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1 Symmetries

1.1 Symmetries of plane figures

A symmetry of a plane figure can be thought of as a rigid motion which preserves its structure,
i.e. sends it to itself.

For example, consider an equilateral triangle; there is the identity symmetry (which does
nothing), two rotations by 2π/3 and 2π/3, and three reflections. This gives us a total of 6
symmetries. Coincidentally, the plane symmetries of an equilateral triangle are precisely the
set of 3! = 6 permutations of its vertices.
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The same cannot be said of a square; there are 4! = 24 of its vertices, but only 8 of them
are rigid motions. Here, we see 4 rotations and 4 reflections.

In general, a regular n-gon has 2n plane symmetries, of which n are rotations and n are
reflections. This can be seen by noting that a symmetry of an n-gon is completely determined
by its action on an edge; once the final positions of the first two vertices is determined, the
rest are forced. There are n positions for the first vertex, which leaves only 2 positions for the
second vertex. One of these choices results in a rotation (since it preserves the cyclicity of the
vertices) and the other a reflection (since it reverses the cyclicity of the vertices).

Note that these symmetries can be composed, i.e. applied in succession. For example, a
rotation by 2π/n can be applied repeatedly to obtain every possible rotational symmetry. Simi-
larly, we can perform rotations and reflections in succession, and we always end up with another
symmetry. This composition is associative, there is an identity symmetry, and each symmetry
has an inverse. The collection of such symmetries forms a group.

The group of plane symmetries of a regular n-gon is called the dihedral group, denoted as
D2n.

1.2 Symmetries of the Euclidean plane

Consider the class of isometries of the plane, i.e. all bijections f : R2 → R2 such that ‖f(v) −
f(w)‖ = ‖v − w‖. These constitute symmetries of the Euclidean plane R2. The three basic
forms of such symmetries are rotations, reflections, and translations; it can be shown that every
symmetry of R2 is a combination of at most three reflections. Another representation for each
symmetry is

f(v) = Av + v0,

where A ∈ O2(R) is an orthogonal matrix, accounting for the rotational and reflectional part of
the transformation.

To show this, set v0 = f(0) and define g = f−v0. Thus, g(0) = 0, and g is also an isometry.
Not that for all v,w ∈ R2, we can write

‖g(v)− g(w)‖2 = ‖g(v)‖2 + ‖g(w)‖2 − 2〈g(v), g(w)〉,
‖v −w‖2 = ‖v‖2 + ‖w‖2 − 2〈v,w〉.

On the other hand, ‖g(v) − g(w)‖2 = ‖v −w‖2, and ‖g(v)‖2 = ‖v‖2, ‖g(w)‖2 = ‖w‖2. This
gives 〈g(v), g(w)〉 = 〈v,w〉, i.e. g preserves the inner product.

We claim that g(αv) = αg(v) for all α ∈ R, v ∈ R2. Note that ‖g(αv)‖ = ‖αv‖ = ‖αg(v)‖.
Now,

‖g(αv)− αg(v)‖2 = ‖g(αv)‖2 + ‖αg(v)‖2 − 2〈g(αv), αg(v)〉
= α2v2 + α2v2 − 2α〈αv,v〉
= 2α2v2 − 2α2v2

= 0.
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This proves that g(αv) = αg(v).
Next, we claim that g(v +w) = g(v) + g(w) for all v,w ∈ R2. Write

‖g(v +w)− g(v)− g(w)‖2 = ‖g(v +w)− g(v)‖2 + ‖g(w)‖2 − 2〈g(v +w)− g(v), g(w)〉
= ‖v +w − v‖2 + ‖w‖2 − 2〈v +w,w〉+ 2〈v,w〉
= w2 + w2 − 2〈v,w〉 − 2w2 + 2〈v,w〉
= 0.

This proves that g(v +w) = g(v) + g(w). Thus, g is a linear map.
Now let g(e1) = a and g(e2) = b. Clearly, ‖a‖ = ‖b‖ = 1. For arbitrary v ∈ R2, we

immediately get g(v) = vxa+ vyb, so by arranging a and b as the columns of a 2× 2 matrix A,
we have g(v) = Av. We clearly have A>A = I2 from a>a = b>b = 1, and 〈a, b〉 = 〈e1, e2〉 = 0.
Thus, A ∈ O2(R). Substituting this back into f , we have

f(v) = Av + v0

as desired.
It can be further shown (algebraically) that every member of O2(R) is of the form[

cos θ ∓ sin θ
sin θ ± cos θ

]
.

1.3 Symmetries of the Petersen graph

Consider a graph G(V,E). A symmetry of G is a bijection f : V → V on the set of vertices,
which preserves the edges. In other words, it preserves the adjacency function. Thus, it can be
shown that the degree of each vertex will be preserved by a symmetry.

The following graph is called the Petersen graph, with 10 vertices and 15 edges.

