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1 Introduction

1.1 The Seven Bridges of Königsberg

The diagram below depicts a region in the city of Königsberg, Prussia. There are two islands,
connected with the mainland and to each other via seven bridges. The Seven Bridges Problem
is posed as follows: is it possible to walk through the entire city, visiting each one of the four
landmasses by crossing each of the bridges exactly once?
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Leonhard Euler showed that this is impossible; no such walk exists. The techniques he
developed in doing so laid the foundations of graph theory.

The first thing to note is that the exact shape of the walk/trail is immaterial; all that
matters is the sequence of landmasses visited and bridges crossed. Thus, each landmass can
be compacted to a single point or vertex, and each bridge a line or edge connecting two such
points. The resulting figure is a graph. Note that the orientations or placements of the points
and lines are irrelevant, as long as the connections are undisturbed.

Now, examine a landmass which is on the trail but is neither our starting point, nor our
ending point. In order to reach this landmass, we must enter via a bridge; but we cannot stay in
the landmass, so we must leave via another a bridge. Thus, for each time we pass through this
landmass, we can cross off two bridges joined to it. Once we are done, no bridge may remain
unused; this means that we must have started with an even number of bridges joined to this
landmass.

However, all four vertices in our graph connect to an odd number of edges. Since we require
at least two vertices to act as intermediate points on our path, the desired walk is impossible.

1.2 Basic definitions

Definition 1.1. A graph G(V,E) is an ordered pair of the set of vertices V and the set of
edges E.
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Definition 1.2. A simple graph is undirected, unweighted, and contains no self-loops or
multiple edges joining vertices.

Definition 1.3. For a simple undirected graph, the set of edges E consists of two-element
subsets of the set of vertices V .
Remark. For a directed, unweighted graph, the set of edges E consists of ordered pairs of
elements from the set of vertices V .

Definition 1.4. A vertex is incident to an edge if that edge joins that vertex.

Definition 1.5. Two vertices are adjacent if there exists an edge connecting them. Two
edges are adjacent if they connect to a common vertex.

Definition 1.6. The neighbours of a vertex consist of all vertices adjacent to it. The
neighbours of an edge consist of all edges adjacent to it.

The number of neighbours of a vertex is called the degree of that vertex.

Definition 1.7. A complete graph is such that every pair of vertices is connected by an
edge. The complete (simple) graph of n vertices is denoted by Kn.

1.3 Some principles

Lemma 1.1 (Pigeonhole Principle). If n+1 objects are placed in n boxes, then we can fin
a box containing at least 2 objects.

Proof. If every box contains at most 1 objects, then the total number of objects falls short.

Theorem 1.2. There are no simple graphs where the degrees of all vertices are distinct.

Proof. Let G(V,E) be a simple graph with n vertices. The degrees of each of these vertices
must be an integer among 0, 1, . . . , n− 1. We now consider two cases.

Case I: There is a vertex of degree 0. Thus, this vertex is adjacent to no other vertex, which
means that no vertex can have the full degree n − 1. This means that the remaining vertices
have degrees among 1, 2, . . . , n− 2, i.e. n− 2 choices of degree for n− 1 vertices.

Case II: There is no vertex of degree 0. Thus, the vertices have degrees among 1, 2, . . . , n−1,
i.e. n− 1 choices of degree for n vertices.

In either case, the Pigeonhole Principle forces at least two vertices to share the same degree.
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Lemma 1.3 (Strong Pigeonhole Principle). Let q1, q2, . . . , qn be positive integers. If

N = q1 + · · ·+ qn − n+ 1

objects are placed in n boxes, then we can find a box i containing at least qi objects.

Proof. If every box i contains at most qi−1 objects, then the total number of objects falls short.

N ≤ (q1 − 1) + · · ·+ (qn − 1) = q1 + · · ·+ qn − n = N − 1

Theorem 1.4. The sum of the degrees of all vertices in a simple graph is twice the number
of its edges.

Proof. Let G((V,E) be a simple graph. Define the incidence function I : E × V → {0, 1}, such
that I(e, v) = 1 if e and v are incident, 0 otherwise. We perform the double counting,∑

v∈V

∑
e∈E

I(e, v) =
∑
e∈E

∑
v∈V

I(e, v).

Now, the number of edges incident to a vertex is simply its degree, so
∑

e∈E I(e, v) = d(v).
Also, every edge is incident to exactly two vertices, so

∑
v∈V I(e, v) = 2. Thus, we have∑

v∈V
d(v) = 2|E|.

Lemma 1.5 (Inclusion-Exclusion Principle). For finite sets A1, A2, . . . , An, the number of
elements in their union is given by

n∑
i=1

|Ai| −
∑

1≤i<j≤n

|Ai ∩Aj |+
∑

1≤i<j<k≤n

|Ai ∩Aj ∩Ak| − · · ·+ (−1)n−1 |A1 ∩ · · · ∩An| .

Theorem 1.6. There are 2(
n
2
) simple graphs with n vertices.

