
MA3105

Numerical Analysis
Autumn 2021

Satvik Saha
19MS154

Indian Institute of Science Education and Research, Kolkata,
Mohanpur, West Bengal, 741246, India.

Contents
1 Time complexity 1

1.1 Runtime cost . 1
1.2 Asymptotic growth . 2

2 Root finding methods 4
2.1 Tabulation method . 5
2.2 Bisection method . 5
2.3 Newton-Raphson method . 5
2.4 Secant method . 7
2.5 Fixed point method . 9

3 Interpolation 9
3.1 Lagrange interpolation . 9
3.2 Newton’s divided difference . 10

4 Numerical integration 10
4.1 Newton-Cotes formula . 10
4.2 Midpoint rule . 11
4.3 Trapezoidal rule . 11
4.4 Simpson’s rule . 11

5 Ordinary differential equations 11
5.1 Picard iterates . 11
5.2 Euler’s method . 12
5.3 Trapezoidal method . 12
5.4 Runge-Kutta methods . 12

1 Time complexity

1.1 Runtime cost

When designing or implementing an algorithm, we care about its efficiency – both in terms of
execution time, and the use of resources. This gives us a rough way of comparing two algorithms.
However, such metrics are architecture and language dependent; different machines, or the same

1

MA3105: Numerical Analysis 1 TIME COMPLEXITY

program implemented in different programming languages, may consume different amounts of
time or resources while executing the same algorithm. Thus, we seek a way of measuring the
‘cost’ in time for a given algorithm.

For example, we may look at each statement in a program, and associate a cost ci with each
of them. Consider the following statements.

one = 1; // c_1
two = 2; // c_2
three = 3; // c_3

The total cost of running these statements can be calculated as T = c1 + c2 + c3, simply by
adding up the cost of each statement. Similarly, consider the following loop construct.

sum = 0; // c_1
for (i = 0; i < n; i++) // c_2

sum += a[i]; // c_3

The total cost can be shown to be T (n) = c1 + c2(n+1)+ c3n; this time, we must take into
account the number of times a given statement is executed. Note that this is linear. Another
example is as follows.

sum = 0; // c_1
for (i = 0; i < n; i++) // c_2

for (j = 0; j < n; j++) // c_2
sum += a[i][j]; // c_4

The total cost can be shown to be T (n) = c1+ c2(n+1)+ c3n(n+1)+ c4n
2. Note that this

is quadratic. Finally, consider the following recursive call.

int factorial (int n) { // c_1
if (n == 0) // c_2

return 1; // c_3
return n * factorial (n - 1); // c_4

}

f = factorial (n); // c_5

The cost can be shown to be T (n) = c5+(c1+ c2)(n+1)+ c3+ c4n. This turns out to be linear.
In all these cases, we care about our total cost as a function of the input size n. Moreover,

we are interested mostly in the growth of our total cost; as our input size grows, the total cost
can often be compared with some simple function of n. Thus, we can classify our cost functions
in terms of their asymptotic growths.

1.2 Asymptotic growth

2 Updated on October 29, 2021

MA3105: Numerical Analysis 1 TIME COMPLEXITY

Definition 1.1. The set O(g(n)) denotes the class of functions f which are asymptotically
bounded above by g. In other words, f(n) ∈ O(g(n)) if there exists M > 0 and n0 ∈ N
such that for all n ≥ n0,

|f(n)| ≤Mg(n).

This amounts to writing
lim sup
n→∞

|f(n)|
g(n)

<∞.

Example. Consider a function defined by f(n) = an+ b, where a > 0. Then, we can write
f(n) ∈ O(n). To see why, note that for all n ≥ 1, we have

|f(n)| = |an+ b| ≤ an+ |b| ≤ (a+ |b|)n.

Thus, setting M = a+ |b| > 0 completes the proof.

Example. Consider a polynomial function defined by

f(n) = akn
k + ak−1n

k−1 + · · ·+ a1n+ a0,

with some non-zero coefficient. Then, we can write f(n) ∈ O(nk). Like before, note that
for all n ≥ 1, we have

|f(n)| ≤
k∑

i=0

|ai|ni ≤
k∑

i=0

|ai|nk = (|ak|+ |ak−1|+ · · ·+ |a0|)nk.