We can show that this graph has 120 symmetries. This can be done by looking at all 2
element subsets of {1, 2, 3, 4, 5}, of which there are 10. Place these subsets as the vertices of a
new graph, and connect two such sets with an edge if they are disjoint. The resulting graph can
be shown to be identical to the Petersen graph. It is immediately clear that any permutation
of the set {1, 2, 3, 4, 5} produces a relabelling of the vertices, which nevertheless preserves the
Petersen graph. This gives us at least 5! = 120 symmetries.
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To show that there are at most 120 symmetries, note that every vertex has exactly 3 neigh-
bours. Thus, when sending a vertex V to its image, we have 10 choices, but we have 3 choices
for the first neighbour V1, 2 for the second neighbour V2. and 1 for the third neighbour V3.
Finally, choose a neighbour of V3, say V4 and place it in on of the 2 remaining positions. It
can be shown that this completely determines the symmetry; each remaining vertex has a com-
plete characterization in terms of the ones already fixed. Thus, we have an upper bound of
10× 3× 2× 1× 2 = 120 symmetries.

2 Groups

2.1 Basic definitions

Definition 2.1. A group is a set G equipped with a binary operation, satisfying the fol-
lowing properties.

1. Associativity: For all x, y, z ∈ G, x(yz) = (xy)z.
2. Existence of an identity element: There exists e ∈ G such that for all x ∈ G, ex =

e = xe.
3. Existence of inverse elements: For every x ∈ G, there exists some y ∈ G such that

xy = e = yx. We denote y = x−1.

Example. The integers Z form a group under addition.

Example. The set {−1,+1} forms a group under multiplication.

Example. The symmetries of a tetrahedron form a group under composition of symmetries.

Lemma 2.1. The identity element in a group is unique.

Proof. Let G be a group, and suppose that e, e′ ∈ G satisfy

ex = x = xe, e′x = x = xe′

for all x ∈ G. Thus, we specifically have

ee′ = e′ = e′e, e′e = e = ee′,

hence e = e′.

Lemma 2.2. The inverse of an element in a group is unique.

Proof. Let G be a group, and let x ∈ G. Suppose that y, y′ ∈ G satisfy

xy = e = yx, xy′ = e = y′x.

Thus
y = ye = y(xy′) = (yx)y′ = ey′ = y′.
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Lemma 2.3. The inverse of the inverse of an element in a group is the element itself.

Proof. Let G be a group, and let x ∈ G. Set w = (x−1)−1. We have

x−1x = e = xx−1, wx−1 = e = x−1w.

Thus,
w = we = w(x−1x) = (wx−1)x = ex = x.

Lemma 2.4 (Cancellation Law). Let G be a group, and let x, a, b ∈ G such that xa = xb.
Then, a = b. Analogously, if ax = bx, then a = b.

Proof. Simply multiply by x−1 as appropriate.

Definition 2.2. The order of a group G is the number of elements it contains, i.e. |G|.
The order of an element g ∈ G is the smallest possible natural number n such that gn = e.

2.2 Subgroups

Definition 2.3. Let G be a group, and let H ⊆ G. We call H a subgroup of G if

1. e ∈ H.
2. For all x, y ∈ H, xy ∈ H.
3. For all x ∈ H, x−1 ∈ H.

Note that this is enough to guarantee that H is a group under the same group operation
as G.

Example. Consider the group C \ {0} of non-zero complex numbers under multiplication.
The non-zero reals R \ {0} form a subgroup of this group.

Theorem 2.5. Let Z be the group of integers under addition. Then, every subgroup of Z
is of the form {0} or nZ = {nk : k ∈ Z}.
Remark. The same argument shows that every subgroup of a cyclic group is cyclic.

Proof. Let H ⊆ Z be a subgroup. If H = {0}, we are done. Otherwise, H contains some
positive integers; this is clear since H must contain some non-zero integers, whose inverses
have the opposite sign. Let n ∈ H be the smallest positive integer; we immediately have
nZ ⊆ H. Now let m ∈ H be any other element. Now, use Euclid’s Division Lemma to write
m = nq + r, where 0 ≤ r < n. Now, note that n ∈ H implies that nq ∈ H, hence the quantity
r = m− nq ∈ H. The minimality of n forces r = 0, hence m = nq. This gives H ⊆ nZ.
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Corollary 2.5.1. If a and b are coprime integers, there exist integers m and n such that
am+ bn = 1.

Proof. If a and b are coprime, they share no common factors greater than 1. Note that aZ+ bZ
is a subgroup of the integers, and hence there is exists a unique positive integer d such that
aZ+ bZ = dZ. Since a, b ∈ aZ+ bZ, we have a, b ∈ dZ so there exist r1, r2 such that a = dr1,
b = dr2. This means that d is a common factor of a and b, forcing d = 1, i.e. aZ + bZ = Z.
Since 1 ∈ Z, 1 ∈ aZ+ bZ, hence there exists a combination am+ bn = 1.

Corollary 2.5.2. The unique positive integer d such that aZ + bZ = dZ is the greatest
common divisor of a and b.

Proof. Let d be the greatest common divisor of a and b. Write a = a′d, b = b′d, and note that
a′ and b′ are coprime. Thus, pick m and n such that a′m + b′n = 1. This gives d = am + bn,
so dZ ⊆ aZ + bZ. Now, consider an arbitrary combination ap + bq ∈ aZ + bZ; simply write
ap+ bq = (a′p+ b′q)d ∈ dZ, hence aZ+ bZ ⊆ dZ.

Theorem 2.6. Let C× be the group of non-zero complex numbers under multiplication.
Then, every finite subgroup of C× is of the form Hn = {zk : k ∈ N} for some nth root of
unity z.

