to writing $f(n) \in O(g(n))$ and $f(n) \in \Omega(g(n))$.

Another class of notation uses the idea of dominated growth.

Definition 1.4. The set $o(q(n))$ denotes the class of functions f which are asymptotically dominated by g. In other words, $f(n) \in o(g(n))$ if for all $M > 0$, there exists $n_0 \in \mathbb{N}$ such that for all $n \geq n_0$,

$$
|f(n)| < Mg(n).
$$

This amounts to writing

$$
\lim_{n \to \infty} \frac{|f(n)|}{g(n)} = 0.
$$

Definition 1.5. The set $\omega(q(n))$ denotes the class of functions f which asymptotically dominate g. In other words, $f(n) \in \omega(g(n))$ if for all $M > 0$, there exists $n_0 \in \mathbb{N}$ such that for all $n \geq n_0$, $|f(n)| > Mg(n).$

This amounts to writing

$$
\lim_{n \to \infty} \frac{|f(n)|}{g(n)} = \infty.
$$

Definition 1.6. We say that $f(n) \sim q(n)$ if f is asymptotically equal to q. In other words, $f(n) \sim g(n)$ if for all $\epsilon > 0$, there exists $n_0 \in \mathbb{N}$ such that for all $n \geq n_0$,

$$
\left|\frac{f(n)}{g(n)}-1\right|<\epsilon.
$$

This amounts to writing

$$
\lim_{n \to \infty} \frac{f(n)}{g(n)} = 1.
$$

We often abuse notation and treat the following as equivalent.

$$
T(n) \in O(g(n)), \qquad T(n) = O(g(n)).
$$

2 Root finding methods

Consider an equation of the form $f(x) = 0$, where $f: [a, b] \to \mathbb{R}$ is given. We wish to solve this equation, i.e. find the roots of f .

Note that for *arbitrary* functions, this task is impossible. To see this, consider a function f which assumes the value 1 on $[0,1] \setminus {\alpha}$ and $f(\alpha) = 0$, for some $\alpha \in [0,1]$. There is no way of pinpointing α without checking f at every point in [0, 1]. Besides, a computer cannot reasonably store real numbers with arbitrary precision.

Thus, we direct our attention towards *continuous* functions f. We only seek sufficiently accurate approximations of its root $\alpha \in (a, b)$.

Theorem 2.1 (Intermediate Value Theorem). Let $f : [a, b] \to \mathbb{R}$ be continuous. If $f(a)f(b) <$ 0, then there exists $\alpha \in (a, b)$ such that $f(\alpha) = 0$.

2.1 Tabulation method

To identify the location of a root of f on an interval $I = [a, b]$, we subdivide I into n subintervals $[x_i, x_{i+1}]$ where $x_i = a + (b - a)i/n$. Now, we simply apply the Intermediate Value Theorem to f on each of these intervals. If $f(x_i)f(x_{i+1}) < 0$, then f has a root somewhere in (x_i, x_{i+1}) . Note that the error in our approximation is on the order of $|b - a|/n$. The precision of this method can be improved by increasing n .

To reach a degree of approximation ϵ , we must iterate *n* times, where

$$
n > \frac{b-a}{\epsilon}.
$$

2.2 Bisection method

Here, we first verify that $f(a)f(b) < 0$, thus ensuring that f has a root within (a, b) . Now, set $x_1 = a + (b - a)/2$ and apply the Intermediate Value Theorem on the subintervals [a, x₁] and $[x_1, b]$. One of these *must* contain a root of f. Note that if $f(x_1) = 0$, we are done; otherwise, let $I_1 = [a_1, b_1]$ be the subinterval containing the root. Repeat the above process, obtaining successive subintervals I_n with lengths $|b - a|/2^n$. The error in our approximation is of this order, and can be controlled by stopping at appropriately large n .