Thus, setting M = |ak|+ · · ·+ |a0| > 0 completes the proof.

Theorem 1.1. If f1(n) ∈ O(g1(n)) and f2(n) ∈ O(g2(n)), then

f1(n) + f2(n) ∈ O(max{g1(n), g2(n)}).

Definition 1.2. The set Ω(g(n)) denotes the class of functions f are asymptotically
bounded below by g. In other words, f(n) ∈ Ω(g(n)) if there exists M > 0 and n0 ∈ N
such that for all n ≥ n0,

|f(n)| ≥Mg(n).

This amounts to writing
lim inf
n→∞

f(n)

g(n)
> 0.

3 Updated on October 29, 2021

MA3105: Numerical Analysis 2 ROOT FINDING METHODS

Definition 1.3. The set Θ(g(n)) denotes the class of functions f which are asymptotically
bounded both above and below by g. In other words, f(n) ∈ Θ(g(n)) if there exist M1,M2 >
0 and n0 ∈ N such that for all n ≥ n0,

M1g(n) ≤ |f(n)| ≤M2g(n).

This amounts to writing f(n) ∈ O(g(n)) and f(n) ∈ Ω(g(n)).

Another class of notation uses the idea of dominated growth.

Definition 1.4. The set o(g(n)) denotes the class of functions f which are asymptotically
dominated by g. In other words, f(n) ∈ o(g(n)) if for all M > 0, there exists n0 ∈ N such
that for all n ≥ n0,

|f(n)| < Mg(n).

This amounts to writing
lim
n→∞

|f(n)|
g(n)

= 0.

Definition 1.5. The set ω(g(n)) denotes the class of functions f which asymptotically
dominate g. In other words, f(n) ∈ ω(g(n)) if for all M > 0, there exists n0 ∈ N such that
for all n ≥ n0,

|f(n)| > Mg(n).

This amounts to writing
lim
n→∞

|f(n)|
g(n)

= ∞.

Definition 1.6. We say that f(n) ∼ g(n) if f is asymptotically equal to g. In other words,
f(n) ∼ g(n) if for all ε > 0, there exists n0 ∈ N such that for all n ≥ n0,∣∣∣∣f(n)g(n)

− 1

∣∣∣∣ < ε.

This amounts to writing
lim
n→∞

f(n)

g(n)
= 1.

We often abuse notation and treat the following as equivalent.

T (n) ∈ O(g(n)), T (n) = O(g(n)).

2 Root finding methods
Consider an equation of the form f(x) = 0, where f : [a, b] → R is given. We wish to solve this
equation, i.e. find the roots of f .

4 Updated on October 29, 2021

MA3105: Numerical Analysis 2 ROOT FINDING METHODS

Note that for arbitrary functions, this task is impossible. To see this, consider a function
f which assumes the value 1 on [0, 1] \ {α} and f(α) = 0, for some α ∈ [0, 1]. There is no
way of pinpointing α without checking f at every point in [0, 1]. Besides, a computer cannot
reasonably store real numbers with arbitrary precision.

Thus, we direct our attention towards continuous functions f . We only seek sufficiently
accurate approximations of its root α ∈ (a, b).

Theorem 2.1 (Intermediate Value Theorem). Let f : [a, b] → R be continuous. If f(a)f(b) <
0, then there exists α ∈ (a, b) such that f(α) = 0.

2.1 Tabulation method

To identify the location of a root of f on an interval I = [a, b], we subdivide I into n subintervals
[xi, xi+1] where xi = a + (b − a)i/n. Now, we simply apply the Intermediate Value Theorem
to f on each of these intervals. If f(xi)f(xi+1) < 0, then f has a root somewhere in (xi, xi+1).
Note that the error in our approximation is on the order of |b − a|/n. The precision of this
method can be improved by increasing n.

To reach a degree of approximation ε, we must iterate n times, where

n >
b− a

ε
.

2.2 Bisection method

Here, we first verify that f(a)f(b) < 0, thus ensuring that f has a root within (a, b). Now, set
x1 = a + (b − a)/2 and apply the Intermediate Value Theorem on the subintervals [a, x1] and
[x1, b]. One of these must contain a root of f . Note that if f(x1) = 0, we are done; otherwise,
let I1 = [a1, b1] be the subinterval containing the root. Repeat the above process, obtaining
successive subintervals In with lengths |b − a|/2n. The error in our approximation is of this
order, and can be controlled by stopping at appropriately large n.