Proof. Let H ⊂ C× be a finite subgroup. Note that we demand 1 ∈ H. If this is the only
element of H, we are done, otherwise choose a different z ∈ H. Now, if |z| 6= 1, note that there
are infinitely many elements z, z2, z3, . . . which must belong to H, which is a contradiction; note
that these generated elements are distinct as they have different magnitudes. Thus we demand
|z| = 1, so write e2πix.

Examine the elements 1, z, z2, . . . , zn, · · · ∈ H for all n ∈ N. Since H is finite, some pair of
these must be equal. This means that za = zb for some a < b, so cancellation gives zb−a = 1.
Thus, z is a root of unity, which means that z = e2πik/n for some n ∈ N, 0 < k < n.

We have shown that every non-identity element in H is a root of unity. Thus, pick w =
e2πix ∈ H such that 0 < x < 1 and x is minimal. Furthermore, set x = k/n, 0 < k < n with
k and n coprime. We claim that H consists solely of the nth roots of unity. The fact that
H contains all powers of w, hence all nth roots of unity is clear. Conversely, pick arbitrary
z = e2πiy ∈ H, z 6= 1, w; since z is a root of unity, write y = k′/n′ where 0 < k′ < n′, k′ and n′

are coprime. The minimality of x gives x < y, hence y − x = (k′n− kn′)/nn′ > 0. Set p = k′n,
q = kn′, and using p > q write p = aq + r where 0 ≤ r < q. Then,

z = e2πip/nn
′
= e2πi(aq+r)/nn′

= e2πiaq/nn
′
e2πir/nn

′
= wae2πir/nn

′
.

Thus, zw−a = e2πir/nn
′ ∈ H. However, note that r/nn′ < q/nn′ = x; the minimality of x forces

r = 0. This gives z = wa, proving the result.

2.3 Cyclic groups

Definition 2.4. A group G is called cyclic if there exists an element g ∈ G such that every
element of G is a power of g. We say that G is generated by the element g, or G = 〈g〉.
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Example. The additive group of integers Z is cyclic.

Example. The additive group of integers modulo n, Z/nZ is a finite cyclic group.

Example. Let G be a cyclic group generated by g such that all the powers gn are distinct.
Clearly, G is infinite. Now, note that we can enumerate the elements of G as follows.

G = {. . . , g−2, g−1, e, g, g2, . . . }.

We can construct a bijection ϕ : G → Z, gn 7→ n. This preserves the group operation, since
gmgn = gm+n 7→ m + n, so ϕ(gmgn) = ϕ(gm) + ϕ(gn). Thus, the groups G and Z are
essentially the same.

Example. Let G be a cyclic group generated by g such that the powers gm = gn, m > n.
This immediately gives gm−n = e. Let k be the smallest natural number such that gk = e;
we claim that G = {e, g, . . . , gk−1}. To see this, note that every element of G is of the form
gp. Use the Division Lemma to write p = kq + r where 0 ≤ r < k, hence gp = gkq+r =
(gk)qgr = gr. Also, the elements e, g, . . . , gk−1 are distinct, by the minimality of k.

Using a construction similar to that in the previous example, we can show that the
groups G and Z/kZ are essentially the same.

Lemma 2.7. Let G be a cyclic group of n elements. Then, it has φ(n) generators, where φ
is Euler’s Totient function denoting the number of positive integers less than and coprime
to n.

Proof. Write G = {e, g, . . . , gn−1}. We claim that gm generates G if and only if m and n are
coprime.

First, suppose that m and n are coprime; choose integers a and b such that am + bn = 1.
Thus, we have g = gam+bn = gamgbn = gam, which means that gk = gamk in general.

Next, suppose that gm generates G. Further suppose that d > 1 is a common divisor of m and
n, and write m = m′d, n = n′d. Note that since gm generates G, so does gd since gm = (gd)m

′ .
We claim that the subgroup generated by gd has n′ < n elements, and hence cannot generate
G, i.e. 〈gd〉 = {e, gd, . . . , g(n′−1)d}. Clearly, given any power gkd, we can write kd = nq + r for
0 ≤ r < n; since d divides both kd and nq, it must also divide r, hence r = r′d. Since 0 ≤ r < n,
we must have 0 ≤ r′ < n′, which means that gkd = gnq+r = gr

′d ∈ {e, gd, . . . , g(n′−1)d}. This
proves the result.

Lemma 2.8. The order of an element g ∈ G is the order of the cyclic subgroup 〈g〉 generated
by it.

2.4 Cosets and Lagrange’s Theorem

7 Updated on November 10, 2021



MA3102: Algebra I 2 GROUPS

Definition 2.5. Let G be a group, and let H be a subgroup of G. A left coset of H is the
set

gH = {gh : h ∈ H}

for some g ∈ G.

Lemma 2.9. All left cosets of H contain the same number of elements.

Proof. Consider the bijection
f : H → gH, h 7→ gh.

This map is injective by cancellation, and surjective by construction. Thus, all cosets of H
contain exactly the same number of elements as in H.

Lemma 2.10. The left cosets of H partition the group G.
Remark. Two left cosets are either equal, or disjoint.