Exercise 1.1. How many simple graphs are there with n vertices and m edges?

Theorem 1.7. Let n, k ∈ N such that n > 3 and n/2 < k < n. Let there be n points on a
plane such that no three points are collinear. If every point is connected to at least k other
points by segments, then there must be at least three segments forming a triangle.
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Proof. Consider a graph G(V,E) with n vertices, such that every vertex has degree at least k.
Pick an edge, say {x, y}, and let A be the neighbours of x apart from y, B be the neighbours
of y apart from x. Note that A, B have at least k − 1 elements each. Suppose that A ∩B = ∅,
i.e. the edge {x, y} doe not form a triangle. Thus,

|A ∪B| = |A|+ |B| − |A ∩B| ≥ 2(k − 1).

However, |A ∪B| ≤ n− 2, hence n ≥ 2k, or k ≤ n/2. This is a contradiction.

Remark. We have shown that every segment is part of a triangle. The number of segments here
is

|E| ≥ nk >
n2

4
.

Exercise 1.2. Is the condition |E| > n2/4 sufficient to ensure the existence of a triangle?

Lemma 1.8 (Cauchy-Schwarz). Let a1, . . . , an and b1, . . . , bn be positive reals. Then,

(a21 + · · ·+ a2n)(b
2
1 + · · ·+ b2n) ≥ (a1b1 + · · ·+ anbn)

2.

Equality holds if and only if every ai = λbi for some fixed real λ.

Theorem 1.9 (Mantel). In a simple graph with n vertices, the condition |E| > n2/4 is
sufficient to ensure the existence of a triangle.

Proof. Let G be a simple graph with n vertices which is triangle-free. Thus, for any edge
{x, y} ∈ E, the neighbour sets A and B of x and y intersect at no vertex. Thus, we can write

d(x) + d(y) = |A ∪B| ≤ n.

Sum this over all possible edges. On the right, we have n|E|. On the left, we have the sum

∑
x∈V

d(x)2 ≥ 1

n

(∑
x∈V

d(x)

)2

≥ 1

n
· 4|E|2

This gives
4|E|2

n
≤ n|E|, |E| ≤ n2

4
.

Example. Consider a circle, with 21 points on its circumference. It follows that among the
angles subtended by these points at the center, at most 110 are greater than 2π/3.

Note that there are
(
21
2

)
= 210 angles. Furthermore, given any 3 points on the circle

(forming a triangle), all three angles subtended by them cannot be greater than 2π/3.
Construct a graph with these n = 21 points as vertices, such that two vertices are connected
by an edge if and only if the angle subtended by them is greater than 2π/3. Now, note
that n2/4 = 110.25, thus if there are more than 110 edges, there must exist a triangle of
vertices in which all three angles are greater than 2π/3 – a contradiction!
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1.4 Bipartite graphs

Definition 1.8. A graph G(V,E) is called bipartite if the vertex set V can be partitioned
into 2 parts V1, V2 such that every edge in E joins a vertex of V1 to a vertex of V2. In other
words, there exists a 2- colouring of the vertices such that no edge connects two vertices of
the same colour.
Remark. The sum of the degree of the vertices in one part is exactly equal to the number
of edges, which in turn is equal to the sum of the degrees of the vertices in the other part.

Definition 1.9. A complete bipartite graph is such that each vertex in one part is connected
to every vertex in the other part. Such a graph is denoted by Km,n, where the parts have
m and n vertices respectively.
Remark. The total number of edges must be the product of the numbers of vertices in each
part.

Definition 1.10. A set of vertices (or edges) in a graph is called independent if no two
elements in that set are adjacent.

Lemma 1.10. A bipartite graph is triangle free.

Corollary 1.10.1. If we choose even n, we can achieve a triangle free graph with n2/4
edges, namely Kn/2,n/2. Similarly, if n is odd but bn2/4c factors into natural numbers
dn/2e and bn/2c, then Kdn/2e,bn/2c achieves the upper bound again.

Lemma 1.11. An r-partite graph is Kr+1 free.
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Exercise 1.3. Consider a complete r-partite graph on n vertices. What is the maximum
number of edges possible?
Solution. Consider Kn1,...,nr , where n = n1 + · · ·+ nr. The number of edges is

|E| =
∑
i<j

ninj .

Cauchy-Schwarz gives

n2 =
∑
i

n2
i + 2

∑
i<j

ninj ≥
n2

r
+ 2|E|.

Thus,

|E| ≤ n2

2

(
1− 1

r

)
.

Equality is achieved when n1 = · · · = nr.

Definition 1.11. The complete r-partite graph Kn1,...,nr on n vertices, such that |ni−nj | ≤
1 for all i, j is called Turan’s graph, Tn,r.

Theorem 1.12 (Turan’s Theorem). The number of edges in a Kr+1 free graph on n vertices
is at most

|E(Tn,r)| =
n2

2

(
1− 1

r

)
.