The quantity xn+1 = (an + bn)/2 is a good approximation for the actual root α since we
know that xn+1, α ∈ [an, bn], so

|xn+1 − α| ≤ |bn − an| = 2−n|b− a| → 0.

To reach a degree of approximation ε, we must iterate n times, where

n > log2
b− a

ε
.

2.3 Newton-Raphson method

Assuming that f is twice differentiable, use Taylor’s theorem to write

f(x) = f(x0) + f ′(x)(x− x0) +
1

2
f ′′(c)(x− x0)

2

for all x ∈ [a, b], where c is between x and x0. The first two terms represent the tangent line to
f , drawn at (x0, f(x0)). Now, define

x1 = x0 −
f(x0)

f ′(x0)
.

5 Updated on October 29, 2021

MA3105: Numerical Analysis 2 ROOT FINDING METHODS

Note that this is the point at which the tangent line to f at x0 cuts the x-axis. We have
implicitly assumed that f ′(x0) 6= 0. In this manner, create the sequence of points

xn+1 = xn − f(xn)

f ′(xn)
.

We wish to show that xn → α, under certain circumstances.

Definition 2.1 (Order of convergence). Let xn → α. We say that this convergence is of
order p ≥ 1 if

lim
n→∞

|α− xn+1|
|α− xn|p

> 0.

Theorem 2.2. Let f be a real function on [α− δ, α+ δ] such that

1. f(α) = 0.
2. f is twice differentiable, with non-zero derivatives.
3. f ′′ is continuous.
4. |f ′′(x)/f ′(y)| ≤M for all x, y.

If x0 ∈ [α−h, α+h] where h = min{δ, 1/M}, then the Newton-Raphson sequence generated
by x0 converges to the root α quadratically.

Proof. Pick xn ∈ [α− h, α+ h]. Using Taylor’s theorem,

f(α) = f(xn) + f ′(xn)(α− xn) +
1

2
f ′′(c)(α− xn)

2.

Also note that f(α) = 0, and xn − xn+1 = f(xn)/f
′(xn). Thus, dividing by f ′(xn) and substi-

tuting gives

α− xn+1 = −1

2

f ′′(c)

f ′(xn)
(α− xn)

2.

Using our estimates on f ′′(c)/f ′(xn) and xn along with h ≤ 1/M , we see that

|α− xn+1| ≤
1

2
Mh|α− xn| ≤

1

2
|α− xn|.

Indeed, we have shown that
|α− xn| ≤

1

2n
|α− x0|,

which directly gives the convergence xn → α. Furthermore, we have
|α− xn+1|
|α− xn|2

=
1

2

∣∣∣∣ f ′′(c)f ′(xn)

∣∣∣∣ ≤ 1

2
M,

hence taking the limit n→ ∞ proves that the convergence is quadratic.

Corollary 2.2.1. Suppose that f satisfies the conditions of the previous theorem, along with
f ′ > 0 and f ′′ > 0 on some interval [α, x]. Then, the Newton-Raphson sequence generated
by x0 ∈ [α, x] converges to the root α quadratically.
Remark. The convexity of f means that the tangent drawn at xn lies below the curve, and
hence cuts the x-axis between α and xn.

6 Updated on October 29, 2021

MA3105: Numerical Analysis 2 ROOT FINDING METHODS

Theorem 2.3. If α is a multiple root of f such that f(α) = 0, f ′(α) = 0, f ′′(α) 6= 0, then
the Newton-Raphson sequence converges to α linearly under suitable conditions.

Proof. Use Rolle’s Theorem to replace f ′(xn) = f ′(xn)− f ′(α) = f ′′(a)(xn − α).

2.4 Secant method

The chief difference between this method as Newton’s method is that we approximate the
tangent with a secant, i.e. perform an approximation of the derivative,

f ′(x)h ≈ f(x+ h)− f(x)

for small h. Thus, our iterations proceed as

xn+1 = xn − f(xn)
xn − xn−1

f(xn)− f(xn−1)
.