The quantity $x_{n+1} = (a_n + b_n)/2$ is a good approximation for the actual root α since we know that $x_{n+1}, \alpha \in [a_n, b_n]$, so

$$
|x_{n+1} - \alpha| \le |b_n - a_n| = 2^{-n}|b - a| \to 0.
$$

To reach a degree of approximation ϵ , we must iterate *n* times, where

$$
n > \log_2 \frac{b-a}{\epsilon}.
$$

2.3 Newton-Raphson method

Assuming that f is twice differentiable, use Taylor's theorem to write

$$
f(x) = f(x_0) + f'(x)(x - x_0) + \frac{1}{2}f''(c)(x - x_0)^2
$$

for all $x \in [a, b]$, where c is between x and x_0 . The first two terms represent the tangent line to f, drawn at $(x_0, f(x_0))$. Now, define

$$
x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}.
$$

Note that this is the point at which the tangent line to f at x_0 cuts the x-axis. We have implicitly assumed that $f'(x_0) \neq 0$. In this manner, create the sequence of points

$$
x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}.
$$

We wish to show that $x_n \to \alpha$, under certain circumstances.

Definition 2.1 (Order of convergence). Let $x_n \to \alpha$. We say that this convergence is of order $p \geq 1$ if

$$
\lim_{n \to \infty} \frac{|\alpha - x_{n+1}|}{|\alpha - x_n|^p} > 0.
$$

Theorem 2.2. Let f be a real function on $[\alpha - \delta, \alpha + \delta]$ such that

1. $f(\alpha) = 0$.

2. f *is twice differentiable, with non-zero derivatives.*

- *3.* f ⁰⁰ *is continuous.*
- 4. $|f''(x)/f'(y)| \leq M$ *for all x, y.*

If $x_0 \in [\alpha-h, \alpha+h]$ *where* $h = \min{\{\delta, 1/M\}}$ *, then the Newton-Raphson sequence generated by* x_0 *converges to the root* α *quadratically.*

Proof. Pick $x_n \in [\alpha - h, \alpha + h]$. Using Taylor's theorem,

$$
f(\alpha) = f(x_n) + f'(x_n)(\alpha - x_n) + \frac{1}{2}f''(c)(\alpha - x_n)^2.
$$

Also note that $f(\alpha) = 0$, and $x_n - x_{n+1} = f(x_n)/f'(x_n)$. Thus, dividing by $f'(x_n)$ and substituting gives

$$
\alpha - x_{n+1} = -\frac{1}{2} \frac{f''(c)}{f'(x_n)} (\alpha - x_n)^2.
$$

Using our estimates on $f''(c)/f'(x_n)$ and x_n along with $h \leq 1/M$, we see that

$$
|\alpha - x_{n+1}| \le \frac{1}{2}Mh|\alpha - x_n| \le \frac{1}{2}|\alpha - x_n|.
$$

Indeed, we have shown that

$$
|\alpha - x_n| \le \frac{1}{2^n} |\alpha - x_0|,
$$

which directly gives the convergence $x_n \to \alpha$. Furthermore, we have

$$
\frac{|\alpha - x_{n+1}|}{|\alpha - x_n|^2} = \frac{1}{2} \left| \frac{f''(c)}{f'(x_n)} \right| \le \frac{1}{2} M,
$$

hence taking the limit $n \to \infty$ proves that the convergence is quadratic.

Corollary 2.2.1. *Suppose that* f *satisfies the conditions of the previous theorem, along with* $f' > 0$ and $f'' > 0$ on some interval $[\alpha, x]$. Then, the Newton-Raphson sequence generated *by* $x_0 \in [\alpha, x]$ *converges to the root* α *quadratically.*

Remark. The convexity of f means that the tangent drawn at x_n lies below the curve, and hence cuts the x-axis between α and x_n .

Theorem 2.3. If α is a multiple root of f such that $f(\alpha) = 0$, $f'(\alpha) = 0$, $f''(\alpha) \neq 0$, then *the Newton-Raphson sequence converges to* α *linearly under suitable conditions.*

Proof. Use Rolle's Theorem to replace $f'(x_n) = f'(x_n) - f'(\alpha) = f''(a)(x_n - \alpha)$.