Proof. Define the equivalence relation ∼H , where a ∼ b if and only if a = bh for some h ∈ H.
Clearly, this is reflexive (e ∈ H), symmetric (h−1 ∈ H) and transitive (h1h1 ∈ H when h1, h2 ∈
H). Thus, this is an equivalence relation, and its equivalence classes partition the group G.
However, we see that the equivalence class [g] is precisely the left coset gH.

Definition 2.6. The index of H in G, denoted by [G : H], is the number of left cosets of
H in G.

Theorem 2.11 (Lagrange’s Theorem). Let G be a finite group, and let H be a subgroup of
G. The order of H divides the order of G. In fact,

|G| = [G : H]|H|.

Proof. This follows directly from the previous two lemmas. Each coset of H contains |H| many
elements, are disjoint, and cover the entire group G.

Corollary 2.11.1. Let G be a finite group of n elements. Then, gn = e for any g ∈ G.

Proof. Consider the cyclic subgroup H = 〈g〉 of G, and suppose that it has m elements. Then,
gm = e. However, Lagrange’s Theorem says that m divides n, so gn = e.

Corollary 2.11.2. Let G be a group with p elements where p is prime. Then, G is cyclic.

Proof. Pick any non-identity element g ∈ G, and examine H = 〈g〉. Clearly |H| > 1, but |H|
must divide p, forcing |H| = p. Thus, G = H is the cyclic group generated by g.
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Theorem 2.12. The set of integers between 1 and n which are coprime to n form a mul-
tiplicative group modulo n.

Proof. Let Z×
n be the set of these integers. Clearly, 1 ∈ G which is our identity. Multiplication

modulo n is associative. Finally, let m ∈ Z×
n . Since m and n are coprime, we can find p and q

such that mp + nq = 1, which means that mp = 1 modulo n. Furthermore, p is coprime to n,
since any common divisor of p and n must also divide mp + nq = 1. Thus, every m ∈ Z×

n has
an inverse, which proves that this is a multiplicative group.

Corollary 2.12.1 (Euler’s Theorem). Let n be a positive integer, and let 1 ≤ a < n be
coprime to n. Then,

aφ(n) ≡ 1 (mod n).

Proof. This follows directly from the fact that |Z×
n | = φ(n).

Corollary 2.12.2 (Fermat’s Little Theorem). Let p be a prime. Then,

ap ≡ a (mod p).

Example. The only groups of order 4 are the cyclic group C4 and the Klein four group V4.
Let G be a group with |G| = 4, and pick a non-identity element g ∈ G. Note that we

must have |g| = 2, 4. If |g| = 4, then e, g, g2, g3 ∈ G are distinct, forcing G ∼= C4.
Otherwise, let |g| = 2, thus g2 = e. Pick another non-identity element h ∈ G, and note

that if |h| = 4, this reduces to the previous case. Thus, we consider |h| = 2, hence h2 = e.
Now, we also need gh, hg ∈ G; note that gh 6= g, h and hg 6= g, h from the distinctness of
g, h. On the other hand, we only have room for one more element, so gh = hg = k ∈ G.
Finally, k2 = e. Calculate gk = g(gh) = h = kg, hk = h(hg) = g = kh. Thus, G ∼= V4.

2.5 Symmetric groups

Definition 2.7. Let Xn = {1, 2, . . . , n}. A permutation of Xn is a bijection σ : Xn → Xn.
The set of all such permutations of Xn forms the symmetric group Sn.

Lemma 2.13. The group Sn contains n! elements.

Definition 2.8. The permutation which sends n1  n2  · · · nk  n1 is called a cycle,
denoted by (n1 n2 . . . nk).
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Lemma 2.14.
(n1 n2 . . . nk) = (n1 nk)(n1 nk−1) . . . (n1 n2).

Definition 2.9. Consider a permutation which is the product of disjoint cycles of lengths
n1, n2, . . . , nk (in ascending order). This permutation is said to have type n1, n2, . . . , nk.

Exercise 2.1. Count the number of permutations of type 12233 in S11.
Solution. By creating boxes for the cycles,

( · )( · )( · · )( · · )( · · )( · · · ),

there are 11! ways of placing the 11 elements a1, . . . , a11 into these boxes. However, in
each cycle of length n, we have over counted since a single cycle can be written in n ways.
Similarly, given a single permutation with cycle type nk, the k cycles of length n can be
rearranged in k! ways. Thus, our answer must be

11!

(12 · 2!)(23 · 3!)(31 · 1!)
= 138600.

Lemma 2.15. The number of permutations in Sn of type ab11 . . . abkk is

n!

(ab11 · b1!) · · · (abkk · bk!)
.

2.6 Homomorphisms

Definition 2.10. Let ϕ : G → G′ where G,G′ are groups. We say that ϕ is a homomor-
phism if ϕ(gh) = ϕ(g)ϕ(h) for all g, h ∈ G. In other words, ϕ preserves the multiplicative
structure of G.

Example. The map sending every element from G to the identity element in G′ is trivially
a homomorphism.

Example. The absolute value map as well as the sign map are homomorphisms on R×. The
former sends the group to the multiplicative group of positive reals, the latter to the group
{±1}.