Proof. Fix r; we prove the theorem by induction on n. The base case n = 2 has already been
shown. Suppose that this holds for all Kr+1 free graphs with less than n vertices. Note that
whenever n ≤ r, the claim is obvious, since

|E| ≤ n(n− 1)

2
≤ n2

2

(
1− 1

r

)
.

Otherwise, we have n ≥ r + 1. Let G have the maximum number of edges such that it is Kr+1

free. We argue that G must contain Kr; if not, there is still scope for adding edges. Call the
vertices in this subset A, and the remaining vertices B. Clearly, |A| = r and |B| = n−r. Set eA
equal to the number of edges within A, eB the number of edges within B, and eAB the number
of edges between A and B. We must have |E| = eA+ eB + eB. Now, A has the structure of Kr,
so eA = r(r−1)/2. Since the structure of B is Kr+1 free, we can apply the induction hypothesis
on it, giving eB ≤ (n− r)2(r− 1)/2r. Finally, no vertex in B can be connected to every vertex
in A, so we have eAB ≤ (r − 1)(n− r). Adding everything together,

|E| ≤ r(r − 1)

2
+

(n− r)2(r − 1)

2r
+ (r − 1)(n− r)

=
1

2

[
r2 + (n− r)2 + 2r(n− r)

] r − 1

r

=
n2

2

(
1− 1

r

)
.

Note that for equality to hold, we require every vertex in B to be connected to r− 1 vertices in
A. This means that B is the Turan’s graph Tn−r,r, so G is the Turan’s graph Tn,r.
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Example. We give a second proof of Mantel’s Theorem. Let G be a triangle free graph on
n vertices. Let A be an independent set of G, and let B be the set of remaining vertices.
Furthermore, let A be a largest independent set of G. Now note that in a triangle free
graph, the neighbouring set of any vertex must be an independent set. This gives an upper
bound of |A| on the degree of any vertex. Also note that given an arbitrary edge, one of
its endpoints must lie in B (both endpoints cannot lie in A since it is an independent set).
This forces

|E| ≤
∑
x∈B

d(x) ≤ |A||B| ≤ 1

4
(|A|+ |B|)2 = n2

4
.

Now, note that for equality in the first case, we require no edges in B, i.e. B must be
independent. This forces G to be bipartite. For the second equality, we need every vertex
in B to have the full degree |A|, so G is a complete bipartite graph. For the third equality,
we demand |A| = |B|, so G = Tn,2.

1.5 Subgraphs

Definition 1.12. Let G(V,E) be a graph. We say that G′(V ′, E′) is a subgraph of G(V,E)
if V ′ ⊆ V and E′ ⊆ E. We write G′ ⊆ G.

Definition 1.13. The subgraph G′ induced by a set of vertices V ′ ⊆ V is such that G′

contains all the edges of G that connect vertices from V ′. We write G′ = G[V ′].

Definition 1.14. The subgraph G′ spans its parent G if the vertex sets V ′ = V .

Definition 1.15. A k-clique of G is an induced subgraph on k vertices which is complete.

Definition 1.16. The Ramsey number R(s, t) is the least positive integer for which every
complete graph on that many vertices, with its edges coloured in red and blue, must contain
either a red s-clique or a blue t-clique.

Example. We can see that R(s, t) = R(t, s), R(1, r) = 1, R(2, r) = r.

Example. We can show that R(3, 3) = 6. Indeed, every colouring of K6 must contain at
least two monochromatic triangles.

Example. Consider any graph G on 6 vertices. Construct a new graph G′ on 6 vertices
where two vertices are joined by a red edge if there exists a corresponding edge in G, and
blue if not. Thus, G′ is a 2-coloured complete graph and hence contains a monochromatic
triangle. This means that there are 3 vertices in G where either all of them are connected
to each other, or none of them are.
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Lemma 1.13. The number R(s, t) is the smallest positive integer such that any graph on
R(s, t) vertices contains either an independent set of size s, or a t-clique.

Theorem 1.14 (Ramsey Theorem). The Ramsey number R(s, t) is always finite.

Proof. We show this for all s, t ≥ 3 by induction on s+ t. Note that when s+ t = 6, we know
that R(1, 5), R(2, 4), R(3, 3) are all finite. Furthermore, R(s, 1) = R(1, t) = 1. Suppose that
R(s−1, t) and R(s, t−1) are both finite; we claim that R(s, t) < R(s−1, t)+R(s, t−1). Without
loss of generality, let s ≥ t. Consider a complete graph Kn on R(s−1, t)+R(s, t−1) = n vertices.
Choose a vertex v, and let VR be the set of its neighbours connected by red edges, VB be the
neighbours connected by blue edges. Clearly, n = |VR|+ |VB|+1, so either |VR| ≥ R(s− 1, t) or
|VB| ≥ R(s, t − 1). In the first case, consider the subgraph induced by VR; either it contains a
blue t-clique, or a red s− 1 clique which means that VR ∪ {v} contains a red s-clique. In either
case, we are done. The case with VB is analogous.