2.4 Secant method

The chief difference between this method as Newton's method is that we approximate the tangent with a secant, i.e. perform an approximation of the derivative,

$$
f'(x)h \approx f(x+h) - f(x)
$$

for small h. Thus, our iterations proceed as

$$
x_{n+1} = x_n - f(x_n) \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})}.
$$

Theorem 2.4. *Let* f *be a real function on* [a, b] *such that*

1. $f(\alpha) = 0$ where $\alpha \in (a, b)$.

2. f *is continuously differentiable, with non-zero derivatives.*

Then, there exists $\delta > 0$ *such that the sequence generated by the secant method converges to* α *when* $x_0, x_1 \in (\alpha - \delta, \alpha + \delta).$

Proof. Consider

$$
\alpha - x_{n+1} = \alpha - x_n + f(x_n) \frac{x_n - x_{n-1}}{f(x_n) - x_{n-1}}.
$$

Now, use the Mean Value Theorem to write $f(x_n) = f(x_n) - f(\alpha) = f'(\xi)(x_n - \alpha)$ for some ξ between α and x_n . Similarly, write $f(x_n) - f(x_{n-1}) = f'(\zeta)(x_n - x_{n-1})$ for some ζ between x_n and x_{n-1} . Thus,

$$
\alpha - x_{n-1} = \alpha - x_n + \frac{f'(\xi)(x_n - \alpha)}{f'(\zeta)} = (\alpha - x_n) \left(1 - \frac{f'(\xi)}{f'(\zeta)}\right).
$$

We want $|1-f'(\xi)/f'(\zeta)| < 1$. Since $f'(\alpha) \neq 0$, there is a δ -neighbourhood of α where $3f'(\alpha)/4 <$ $f'(x) < 5f'(\alpha)/4$ (without loss of generality) using the continuity of f'. Thus, whenever $x_0, x_1 \in$ $(\alpha-\delta,\alpha+\delta)$, we have ξ,ζ belonging to the same neighbourhood. This gives $3/5 < f'(\zeta)/f'(\xi)$ 5/3. This gives

$$
-\frac{2}{3}<1-\frac{f'(\xi)}{f'(\zeta)}<\frac{2}{5}
$$

.

In other words, $|1 - f'(\xi)/f'(\zeta)| < 2/3$, so

$$
|\alpha - x_{n+1}| < \frac{2}{3} |\alpha - x_n|,
$$

which directly gives $x_n \to \alpha$.

The order of convergence turns out to be $\varphi = (1 + \sqrt{5})/2$. To show this, we want

$$
\lim_{n \to \infty} \frac{|\alpha - x_{n+1}|}{|\alpha - x_n|^\varphi} > 0.
$$

Assume that $f'(\alpha) > 0$, $f''(\alpha) > 0$. First, we will show that

$$
\lim_{n \to \infty} \frac{|\alpha - x_{n+1}|}{|\alpha - x_n||\alpha - x_{n-1}|} = \frac{f''(\alpha)}{2f'(\alpha)}.
$$

Denote the quantity in the limit as $\psi(x_n, x_{n-1})$. We examine the equivalent limit

$$
\lim_{x_{n-1}\to\alpha}\lim_{x_n\to\alpha}\psi(x_n,x_{n-1}).
$$

Like before, write

$$
\alpha - x_{n+1} = (\alpha - x_n) \left(1 - \frac{f'(\xi)(x_n - x_{n-1})}{f(x_n) - f(x_{n-1})} \right),
$$

hence

$$
\frac{\alpha - x_{n+1}}{(\alpha - x_n)(\alpha - x_{n-1})} = \frac{1}{\alpha - x_{n-1}} \left[1 - \frac{f'(\xi)(x_n - x_{n-1})}{f(x_n) - f(x_{n-1})} \right].
$$