Theorem 2.4. Let f be a real function on [a, b] such that

1. f(α) = 0 where α ∈ (a, b).
2. f is continuously differentiable, with non-zero derivatives.

Then, there exists δ > 0 such that the sequence generated by the secant method converges
to α when x0, x1 ∈ (α− δ, α+ δ).

Proof. Consider
α− xn+1 = α− xn + f(xn)

xn − xn−1

f(xn)− xn−1
.

Now, use the Mean Value Theorem to write f(xn) = f(xn)− f(α) = f ′(ξ)(xn − α) for some ξ
between α and xn. Similarly, write f(xn)− f(xn−1) = f ′(ζ)(xn − xn−1) for some ζ between xn
and xn−1. Thus,

α− xn−1 = α− xn +
f ′(ξ)(xn − α)

f ′(ζ)
= (α− xn)

(
1− f ′(ξ)

f ′(ζ)

)
.

We want |1−f ′(ξ)/f ′(ζ)| < 1. Since f ′(α) 6= 0, there is a δ-neighbourhood of α where 3f ′(α)/4 <
f ′(x) < 5f ′(α)/4 (without loss of generality) using the continuity of f ′. Thus, whenever x0, x1 ∈
(α−δ, α+δ), we have ξ, ζ belonging to the same neighbourhood. This gives 3/5 < f ′(ζ)/f ′(ξ) <
5/3. This gives

−2

3
< 1− f ′(ξ)

f ′(ζ)
<

2

5
.

In other words, |1− f ′(ξ)/f ′(ζ)| < 2/3, so

|α− xn+1| <
2

3
|α− xn|,

which directly gives xn → α.

The order of convergence turns out to be ϕ = (1 +
√
5)/2. To show this, we want

lim
n→∞

|α− xn+1|
|α− xn|ϕ

> 0.

7 Updated on October 29, 2021

MA3105: Numerical Analysis 2 ROOT FINDING METHODS

Assume that f ′(α) > 0, f ′′(α) > 0. First, we will show that

lim
n→∞

|α− xn+1|
|α− xn||α− xn−1|

=
f ′′(α)

2f ′(α)
.

Denote the quantity in the limit as ψ(xn, xn−1). We examine the equivalent limit

lim
xn−1→α

lim
xn→α

ψ(xn, xn−1).

Like before, write

α− xn+1 = (α− xn)

(
1− f ′(ξ)(xn − xn−1)

f(xn)− f(xn−1)

)
,

hence
α− xn+1

(α− xn)(α− xn−1)
=

1

α− xn−1

[
1− f ′(ξ)(xn − xn−1)

f(xn)− f(xn−1)

]
.

Thus,

lim
xn→α

ψ(xn, xn−1) =
1

α− xn−1

[
1 +

f ′(α)(α− xn−1)

f(xn−1)

]
=
f(xn−1) + f ′(α)(α− xn−1)

f(xn−1)(α− xn−1)
.

Use Taylor’s Theorem to approximate

f(xn−1) = f(α) + f ′(α)(xn−1 − α) +
1

2
f ′′(η)(xn−1 − α)2,

giving

lim
xn→α

ψ(xn, xn−1) =
f ′′(η)(α− xn−1)

2

2f(xn−1)(α− xn−1)
,

and use the Mean Value Theorem to write f(xn−1) = f ′(κ)(xn−1 − α) giving

lim
xn→α

ψ(xn, xn−1) = − f ′′(η)

2f ′(κ)
,

This gives

lim
xn−1→α

lim
xn→α

|ψ(xn, xn−1)| =
f ′′(α)

2f ′(α)
= C.

Now, suppose that
lim
n→∞

|α− xn+1|
|α− xn|q

= A > 0.

Dividing, we have

lim
n→∞

|α− xn|q−1

|α− xn−1|
=
C

A
, lim

n→∞

|α− xn|
|α− xn−1|1/(q−1)

=

(
C

A

)1/(q−1)

> 0.

For q to be minimal, we must have 1/(q − 1) = q, or q is the golden ratio ϕ.

8 Updated on October 29, 2021

MA3105: Numerical Analysis 3 INTERPOLATION

2.5 Fixed point method

Note that a root of f is simply a fixed point of f + x.