Remark. This upper bound can be sharpened to R(s−1, t)+R(s, t−1)−1 when both R(s−1, t),
R(s, t− 1) are even.

Example. Consider R(4, 3). We have R(3, 3) = 6 and R(4, 2) = 4, hence R(4, 3) ≤ 6+4−1 =
9. We show this is a different way. Note that R(4, 3) = R(3, 4). In the manner of the
previous proof, look at the case |VR| ≥ |VB|. Since |VB| + |VR| + 1 = 9, we have |VR| ≥ 4.
If VR contains one red edge, then we have found a red 3-clique. Otherwise, VR contains a
blue 4-clique, so we are done.

Definition 1.17. The Ramsey number R(n1, . . . , nr) is the least positive integer for which
every complete graph on that many vertices, with the edges coloured in r different colours,
must contain some ni-clique with colour i.

Theorem 1.15. The Ramsey number R(n1, . . . , nr) is always finite.

Proof. Apply induction on the number of colours r. Note that we have already proved the
theorem for r = 2. Suppose that the statement holds for r − 1 colours. We claim that

R(n1, . . . , nr) ≤ R(n1, . . . , nr−2, R(nr−1, nr)).

Consider a complete graph Kn on R(n1, . . . , nr−2, R(nr−1, r)) = n vertices, with the edges
coloured in 1, . . . , r. Thus, the induction hypothesis gurantees that this graph must contain at
least one ni-clique in colour i for 1 ≤ i ≤ r − 2, or an R(nr−1, nr)-clique in colour r − 1 and r.
However, the latter case means that the clique contains either an nr−1-clique in colour r− 1, or
an nr-clique in colour r.

Theorem 1.16.
R(s, t) ≤

(
s+ t− 2

s− 1

)
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Proof. Perform induction on s+ t. This is true whenever s+ t ≤ 5. Suppose that this holds for
all s+ t− 1. Now,

R(s, t) ≤ R(s, t− 1) +R(s− 1, t) ≤
(
s+ t− 3

s

)
+

(
s+ t− 3

s− 1

)
=

(
s+ t− 2

s− 1

)
.

Lemma 1.17. (
2k

k

)
≤ 22k.

Corollary 1.17.1.
R(s, s) ≤

(
2s− 2

s− 1

)
≤ 22s−2 < 4s.

Theorem 1.18 (Erdős). For all s > 3, R(s, s) > b2s/2c.

Proof. We show that there exists a way of colouring Kn, n = b2s/2c in red and blue such that
there is no monochromatic s-clique.

Let AR denote the event in which an induced subgraph Kn[R] on R ⊆ V vertices is monochro-
matic. For any edge, let the probability of it being coloured red or blue be the same, i.e. 1/2.
Thus, Ks is red with probability (

1

2

)(s
2
)
.

When |R| = s, P (AR) is twice the above probability. We will show that the probability of the
existence of a monochromatic s-clique is strictly less than 1. To see this, apply the Inclusion-
Exclusion principle, whence the required probability is

∑
|R|=s

2

(
1

2

)(s
s
)
=

(
n

s

)
21−(

s
2
) ≤ ns

s!
· 21+s/2 · 2−s2/2.

Putting the value of n, we see that this is

2s
2/2

s!
· 21+s/2 · 2−s2/2 =

1

s!
21+s/2.

However, it is easy to see that s! > 2s for all s ≥ 4, which gives the result.

Theorem 1.19. For every n ≥ 1, there is a lower bound p0 such that for every prime
p ≥ p0, the following congruence has a solution.

xn + yn ≡ zn (mod p).
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Theorem 1.20 (Schur’s Theorem). For any positive integer r, there exists a positive integer
S(r) such that for every partition of the integers {1, 2, . . . , S(r)} into r parts, there exists
one part which contains integers x, y, z where x+ y = z.
Remark. This can be rephrased in the following manner. For any r colouring of the integers
1, 2, . . . , S(r), one can pick integers x, y, z all of the same colour such that x+ y = z.
Remark. The integers x, y, z are not necessarily distinct!

Proof. We show this for r ≥ 2. Let n = R(3, 3, . . . , 3) where there are r colours; we claim that
this choice of n satisfies the desired property, i.e. S(r) ≤ n.

Let C : {1, 2, . . . , n} → {1, . . . , r} be an arbitrary colouring of the integers. Construct the
graph Kn, and colour its edges using the following map.

χ : E(Kn) → {1, . . . , r}, {v1, v2} 7→ C(|i− j|).

We immediately deduce the existence of a monochromatic triangle, say vi, vj , vj with i < j < k.
Set x = j − i, y = k − j, z = k − i. Then, x+ y = z and C(x) = C(y) = C(z).

1.6 Degree sequences

Definition 1.18. Let G be a graph on n vertices, labelled 1, . . . , n. Then, we call the
sequence d(1), . . . , d(n) the degree sequence of the graph.
Remark. Recall that given a degree sequence, the sum of the numbers is always twice the
number of edges, i.e. the sum is always even. Also, we know that at least two vertices have
the same degree.