Thus,

$$
\lim_{x_n \to \alpha} \psi(x_n, x_{n-1}) = \frac{1}{\alpha - x_{n-1}} \left[1 + \frac{f'(\alpha)(\alpha - x_{n-1})}{f(x_{n-1})} \right]
$$

$$
= \frac{f(x_{n-1}) + f'(\alpha)(\alpha - x_{n-1})}{f(x_{n-1})(\alpha - x_{n-1})}.
$$

Use Taylor's Theorem to approximate

$$
f(x_{n-1}) = f(\alpha) + f'(\alpha)(x_{n-1} - \alpha) + \frac{1}{2}f''(\eta)(x_{n-1} - \alpha)^2,
$$

giving

$$
\lim_{x_n \to \alpha} \psi(x_n, x_{n-1}) = \frac{f''(\eta)(\alpha - x_{n-1})^2}{2f(x_{n-1})(\alpha - x_{n-1})},
$$

and use the Mean Value Theorem to write $f(x_{n-1}) = f'(\kappa)(x_{n-1} - \alpha)$ giving

$$
\lim_{x_n \to \alpha} \psi(x_n, x_{n-1}) = -\frac{f''(\eta)}{2f'(\kappa)},
$$

This gives

$$
\lim_{x_{n-1}\to\alpha}\lim_{x_n\to\alpha}|\psi(x_n,x_{n-1})|=\frac{f''(\alpha)}{2f'(\alpha)}=C.
$$

Now, suppose that

$$
\lim_{n \to \infty} \frac{|\alpha - x_{n+1}|}{|\alpha - x_n|^q} = A > 0.
$$

Dividing, we have

$$
\lim_{n \to \infty} \frac{|\alpha - x_n|^{q-1}}{|\alpha - x_{n-1}|} = \frac{C}{A}, \qquad \lim_{n \to \infty} \frac{|\alpha - x_n|}{|\alpha - x_{n-1}|^{1/(q-1)}} = \left(\frac{C}{A}\right)^{1/(q-1)} > 0.
$$

For q to be minimal, we must have $1/(q-1) = q$, or q is the golden ratio φ .

2.5 Fixed point method

Note that a root of f is simply a fixed point of $f + x$.

Theorem 2.5. *Let* $f : [a, b] \rightarrow [a, b]$ *be continuous. Then,* f *has a fixed point* $\beta \in [a, b]$ *,* $f(\beta) = \beta$.

Thus, let $f: [a, b] \to [a, b]$ be continuous. Define the fixed point sequence $x_{n+1} = f(x_n)$, seeded by some $x_0 \in [a, b]$. Note that if this sequence converges with $x_n \to \beta$, then β is a fixed point of f .

Definition 2.2. A function $f : [a, b] \to \mathbb{R}$ is said to be a contraction if there exists $L \in (0, 1)$ such that $|f(x) - f(y)| \le L|x - y|$ for all $x, y \in [a, b]$.

Remark. Note that f is Lipschitz continuous. If f is also differentiable, then $|f'| < 1$.

Theorem 2.6. Let $f : [a, b] \rightarrow [a, b]$ be a contraction map. Then, any fixed point sequence *converges to the unique fixed point of* f*.*

Proof. First, we show that f has at most one fixed point. Let β_1, β_2 be fixed points of f. Then, $|f(\beta_1) - f(\beta_2)| \le L|\beta_1 - \beta_2|$ where $L \in (0, 1)$. This forces $\beta_1 = \beta_2$. Thus, f has a unique fixed point in $[a, b]$.

Let $\{x_n\}$ be a fixed point iteration. Then,

$$
|x_{n+1} - \beta| = |f(x_n) - f(\beta)| \le L|x_n - \beta|,
$$

which directly gives $x_n \to \beta$.