Theorem 2.5. Let f : [a, b] → [a, b] be continuous. Then, f has a fixed point β ∈ [a, b],
f(β) = β.

Thus, let f : [a, b] → [a, b] be continuous. Define the fixed point sequence xn+1 = f(xn),
seeded by some x0 ∈ [a, b]. Note that if this sequence converges with xn → β, then β is a fixed
point of f .

Definition 2.2. A function f : [a, b] → R is said to be a contraction if there exists L ∈ (0, 1)
such that |f(x)− f(y)| ≤ L|x− y| for all x, y ∈ [a, b].
Remark. Note that f is Lipschitz continuous. If f is also differentiable, then |f ′| < 1.

Theorem 2.6. Let f : [a, b] → [a, b] be a contraction map. Then, any fixed point sequence
converges to the unique fixed point of f .

Proof. First, we show that f has at most one fixed point. Let β1, β2 be fixed points of f . Then,
|f(β1)− f(β2)| ≤ L|β1 − β2| where L ∈ (0, 1). This forces β1 = β2. Thus, f has a unique fixed
point in [a, b].

Let {xn} be a fixed point iteration. Then,

|xn+1 − β| = |f(xn)− f(β)| ≤ L|xn − β|,

which directly gives xn → β.

3 Interpolation

3.1 Lagrange interpolation

Theorem 3.1. Let x1, . . . , xn ∈ R be distinct, and let y1, . . . , yn ∈ R. Then, the following
polynomial of degree n− 1 satisfies p(xi) = yi.

p(x) =
n∑

i=1

∏
j 6=i

x− xj
xi − xj

yi.

Furthermore, this choice of p is unique.

Proof. The polynomials
pi(x) =

∏
j 6=i

x− xj
xi − xj

satisfy pi(xj) = δij . These pi form a basis of Pn−1, the space of polynomials of degree at most
n− 1.

9 Updated on October 29, 2021

MA3105: Numerical Analysis 4 NUMERICAL INTEGRATION

Theorem 3.2. Let f : [a, b] → R be n times differentiable, and let p be the Lagrange
interpolating polynomial of f on the points x1, . . . , xn. Then, for any x ∈ [a, b], there exists
ξ ∈ (a, b) such that

f(x)− p(x) =
f (n)(ξ)

n!

∏
i

(x− xi)

Proof. This is clear when x = xi. Suppose that x 6= xi for any i. Define

g : [a, b] → R, g(t) = f(t)− p(t)− (f(x)− p(x))
∏
i

t− xi
x− xi

We see that each g(xi) = 0, as well as g(x) = 0, hence g has n + 1 distinct roots. Hence, g′
has exactly n distinct roots, and continuing in this fashion, g(n) has one root. Set ξ such that
g(n)(ξ) = 0. On the other hand,

g(n)(ξ) = f (n)(ξ)− n!(f(x)− p(x))
∏
i

1

x− xi
.

3.2 Newton’s divided difference

Theorem 3.3. Let x1, . . . , xn ∈ R be distinct, and let y1, . . . , yn ∈ R. Define the divided
difference recursively as

∆(xi) = yi, ∆(xi, . . . , xj) =
∆(xi+1, . . . , xj)−∆(xi, . . . , xj−1)

xj − xi
.

Further denote
∆k = ∆(x1, . . . , xk).

Then, the following polynomial of degree n− 1 interpolates the given data.

p(x) = ∆1 + (x− x1)∆
2 + (x− x1)(x− x2)∆

3 + · · ·+ (x− x1) · · · (x− xn−1)∆
n.

Remark. We already know that this must be identical to the Lagrange interpolating poly-
nomial, hence all its properties carry over.
Remark. The divided difference ∆(x1, . . . , xk) is independent of the order of x1, . . . , xk.

4 Numerical integration
Let f : [a, b] → R be continuously differentiable. We wish to approximate the value of the
integral ∫ b

a
f(x) dx.

The main way of doing this is to approximate the curve f using rectangles, trapeziums, parabo-
las, or even higher degree polynomials.

4.1 Newton-Cotes formula

Perform Lagrange interpolation of f on the points x1, . . . , xn, and write∫ b

a
f(x) dx ≈

n∑
i=1

f(xi)

∫ b

a
pi(x) dx.