Theorem 1.21. Let di be a graphic sequence with d1 ≥ d2 ≥ · · · ≥ dn. Then, there is a
simple graph with the vertex set {x1, . . . , xn} such that d(xi) = di and the neighbour set

N(x1) = {x2, x3, . . . , xd1+1}.

Proof. Let G be one of the graphs with the degree sequence di, d(xi) = di. Furthermore, choose
G such that the following number is maximised.

rG = |N(x1) ∩ {x2, . . . , xd1+1}|.

If r = d1, we are done. Otherwise, suppose that rG < d1, in which case one of the vertices
xs, 2 ≤ s ≤ d1 + 1 which is not adjacent to x1. This also means that there is some vertex xt,
t > d1 + 1 adjacent to x1. Note that 1 ≤ d(xt) ≤ d(xs), so xs is connected to at least one
vertex xk 6= x1; we can also choose xk 6= xt, and xk not connected to xt. This is simply because
ds ≥ dt: every neighbour of xs cannot be connected to xt as well. Now, we simply remove the
edges {x1, xt}, {xs, xk}, and add the edges {x1, xs}, {xt, xk} to obtain the graph G′. In doing
so, we have not preserved the degrees of every vertex, but observe that rG′ > rG, contradicting
the maximality of rG.

Corollary 1.21.1 (Havel-Hakimi). A sequence di with d1 ≥ · · · ≥ dn is graphic if and only
if the sequence d2 − 1, d3 − 1, . . . , dd1+1 − 1, dd1+2, . . . , dn is graphic.

Proof. Simply delete the highest degree vertex in the first case to reach the second, and vice
versa.
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1.7 Independent sets and vertex covers

Definition 1.19. An independent set in a graph is maximal if it is not a subset of any
other independent set.

Definition 1.20. A largest maximal independent set in a graph is called a maximum
independent set. We denote its cardinality as α(·).

Example. Given a path Pn, we have α(Pn) = dn/2e. Similarly, given a cycle Cn, we have
α(Cn) = bn/2c.

Definition 1.21. A vertex covers an edge and vice versa if they are incident.

Definition 1.22. A vertex cover of a graph is a set of vertices which cover all its edges.

Definition 1.23. A minimal vertex cover of a graph is one which has no vertex cover as a
subset.

Definition 1.24. A smallest vertex cover of a graph is called a minimum vertex cover. We
denote its cardinality as β(·).

Lemma 1.22. The complement of a vertex cover of a graph is independent, and vice versa.

Proof. Consider a vertex cover K, and pick two vertices x, y in its complement. If x is adjacent
to y, then {x, y} is not covered by K.

Consider an independent set U , and pick an arbitrary edge {x, y}. Both x and y cannot be
in U , hence the complement of U covers this edge.

Corollary 1.22.1. Given any graph G on n vertices, we have α(G) + β(G) = n. The
complement of any maximum independent set is a minimum vertex cover, and vice versa.
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Example. Consider a river crossing problem, involving a boat with k extra seats, and n
objects on one side. Let G represent the conflict graph between these objects. Then, the
number of extra seats must satisfy

β(G) ≤ k ≤ β(G) + 1.

To see this, we must take a vertex cover of G with us on the first step so that we leave an
independent set behind. On the other hand, it is enough to keep the minimum vertex cover
permanently on the boat, and ferry the remaining objects (which are independent) one by
one.

1.8 Dominating vertex sets

Definition 1.25. A set of vertices in a graph is called a dominating set if every vertex in
the graph is either part of this set, or a neighbour of some vertex in this set.

Definition 1.26. A smallest dominating set of a graph is called a minimum dominating
set. We denote its cardinality as γ(·).

Lemma 1.23. In a connected graph, every vertex cover is also a dominating set.

Lemma 1.24. Every maximal independent set is also a dominating set. This immediately
gives

α(G) ≥ γ(G).

Corollary 1.24.1. Every connected graph has at least two disjoint dominating sets. This
gives

γ(G) ≤ n

2
.

Lemma 1.25. Any dominating set which is independent is also maximally independent.

1.9 Matching edges

Definition 1.27. A set of independent edges is called a matching set.

Definition 1.28. We denote the cardinality of the maximum matching set as α′(·).
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Definition 1.29. A perfect matching covers all the vertices in the graph.

Definition 1.30. A complete matching from independent sets A to B is one which covers
all vertices in the smaller set A.

Example. Let A = {A1, . . . , An} be a family of subsets of X. The problem of finding
n distinct elements such that each xi ∈ Ai can be reframed as a graph theoretical one.
Construct a bipartite graph with the sets Ai on one side and the elements xj on the other,
and connect Ai with xj if xj ∈ Ai. We seek a complete matching from A to X.

Example. Observe that for a complete matching from A to B to exist, we must have the
following: for any subset X of A, we need |X| ≤ |N(X)| where N(X) is the neighbouring
set of X. Indeed, this is sufficient.