3 Interpolation

3.1 Lagrange interpolation

Theorem 3.1. *Let* $x_1, \ldots, x_n \in \mathbb{R}$ *be distinct, and let* $y_1, \ldots, y_n \in \mathbb{R}$ *. Then, the following polynomial of degree* $n - 1$ *satisfies* $p(x_i) = y_i$.

$$
p(x) = \sum_{i=1}^{n} \prod_{j \neq i} \frac{x - x_j}{x_i - x_j} y_i.
$$

Furthermore, this choice of p *is unique.*

Proof. The polynomials

$$
p_i(x) = \prod_{j \neq i} \frac{x - x_j}{x_i - x_j}
$$

satisfy $p_i(x_j) = \delta_{ij}$. These p_i form a basis of \mathcal{P}^{n-1} , the space of polynomials of degree at most $n-1$. \Box

Theorem 3.2. Let $f: [a, b] \to \mathbb{R}$ be *n* times differentiable, and let p be the Lagrange *interpolating polynomial of* f *on the points* x_1, \ldots, x_n *. Then, for any* $x \in [a, b]$ *, there exists* $\xi \in (a, b)$ *such that*

$$
f(x) - p(x) = \frac{f^{(n)}(\xi)}{n!} \prod_{i} (x - x_i)
$$

Proof. This is clear when $x = x_i$. Suppose that $x \neq x_i$ for any i. Define

$$
g: [a, b] \to \mathbb{R},
$$
 $g(t) = f(t) - p(t) - (f(x) - p(x)) \prod_{i} \frac{t - x_i}{x - x_i}$

We see that each $g(x_i) = 0$, as well as $g(x) = 0$, hence g has $n + 1$ distinct roots. Hence, g' has exactly *n* distinct roots, and continuing in this fashion, $g^{(n)}$ has one root. Set ξ such that $g^{(n)}(\xi) = 0$. On the other hand,

$$
g^{(n)}(\xi) = f^{(n)}(\xi) - n!(f(x) - p(x)) \prod_{i} \frac{1}{x - x_i}.
$$

3.2 Newton's divided difference

Theorem 3.3. Let $x_1, \ldots, x_n \in \mathbb{R}$ be distinct, and let $y_1, \ldots, y_n \in \mathbb{R}$. Define the divided *difference recursively as*

$$
\Delta(x_i) = y_i, \qquad \Delta(x_i, \ldots, x_j) = \frac{\Delta(x_{i+1}, \ldots, x_j) - \Delta(x_i, \ldots, x_{j-1})}{x_j - x_i}.
$$

Further denote

$$
\Delta^k = \Delta(x_1, \ldots, x_k).
$$

Then, the following polynomial of degree $n − 1$ *interpolates the given data.*

$$
p(x) = \Delta^{1} + (x - x_{1})\Delta^{2} + (x - x_{1})(x - x_{2})\Delta^{3} + \cdots + (x - x_{1})\cdots(x - x_{n-1})\Delta^{n}.
$$

Remark. We already know that this must be identical to the Lagrange interpolating polynomial, hence all its properties carry over.

Remark. The divided difference $\Delta(x_1, \ldots, x_k)$ is independent of the order of x_1, \ldots, x_k .

4 Numerical integration

Let $f: [a, b] \to \mathbb{R}$ be continuously differentiable. We wish to approximate the value of the integral

$$
\int_a^b f(x) \, dx.
$$

The main way of doing this is to approximate the curve f using rectangles, trapeziums, parabolas, or even higher degree polynomials.

4.1 Newton-Cotes formula

Perform Lagrange interpolation of f on the points x_1, \ldots, x_n , and write

$$
\int_a^b f(x) dx \approx \sum_{i=1}^n f(x_i) \int_a^b p_i(x) dx.
$$

4.2 Midpoint rule

Here, we use the midpoints $m_i = (x_i + x_{i+1})/2$, and write

$$
\int_a^b f(x) dx \approx \Delta x [f(m_1) + \cdots + f(m_{n-1})].
$$

4.3 Trapezoidal rule

Perform linear interpolations of f at equal intervals Δx and write

$$
\int_a^b f(x) dx \approx \frac{1}{2} \Delta x [f(x_1) + 2f(x_2) + \cdots + 2f(x_{n-1}) + f(x_n)].
$$