10 Updated on October 29, 2021

MA3105: Numerical Analysis 5 ORDINARY DIFFERENTIAL EQUATIONS

4.2 Midpoint rule

Here, we use the midpoints mi = (xi + xi+1)/2, and write∫ b

a
f(x) dx ≈ ∆x [f(m1) + · · ·+ f(mn−1)] .

4.3 Trapezoidal rule

Perform linear interpolations of f at equal intervals ∆x and write∫ b

a
f(x) dx ≈ 1

2
∆x [f(x1) + 2f(x2) + · · ·+ 2f(xn−1) + f(xn)] .

It can be shown that there exists ξ between a and b such that the error in this approximation
is

− (b− a)3

12(n− 1)2
f ′′(ξ).

4.4 Simpson’s rule

Perform quadratic interpolations of f , and write∫ b

a
f(x) dx ≈ 1

3
∆x [f(x1) + 4f(x2) + 2f(x3) + · · ·+ 4f(xn−2) + 2f(xn−1) + f(xn)] .

Note that we need odd n. For each arc between ai, bi, we have used the area under the inter-
polating quadratic,∫ bi

ai

f(x) dx ≈ 1

6
(bi − ai)

[
f(ai) + 4f

(
ai + bi

2

)
+ f(bi)

]
.

It can be shown that there exists ξ between a and b such that the error in this approximation
is

− (b− a)5

180(n− 1)4
f (4)(ξ).

5 Ordinary differential equations
Consider the initial value problem

y′(x) = f(x, y), y(x0) = y0,

where f is a continuous function on some open subset of R2. We are looking for a differentiable
function y on an open neighbourhood of x0, where each (x, y(x)) is in the domain of f .

5.1 Picard iterates

Any solution must satisfy
y(x) = y0 +

∫ x

x0

f(t, y(t)) dt.

We may iterate y0(x) = y0, and

yn+1(x) = y0 +

∫ x

x0

f(t, yn(t)) dt.

It can be shown that the Picard iterates do indeed converge to a solution of the given ODE.

Theorem 5.1 (Picard-Lindelöf theorem). Let f be uniformly Lipschitz continuous in y.
Then the initial value problem has a unique solution y on some neighbourhood of x0.

11 Updated on October 29, 2021

MA3105: Numerical Analysis 5 ORDINARY DIFFERENTIAL EQUATIONS

5.2 Euler’s method

Assume that a solution y exists on [x0, xM]. Construct the n evenly spaced mesh points
x0, x1, x2, . . . , xn, where xn = xM . Setting h = ∆x, we can approximate

y(xk+1) = y(xk + h) ≈ y(xk) + hy′(xk) = y(xk) + hf(xk, y(xk)).

This gives an iterative scheme to approximate y(x) on these mesh points.

5.3 Trapezoidal method

Here, we use perform the iterations

y(xn+1) ≈ y(xn) +
1

2
h(f(xn, y(xn)) + f(xn+1, y(xn+1))).

In order to use this implicit relation, we can use Newton’s method or fixed point iteration.

5.4 Runge-Kutta methods

The second order Runge-Kutta method uses the following iterations.

yn+1 = yn + h(ak1 + bk2), k1 = f(xn, yn), k2 = f(xn + αh, yn + βhk1).

Additionally, we choose β = α, a = 1− 1/2α, b = 1− a.
The fourth order Runge-Kutta method uses the iterations

yn+1 = yn +
1

6
h(k1 + 2k2 + 2k3 + k4),

k1 = f(xn, yn), k2 = f(xn+ 1
2
, yn +

1

2
hk1),

k3 = f(xn+ 1
2
, yn +

1

2
hk2), k4 = f(xn+1, yn + hk2).

12 Updated on October 29, 2021

	Time complexity
	Runtime cost
	Asymptotic growth

	Root finding methods
	Tabulation method
	Bisection method
	Newton-Raphson method
	Secant method
	Fixed point method

	Interpolation
	Lagrange interpolation
	Newton's divided difference

	Numerical integration
	Newton-Cotes formula
	Midpoint rule
	Trapezoidal rule
	Simpson's rule

	Ordinary differential equations
	Picard iterates
	Euler's method
	Trapezoidal method
	Runge-Kutta methods