Theorem 1.26 (Hall’s Marriage theorem). A bipartite graph G with vertex sets V1 and V2

contains a complete matching from V1 to V2 if and only if given any subset X ⊆ V1, we
have |X| ≤ |N(X)|.

Proof. It is clear that this condition is necessary, by employing the Pigeonhole Principle. To
show that this is sufficient, we use induction on |V1| = m. This is trivial for m = 1; suppose
that this holds for all 1, . . . ,m− 1. Consider the following cases.

Case I: All groups of k members from V1, with 1 ≤ k < m, are connected to at least k + 1
members from V2. Note that every vertex from V1 has degree 2. Fix one arbitrary edge. The
remaining graph satisfies the induction hypothesis, hence there exists a complete matching.

Case II: There are some groups of k members from V1, with 1 ≤ k < m, which are
connected to exactly k members from V2. Fix such k, label this group X, and note that X
can be completely matched with its neighbouring set by the induction hypothesis. Now, we
claim that the remaining sets, namely V1 \X and V2 \N(X), satisfy the induction hypothesis.
Suppose that some set Y ⊆ V1 \X has too few neighbours, i.e. |Y | > |N(Y )|. Then, examine
the union X ∪ Y , which has size k+ |Y | but has strictly less than k+ |N(Y )| neighbours. This
is a contradiction, hence the remaining elements also admit a complete matching.

1.10 Walks

Definition 1.31. A walk on a graph is a sequence of alternating vertices and edges, with
two adjacent elements in the sequence being incident in the graph. The number of edges
involved is called the length of the walk.

Definition 1.32. A walk with distinct edges is called a trail.
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Definition 1.33. A walk with distinct vertices is called a path.
Remark. We can immediately see that every path is also a trail.

Definition 1.34. A path that starts and ends on the same vertex (closed) is called a cycle.

Definition 1.35. A closed trail is called a circuit.

Definition 1.36. A circuit which contains all the edges in a graph is called an Eulerian
circuit. A graph which admits such an Eulerian circuit is called an Eulerian graph.

Definition 1.37. A cycle which contains all the vertices in a graph is called a Hamiltonian
cycle. A graph which admits such a Hamiltonian cycle is called a Hamiltonian graph.

Lemma 1.27. In an Eulerian graph, every vertex has even degree.

Theorem 1.28. The edge set of a graph can be partitioned into cycles if and only if every
vertex has even degree.

Proof. Consider a graph which is the union of edge disjoint cycles. It is clear that a vertex
which is part of k different cycles must have degree 2k.

Conversely, consider a graph in which every vertex has even degree. Let x0, . . . , xl be a path
of maximal length l in G. Since d(x0) ≥ 2, there must exist another vertex y 6= x1 connected
to x0. Now, if y is not one of x2, . . . , xl, then we can extend out path by starting from y,
contradicting the maximality of the path. Thus, y = xi for some 2 ≤ i ≤ l, hence we have found
a cycle x0, . . . , xi. Remove these edges from the graph, and note that every vertex in the new
graph still has even degree. By repeating this procedure, we will exhaust every edge.

Definition 1.38. A connected graph is one in which given any pair of vertices x, y, there
exists a path between them.

Definition 1.39. In a connected graph, the distance between two vertices is the length of
the shortest path joining them. We denote this as d(·, ·).
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Definition 1.40. A maximal connected subgraph is called a component of the graph.

Definition 1.41. A vertex whose deletion would increase the number of components in
the graph is called a cut vertex.

Definition 1.42. An edge whose deletion would increase the number of components in the
graph is called a bridge.

Definition 1.43. The maximum distance between a given vertex and the other vertices in
a graph is called its eccentricity. We denote this as ε(·).

Definition 1.44. The minimum eccentricity in a graph is called its radius. The maximum
eccentricity is called its diameter.

A central vertex is one whose eccentricity is equal to the radius.

Definition 1.45. A graph in which every vertex has the same degree k is called a k-regular
graph.

Example. A cube Qk is a k-regular graph.

Example. The Petersen graph is a 3-regular graph.

Theorem 1.29 (Ore’s theorem). Let G be a simple graph of order n ≥ 3 such that given
any non-adjacent vertices x, y, we have d(x) + d(y) ≥ n. Then, G is Hamiltonian.

Proof. Let G be a non-Hamiltonian graph; we claim that there exists a pair of non-adjacent
vertices x, y, d(x) + d(y) < n. Suppose that G has maximal edges (addition of any edge makes
it Hamiltonian). Pick two non-adjacent vertices x, y: by construction, G + {x, y} contains a
Hamiltonian cycle, hence G contains a Hamiltonian path whose endpoints are x and y, say x =
v1, . . . , vn−1, vn = y. Now, we cannot have both v1 ∼ vi+1 and vi ∼ vn where 2 ≤ i ≤ n−2 – if so,
we can see that v1, v2, . . . , vi, vn, vn−1, . . . , vi+1, v1 is a Hamiltonian cycle. Thus, if x is connected
to vi1 , . . . , vik , then y cannot be connected to vi1−1, . . . , vik−1, hence d(y) ≤ n− 1− d(x).
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Lemma 1.30. A graph on n vertices with at least
(
n−1
2

)
+ 1 edges is connected.