Example. The determinant map is a homomorphism from GLn(R) to R×.
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Lemma 2.16. Let ϕ : G → G′ be a homomorphism. Then, ϕ(e) = e′, i.e. ϕ sends the
identity in G to the identity in G′.

Proof. Note that
ϕ(e) = ϕ(ee) = ϕ(e)ϕ(e),

whence cancellation gives ϕ(e) = e′.

Lemma 2.17. Let ϕ : G → G′ be a homomorphism. Then, ϕ(g−1) = ϕ(g)−1 for all g ∈ G.

Proof. Note that
e′ = ϕ(e) = ϕ(g−1g) = ϕ(g−1)ϕ(g).

Definition 2.11. Let ϕ : G → G′ be a homomorphism. The set ϕ−1(e′) ⊆ G is called the
kernel of ϕ, and ϕ(G) ⊆ G′ is called its image.

Lemma 2.18. The kernel of a homomorphism is a group, and so is its image.

Definition 2.12. Let ϕ : G → G′ be a homomorphism, and g′ ∈ ϕ(G). The set ϕ−1(g′) is
called a fibre of ϕ.

Lemma 2.19. The fibres of a homomorphism are cosets of its kernel.

Proof. Let ϕ : G → G′, N = ϕ−1(e′), and g′ ∈ ϕ(G). Select g ∈ G such that ϕ(g) = g′. We
claim that ϕ−1(g′) = gN . It is clear that ϕ(gn) = ϕ(g) = g′ for any n ∈ N , hence gN ⊆ ϕ−1(g′).
Conversely, pick h ∈ ϕ−1(g′), and note that ϕ(g−1h) = g′−1g′ = e′, hence g−1h ∈ N . Thus,
h = g(g−1h) ∈ gN , giving ϕ−1(g′) ⊆ gN .

Corollary 2.19.1. If ϕ : G → G′ is a homomorphism, then

|G| = | imϕ| · | kerϕ|.

Corollary 2.19.2. A homomorphism is injective if and only if its kernel is trivial.
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Example. Consider the sign homomorphism on the group of permutations, defined by

sgn: Sn → {±1}, σ 7→
∏
i>j

σ(i)− σ(j)

i− j
.

To see that this is indeed a homomorphism, note that∏
i>j

στ(i)− στ(j)

i− j
=

∏
i>j

στ(i)− στ(j)

τ(i)− τ(j)
·
∏
i>j

τ(i)− τ(j)

i− j
.

Now, note that the sign of any transposition (2-cycle) is always −1. Since every k-cycle is
a product of k− 1 transpositions, we see that the sign of any k-cycle is (−1)k+1. Using the
fact that any permutation can be decomposed into a product of cycles which in turn are
products of transpositions, we have a simple way of computing the sign of any permutation.

Lemma 2.20. The pre-image of a subgroup under a homomorphism is a subgroup.

Definition 2.13. An endomorphism is a homomorphism from a group to itself.

2.7 Isomorphisms

Definition 2.14. An isomorphism ϕ : G → G′ is a bijective homomorphism.

Lemma 2.21. The inverse of an isomorphism is an isomorphism.

Lemma 2.22. An isomorphism preserves the orders of elements.

Definition 2.15. An automorphism is an isomorphism from a group to itself.

Example. Conjugation is an automorphism, called an inner automorphism. Note that if
the group G is abelian, then the inner automorphisms are just identity maps.

Lemma 2.23. The automorphisms of a group G form a group of their own, denoted
Aut(G), where the group operation is the composition of functions.

Example. Consider the Klein four group V4 = {e, a, b, c}. Then, Aut(G) ∼= S3. It is easy to
check that any permutation of {a, b, c} gives an automorphism of V4.
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2.8 Normal subgroups

Definition 2.16. Let H be a subgroup of the group G. We say that H is a normal subgroup
of for every h ∈ H, we have g−1hg ∈ H for all g ∈ G. We denote H E G.

Lemma 2.24. A subgroup H is normal if and only if gH = Hg for all g ∈ G. In other
words, the left and right cosets of H coincide.

Example. Every subgroup of an abelian group is normal.

Example. The kernel of a homomorphism is a normal subgroup of the domain.

Corollary 2.24.1. Any subgroup H ⊂ G of index 2 is normal.

Proof. Let g /∈ H, and note that H, gH are the only left cosets of H, and H,Hg are the only
right cosets of H. This forces gH = Hg.

Lemma 2.25. Let H E G. Then, the product of two cosets is a coset.

Proof. We claim that (xH)(yH) = xyH. Note that given any element xyh ∈ xyH, we have
xyh = (xe)(yh) ∈ (xH)(yH), so xyH ⊆ (xH)(yH). Now, using the fact that H is normal, let
xh1 ∈ xH and h2y ∈ Hy = yH. Then, xh1h2y = xh3y for some h3 ∈ H; but h3y ∈ Hy = yH
hence h3y = yh4 for some h4 ∈ H, hence (xh1)(h2y) = xyh4 ∈ xyH so (xH)(yH) ⊆ xyH.

Lemma 2.26. Conjugacy is an equivalence relation. Thus, this partitions a group into
conjugacy classes.

Proof. It is clear that every element is conjugate to itself. If x = gyg−1, then y = g−1xg.
Finally, if x = g1yg−−1 and y = g2zg

−1
2 , then x = (g1g2)z(g1g2)

−1.