It can be shown that there exists ξ between a and b such that the error in this approximation is

$$
-\frac{(b-a)^3}{12(n-1)^2}f''(\xi).
$$

4.4 Simpson's rule

Perform quadratic interpolations of f , and write

$$
\int_a^b f(x) dx \approx \frac{1}{3}\Delta x \left[f(x_1) + 4f(x_2) + 2f(x_3) + \cdots + 4f(x_{n-2}) + 2f(x_{n-1}) + f(x_n) \right].
$$

Note that we need odd n. For each arc between a_i, b_i , we have used the area under the interpolating quadratic,

$$
\int_{a_i}^{b_i} f(x) dx \approx \frac{1}{6}(b_i - a_i) \left[f(a_i) + 4f\left(\frac{a_i + b_i}{2}\right) + f(b_i) \right].
$$

It can be shown that there exists ξ between a and b such that the error in this approximation is

$$
-\frac{(b-a)^5}{180(n-1)^4}f^{(4)}(\xi).
$$

5 Ordinary differential equations

Consider the initial value problem

$$
y'(x) = f(x, y),
$$
 $y(x_0) = y_0,$

where f is a continuous function on some open subset of \mathbb{R}^2 . We are looking for a differentiable function y on an open neighbourhood of x_0 , where each $(x, y(x))$ is in the domain of f.

5.1 Picard iterates

Any solution must satisfy

$$
y(x) = y_0 + \int_{x_0}^x f(t, y(t)) dt.
$$

We may iterate $y_0(x) = y_0$, and

$$
y_{n+1}(x) = y_0 + \int_{x_0}^x f(t, y_n(t)) dt.
$$

It can be shown that the Picard iterates do indeed converge to a solution of the given ODE.

Theorem 5.1 (Picard-Lindelöf theorem)**.** *Let* f *be uniformly Lipschitz continuous in* y*. Then the initial value problem has a unique solution* y *on some neighbourhood of* x_0 *.*

5.2 Euler's method

Assume that a solution y exists on $[x_0, x_M]$. Construct the n evenly spaced mesh points $x_0, x_1, x_2, \ldots, x_n$, where $x_n = x_M$. Setting $h = \Delta x$, we can approximate

$$
y(x_{k+1}) = y(x_k + h) \approx y(x_k) + hy'(x_k) = y(x_k) + hf(x_k, y(x_k)).
$$

This gives an iterative scheme to approximate $y(x)$ on these mesh points.

5.3 Trapezoidal method

Here, we use perform the iterations

$$
y(x_{n+1}) \approx y(x_n) + \frac{1}{2}h(f(x_n, y(x_n)) + f(x_{n+1}, y(x_{n+1}))).
$$

In order to use this implicit relation, we can use Newton's method or fixed point iteration.

5.4 Runge-Kutta methods

The second order Runge-Kutta method uses the following iterations.

$$
y_{n+1} = y_n + h(ak_1 + bk_2),
$$
 $k_1 = f(x_n, y_n),$ $k_2 = f(x_n + \alpha h, y_n + \beta h k_1).$

Additionally, we choose $\beta = \alpha$, $a = 1 - 1/2\alpha$, $b = 1 - a$.

The fourth order Runge-Kutta method uses the iterations

$$
y_{n+1} = y_n + \frac{1}{6}h(k_1 + 2k_2 + 2k_3 + k_4),
$$

\n
$$
k_1 = f(x_n, y_n), \qquad k_2 = f(x_{n+\frac{1}{2}}, y_n + \frac{1}{2}hk_1),
$$

\n
$$
k_3 = f(x_{n+\frac{1}{2}}, y_n + \frac{1}{2}hk_2), \qquad k_4 = f(x_{n+1}, y_n + hk_2).
$$