Proof. Let G be an arbitrary graph on n vertices with
(
n−1
2

)
+ 1 vertices, and suppose that it

is disconnected. Partition the vertices of G into two groups of size n1 and n2, such that the
corresponding subgraphs are disconnected. Then, the total number of edges in G is at most(

n1

2

)
+

(
n2

2

)
.

However, with the constraint n1 + n2 = n, this quantity is at most
(
n−1
2

)
, a contradiction.

Lemma 1.31. A graph on n vertices with at least
(
n−1
2

)
+ 2 edges is Hamiltonian.

1.11 Labelled trees

Definition 1.46. Two graphs are the same if they have the same vertex and edge sets.
Two graphs are same up to relabelling if there is a way of relabelling the vertices of one to
obtain the other graph.

Theorem 1.32 (Cayley). There are nn−2 distinct labelled trees on n vertices.

Proof. Given a tree on n vertices, we shall construct a sequence a1, . . . , an−2 — called a Prüfer
code — of n−2 elements (not necessarily distinct) from {1, 2, . . . , n}. In the first step, pick a leaf
with the smallest label, and call it b1. Set a1 to the adjacent vertex of b1. Now, delete b1 from
the tree. The Prüfer sequence of our original tree is a1, followed by the sequence corresponding
to the new tree.

Given a Prüfer sequence, we can construct a tree. Let b1 be the smallest number not
appearing in the sequence a1, . . . , an−2, and attach a1 to it. Delete a1 and b1 from consideration
(a1 from the sequence, b1 from the vertex list), and repeat the process. Finally, connect the two
remaining vertices.

It can be shown that there is a bijection between distinct labelled trees and all possible
Prüfer sequences, which immediately completes the proof.

Corollary 1.32.1. There are nn−2 spanning trees of Kn.

1.12 Graph isomorphisms

Definition 1.47. An isomorphism from a graph G to a graph H is a bijective mapping f
from the vertex set of G to that of H, such that it preserves the adjacency function. This
means that

{x, y} ∈ E(G) ⇐⇒ {f(x), f(y)} ∈ E(H).
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Definition 1.48. A graph automorphism is an isomorphism from a graph to itself.

Example. The complete graph Kn has n! automorphisms, since any permutation of its
vertices preserves its structure.

Lemma 1.33. The automorphisms of a graph form a group, under composition.

Example. The automorphism group of any graph is isomorphic to that of its complement
graph.

Theorem 1.34 (Frucht). For every finite group, there exists a finite graph such that their
automorphism groups are isomorphic.

Definition 1.49. A vertex transitive graph is one in which all vertices are similar. In other
words, given any two arbitrary vertices, there exists graph automorphism which sends one
to the other.

Example. Every vertex transitive graph is regular. The converse is not true.

1.13 Graph colourings

Definition 1.50. A proper colouring of a graph is an assignment of colours to its vertices
such that adjacent vertices have distinct colours.
Remark. This is equivalent to realizing the graph as a k-partite graph.

Definition 1.51. The chromatic number of a graph is the minimum number of colours
needed to construct a proper colouring. We denote it as χ(·).

Example. For any complete graph, χ(Kn) = n.

Example. For cycles, χ(C2n) = 2 and χ(C2n+1) = 3.

Example. For any k-partite graph G, we clearly have χ(G) ≤ k.
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Lemma 1.35. The greedy algorithm produces a colouring where at most d+ 1 colours are
used, where d is the highest degree of the vertices in the graph. As a result, χ(G) ≤ d+ 1.

Theorem 1.36 (Szekeres-Wilf). Let δ(G) denote the minimum vertex degree of G. Then,
χ(G) ≤ 1 + max(δ(G′)), where the maximum is taken over all induced subgraphs G′ of G.

Proof. Let χ(G) = k, and let H be a minimal induced subgraph, in the sense that χ(H) = k
and the chromatic number of any of its subgraphs drops, i.e. H − v is always k − 1 colourable.
This immediately shows that for any v ∈ H, d(v) ≥ k − 1; note that if v had fewer neighbours,
then they could not exhaust the k− 1 colours of H − v, leaving one free for v and thus making
H k − 1 colourable. In other words, max(δ(G′)) ≥ δ(H) ≥ k − 1, completing the proof.

Lemma 1.37. Let the vertices of a graph be labelled in decreasing order of their degrees.
Then, applying the greedy algorithm will give

χ(G) ≤ max(min(di + 1, i)).

Lemma 1.38. Given any vertex in G, we can see that

χ(G)− 1 ≤ χ(G− v) ≤ χ(G).