Lemma 2.27. The conjugacy class of an element in a symmetric group is precisely the set
of elements with the same cycle type.

Proof. Pick the conjugate elements h, h′ = ghg−1 ∈ Sn. Observe that if h(α) = β, then
(ghg−1)(g(α)) = g(β). This is sufficient to show that h and h′ have the same cycle types.

Furthermore, given h, h′ ∈ G with the same cycle type, it can be shown that they are
conjugate. Suppose that h and h′ have a k-cycle, h containing (a1 . . . ak) and h′ containing
(a′1 . . . a′k). Define the permutation s(ai) = a′i, hence shs−1 = h′ for the elements a′1, . . . , a

′
k.

We can extend the definition of s to cover all the cycles in h and h′.
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Corollary 2.27.1. The group of all 2, 2 cycles in S4 (which is isomorphic to the Klein four
group) is a normal subgroup.

Lemma 2.28. A group G in which g2 = e for every g ∈ G is abelian.

Proof. Let g, h ∈ G. Then, g2 = h2 = e, (gh)2 = e hence ghgh = e. On the other hand,
ghhg = gg = e, hence cancellation gives gh = hg.

Lemma 2.29. Let G be a finite group of even order. Then, G contains an element of order
2.

Proof. Suppose to the contrary that G contains no element of order 2. In other words, g 6= g−1

for any g ∈ G \ {e}. Thus, each of the pairs {g, g−1} for g 6= e contains 2 elements, and every
element in G \ {e} appears in exactly one such pair. This is a contradiction, since G \ {e}
contains an odd number of elements.

Example. The only groups of order 6 are the cyclic group C6 and the symmetric group S3.
Let G be a group with |G| = 6. The order of each element is either 1, 2, 3, 6 by Lagrange’s

Theorem.
If G contains an element of order 6, we immediately have G ∼= C6.
If every element of G has order 2, G is abelian. Pick x, y ∈ G, x, y 6= e, x 6= y. Now,

x2 = y2 = (xy)2 = e, and xy = yx. Thus, {1, x, y, xy} ∼= V4 is a subgroup of G, which
contradicts Lagrange’s Theorem.

Thus, pick x, y ∈ G where x has order 2, y has order 3. Then, x2 = e, y3 = e. The
elements {e, x, y, y2, xy, xy2} are all distinct and hence exhaust G, and we can verify that
indeed G ∼= S3

∼= D3.
Note that in the latter case, we must argue that yx = xy2. We do this by noting that

{e, y, y2} must be a normal subgroup of G, hence yx must be one of y, xy, xy2. The first
is ruled out since x 6= e; the second is ruled out because it implies that xy = yx i.e. G is
abelian, forcing xy to have order 6.

2.9 Quotient groups

Definition 2.17. Let H E G, and let G/H be the quotient space defined by the partition
of G into the cosets of H. Then, G/H is a quotient group whose elements are the cosets
gH for g ∈ G. The group operation is defined as

(xH)(yH) = xyH.

Remark. It is easy to verify that this operation is associative. The group identity is the
coset H. The inverse of gH is g−1H.

Example. The quotient group Z/nZ represents the integers modulo n. All integers of the
form nk +m have been identified to the same class [m] = nZ+m.
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Lemma 2.30. The map π : G → G/H, g 7→ gH where H E G is a homomorphism.

Theorem 2.31 (Correspondence). Let H E G. There is a bijection between the set of
subgroups of G containing H, and the subgroups of G/H, given by the map X 7→ π(X).

Theorem 2.32 (First isomorphism theorem). If ϕ : G → G′ is a homomorphism, then
G/ kerϕ ∼= imϕ.

Proof. Set N = kerϕ. Define the map f : G/ kerϕ → imϕ which sends the coset gN 7→ ϕ(g).
It can be shown that this map is well defined, and is a homomorphism. Furthermore, the kernel
of f is the singleton set N , hence f is injective. Given any g′ ∈ imϕ, we can choose g ∈ G such
that ϕ(g) = g′, hence f(gN) = g′ which shows that f is also surjective.

2.10 Group actions

Definition 2.18. Let G be a group and let X be a set. We say that G acts on X if there
is a map G×X → X sending (g, x) 7→ gx, such that (e, x) 7→ x and g(h(x)) = (gh)(x) for
all x ∈ X, g, h ∈ G.
Remark. Fix g ∈ G. Then the map x 7→ gx is a bijection.

Example. The left multiplication map G×G → G, (g, h) 7→ gh is a group action.

Example. The conjugation map G×G → G, (g, h) 7→ ghg−1 is also a group action.

Definition 2.19. The orbit of x ∈ X is the set Gx = {gx : g ∈ G}.
Consider the equivalence relation on X where x ∼ y if there exists g ∈ G such that

x = gy. This induces a partition of X. The equivalence class of x ∈ X is precisely its orbit.

Definition 2.20. The stabilizer of x ∈ X is the set of all elements g ∈ G such that gx = x.
We denote this as Gx.

Lemma 2.33. The stabilizer of an element in X is a subgroup of G. Thus, |Gx| always
divides |G|.
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Lemma 2.34. Let O ⊆ X be an orbit, and let x, y ∈ O. Then, |Gx| = |Gy|.

Proof. If x = gy, then Gx = gGyg
−1. Indeed, Gx

∼= Gy since conjugation by an element is an
isomorphism.

Theorem 2.35 (Orbit-Stabilizer theorem). Let O ⊆ X be an orbit, and let x ∈ O. Then,
|G| = |Gx| · |O|.

Definition 2.21. We say that G acts transitively on X if there is only one orbit, namely
X.

Definition 2.22. The center of a group G is the set of elements which commute with every
element of G. This can also be characterized as the union of all singleton orbits under the
conjugation action.

Lemma 2.36. The center Z(G) of a group G is a normal subgroup of G.

Definition 2.23. We say that G is a p-group where p is prime if |G| = pn for some n ∈ N.

Lemma 2.37. The center of a p-group is non-trivial.

Proof. Let G be a group with |G| = pn. Note that G can be written as the union of Z(G) and
those conjugacy classes with more than one element. Let C be a conjugacy class with |C| > 1.
Then, the orbit-stabilizer theorem guarantees that |C| = pk for some 1 ≤ k < n. Now, p | |G|
and p | |C| for every other conjugacy class, hence p | |Z(G)| which forces |Z(G)| ≥ p > 1.

Lemma 2.38. If G/Z(G) is cyclic, then G is abelian.

Proof. Consider the natural homomorphism ϕ : G → G/Z(G). Let x̄ be a generator of G/Z(G),
and let ϕ(x) = x̄. In other words, x̄ = xZ(G). It is easy to see that for any power, x̄k = xkZ(G)
because Z(G) commutes with every element of G. Thus, every element of G/Z(G) is of this
form, so G is a union of all such cosets.

Pick arbitrary a, b ∈ G, and suppose that a ∈ xmZ(G) and b ∈ xnZ(G). Then we can write
a = xmza, b = xnzb for za, zb ∈ Z(G). Thus, ab = xmzax

nzb = zax
m+nzb = zbx

m+nza = ba.
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Theorem 2.39. A group G with |G| = p2 for some prime p is abelian.

Proof. Recall that |Z(G)| is either p or p2, so |G/Z(G)| is either p or 1. This forces it to be
cyclic, hence G is abelian.

Theorem 2.40. A group G with |G| = p2 is either Cp2 or Cp × Cp.

Proof. If G contains an element of order p2, we immediately have G ∼= Cp2 . Otherwise, every
non-identity element must have order p. Pick non-identity x ∈ G, and let H = 〈x〉. Next, pick y
from G\H, and let K = 〈y〉. Now, both |H| = |K| = p, and H ∩K = {e}. Clearly, H,K ∼= Cp,
hence H × K ∼= Cp × Cp. We now claim that the map (h, k) 7→ hk is an isomorphism. The
fact that this map is a homomorphism follows directly from the fact that G is abelian. The
fact that G is injective follows from the fact that the kernel of this map is trivial: to see this,
if (h, k) 7→ e, then hk = e or h = k−1. Since H ∩K = {e}, we must have h = k = e.

2.11 Sylow’s Theorems

Definition 2.24. Let G be a finite group, and let p be a prime number which divides |G|.
In other words, |G| = pkn where k ≥ 1 is the highest possible power. A p-Sylow subgroup
of G is one of order pk.

Lemma 2.41. Let p be a prime, and let n ∈ N. Then,(
pkn

pk

)
≡ n (mod p).

Proof. Note that for any integer x, we have

(1 + x)p ≡ 1 + xp (mod p).

Again,
(1 + x)p

2 ≡ ((1 + x)p)p ≡ 1 + xp
2

(mod p).

Repeating,
(1 + x)p

k ≡ 1 + xp
k

(mod p).

Now,

(1 + x)p
kn ≡ (1 + xp

k
)n ≡ 1 + nxp

k
+

(
n

2

)
x2p

k
+ · · ·+ xp

k
(mod p).

Comparing the coefficients of xpkn on both sides,(
pkn

pk

)
≡ n (mod p).
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Theorem 2.42. A p-Sylow subgroup always exists.

Proof. Let X be the set of subsets of G, each of size pk. The number of such choices are(
pkn

pn

)
≡ n (mod p).

Using the fact that p and n are relatively prime, we see that p does not divide |X|. Now, let
G act on X by left multiplication as follows: for g ∈ G and A ∈ X, g · A = gA. Now, X is
precisely the disjoint union of the orbits of its elements. Thus, there must exist an orbit O ⊆ X
such that p does not divide |O|. Pick A ∈ O, and use the orbit-stabilizer theorem to write

|G| = |GA| · |O|.

Since pk divides |G| but not |O|, it must divide |GA|, which is a subgroup of G. It remains
to show that pk = |GA|. Note that GA stabilizes A, and |A| = pk. Fix a ∈ A, and note that
g ∈ Aa−1 for all g ∈ GA forcing |GA| ≤ |Aa−1| = pk. This completes the proof.

Theorem 2.43. Any two p-Sylow subgroups are conjugate.