In other words, removing a vertex from G causes its chromatic number to drop by one of 0
or 1.

Definition 1.52. A k-chromatic graph G is called critically k-chromatic if the deletion of
any of its vertices causes its chromatic number to decrease (by one).

Example. All complete graphs Kn are critically n-chromatic.

Lemma 1.39. Any critically k-chromatic graph is connected.

Proof. If a critically k-chromatic graph G has at least two components, then deleting a vertex
v from either component gives a k− 1 colouring of G− v. In other words, the other component
was always k − 1 colourable, giving χ(G) ≤ k − 1, a contradiction.

Lemma 1.40. Any critically k-chromatic graph has no cut vertex.

Proof. If a critically k-chromatic graph G has a cut vertex v, then G− v partitions into compo-
nents Gi. Let G′

i = Gi+v; note that each of these is k−1 colourable. Thus, it is possible to colour
each of these induced subgraphs with k − 1 colours, and this can be done keeping a common
colour for v without any conflicts. This shows that G is k − 1 colourable, a contradiction.
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Lemma 1.41. If G is critically k-chromatic, then δ(G) ≥ k − 1.

Proof. Suppose that the minimum degree vertex v has d(v) < k − 1. Note that G− v is k − 1
colourable; the neighbours of v cannot exhaust all of these colours. This gives a k− 1 colouring
of G, a contradiction.

Definition 1.53. Let G be a simple graph, and let pG(k) be the number of ways in which
G can be properly coloured with k colours. Then, pG is called the chromatic function/poly-
nomial of G.

Example. For a connected graph Kn, we have

pKn(k) = k · (k − 1) · · · (k − n+ 1) =
k!

(k − n)!
.

Example. For a path Pn, we have

pPn(k) = k · (k − 1)n−1.

Theorem 1.42. Consider a simple graph G, and perform an edge contraction to get G/e,
i.e. pick an edge e = {x, y} and collapse it into a single vertex v. Then,

pG = pG−e − pG/e.

Proof. When colouring G− e, the vertices x, y either get the same colour, or different colours.
We must discard the former case; each of these cases directly corresponds to a colouring of
G/e.

Example. Given a cycle Cn, we have

pCn = pPn − pCn−1 .

Theorem 1.43. We can write

pG(k) =
∑
r

f(r)K(r),

where f(r) is the number of ways of partitioning the vertices of G into r independent sets,
and K(r) is the number of ways of colouring the parts of such a partition.

Theorem 1.44 (Brook). If G is a connected graph that is neither a complete graph nor an
odd cycle, then χ(G) ≤ ∆(G).
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1.14 Planar graphs

Definition 1.54. A planar graph is one which can be drawn on a plane without any edge
crossings.

Example. The graphs Q3, K4, K2,n are all planar. The graphs K5, K3,3 are not.

Example. Any tree is planar.

Definition 1.55. A planar graph partitions the plane into a number of arc-wise connected
open sets, called faces.

Theorem 1.45 (Euler). A connected planar graph with n vertices, m edges, and f faces
obeys

n−m+ f = 2.

Remark. If G is planar but not connected, say with k components, then

n−m+ f = k + 1.

Definition 1.56. The girth of a graph G is the length of the smallest cycle present in it.
Remark. We set the girth of an acyclic graph to be ∞.

Theorem 1.46. A simple planar graph on n vertices with girth at least g ≥ 3 has at most
max(g(n− 2)/(g − 2), n− 1) edges.

Proof. First suppose that G is acyclic. Note that a tree has exactly n − 1 edges, thus a forest
will have at most that many edges.

Otherwise for cyclic graphs G, we apply induction on n. The base case n = 3, g = 3 is
easily checked. Now suppose that the theorem holds for any simple planar graph on less than
n vertices. Without loss of generality, let G be a connected simple planar graph on n vertices.

Case I: G has a bridge, say {x, y}. In other words, removing this edge gives two disjoint
subgraphs G1 and G2. Now, the girths of each of these must be at least g. Then,

m ≤ m1 +m2 + 1 ≤ max

(
g1(n1 − 2)

g1 − 2
, n1 − 1

)
+max

(
g2(n2 − 2)

g2 − 2
, n2 − 1

)
+ 1.

The desired inequality follows by taking cases (both have cycles, exactly one has a cycle).
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Case II: G does not have a bridge. Then, every edge is part of some cycle, hence every edge
separates two distinct faces. Let G have f faces, and let fi be the number of faces incident to
exactly i edges. Then,

f =
∑
i

fi, 2m =
∑
i

ifi =
∑
i≥g

ifi ≥ gf = g(2− n+m).

Rearranging, m ≤ g(n− 2)/(g − 2) as desired.

Corollary 1.46.1. For any planar graph, δ(G) ≤ 5.

Proof. This is trivial for n ≥ 3. Otherwise,

δ(G) · n ≤
∑
i

di = 2m ≤ 2 · 3(n− 2) = 6n− 12.

Thus, δ(G) ≤ 5.
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