Proof. Let P be a p-group, i.e. |P | = pk, and let P act on a finite set X. Denote XP as the set
of fixed points of X; this is the union of all singleton orbits. Now examine X \XP – this is the
union of all orbits which have more than one element. Furthermore, all orbits are disjoint and
the cardinality of each orbit divides |P | = pk. As a result, p divides |X \XP |, hence |X| ≡ |XP |
(mod p). This means that if p does not divide |X|, then |XP | is non-empty, i.e. X has a fixed
point.

Let P , Q be two p-Sylow subgroups of G. Note that G acts on G/P (the left cosets of P ) in
the natural way, and |G/P | = n which is not divisible by p. By considering Q acting on G/P ,
we see that there is at least one left coset of P , say gP , which is fixed by the action of Q. In
other words, for all q ∈ Q, we have qgP = gP , hence (g−1qg)P = P . This forces g−1qg ∈ P , or
q ∈ gPg−1 for all q ∈ Q. This immediately gives Q = gPg−1.

Corollary 2.43.1. Any two p-Sylow subgroups are isomorphic.

Corollary 2.43.2. A p-Sylow subgroup is normal if and only if it is the only such p-Sylow
subgroup.

Theorem 2.44. Let sp be the number of p-Sylow subgroups. Then, sp ≡ 1 (mod p), and
sp|n where |G| = pkn.

Proof. Let S be the set of p-Sylow subgroups, and let G act on S by conjugation. The previous
theorem shows that there is only one orbit, i.e. G acts transitively on S. This means that
|G| = |S| · |GP | for any P ∈ S. Note that GP is the normalizer of P , i.e the set of all g ∈ G
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such that g−1Pg = P . It is clear that P ⊆ GP , hence |GP | is some multiple of pk. This means
that |S| = sp must divide n.

Now by considering the action of P on S, we have |SP | ≡ |S| (mod p). However, it is clear
that |SP | = 1, with the only fixed point being P itself. To see this, note that if Q ∈ S is fixed
by P , then gQg−1 = Q for all g ∈ P . This means that P ⊆ GQ, but we also know that Q ⊆ GQ.
By definition, Q is a normal subgroup in GQ; the corollary of the second Sylow theorem shows
that this is the only Sylow subgroup in GQ, hence Q = P . This gives sp ≡ 1 (mod p).

Example. Any group of size 15 is cyclic. To see this, note that if G contains 15 elements,
then G has one 3-Sylow subgroup H, and one 5-Sylow subgroup K. Since each of these
are unique, they are normal. Also, H ∩K = {e}, because the intersection of subgroups is
itself a subgroup. Furthermore, H and K are cyclic, since they have prime orders. This is
enough to show that G ∼= H ×N , which is also cyclic.

2.12 Simple groups

Definition 2.25. A group is called simple if it contains no normal subgroup apart from
{e} and G itself.

Example. Groups of of prime order are simple.

Lemma 2.45. If G is a simple, abelian group, then G is a cyclic group of prime order.

Proof. Any non-identity element from G generates a normal subgroup of G. Since G is simple,
these must all be G itself, hence G is cyclic. Since G contains no cyclic subgroups, the order of
G is prime.

Lemma 2.46. If G is a simple p-group, then G is a cyclic group of prime order.

Proof. The center of G is a normal subgroup – since G is a p-group, the center is non-trivial
and hence must be G itself. Thus, G is also abelian, from which the result follows.

Lemma 2.47. If |G| = p2q for primes p, q, then G is not simple.

Theorem 2.48 (Burnside). No group of the form pαqβ is simple.

Lemma 2.49. Let H be a subgroup of a simple group G, with [G : H] = n ≥ 3. Then,
|G| ≤ n!.
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Proof. Let G act on X = G/H; then each element g ∈ G gives a permutation of X (each left
coset is sent to another left coset). This gives a homomorphism ϕ : G → Sn. Now, we claim
that the normal subgroup kerG is a proper subgroup. To see this, pick g ∈ kerG, hence g is
the identity permutation, gx = x for all x ∈ X. Choose x = H, hence gH = H or g ∈ H. Thus,
kerG ⊆ H which is a proper subgroup of G. Since G is simple, this forces | kerG| = 1, i.e. ϕ is
injective. Thus, |G| ≤ |Sn| = n!.

Theorem 2.50. The group A5 is the smallest non-abelian simple group, with order 60.

Theorem 2.51. The groups An for n ≥ 5 are simple.

Proof. We show this by induction. Note that A5 is simple; now suppose that An−1 is simple.
Realize An−1 as a subgroup of An, being a certain subset of the permutations of {1, . . . , n}.
Observe that An−1 is a maximal subgroup of An. This will follow from the following claim: if
t ∈ An \ An−1, then An = An−1 ∪ An−1tAn−1. To show this, let t ∈ An \ An−1, i.e. t(n) = m,
m 6= n, and let s ∈ An. If s(n) = n, then s ∈ An−1; otherwise if s(n) = k, k 6= n, then let
p, q be distinct from n,m, k. Set a = (km)(p q) ∈ An−1: now the composition t−1as sends
n → k → m → n, hence t−1as = b ∈ As−1. In other words, s = atb ∈ An−1tAn−1.

Now, suppose that N E An; it follows that N ∩ An−1 E An−1. This will N ∩ An−1 to
be either {e} or An−1; the latter is not normal in An. In either case, it will follow that N is
trivial.
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