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1 Euclidean spaces

1.1 R™ as a vector space
We are familiar with the vector space R™, with the standard inner product

(,y) = 2191 + - + TnYn.

The standard norm is defined as

n

e —y|? = (@ —y,z—y) =D (2 —y:)*
k=1
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Exercise 1.1. What are all possible inner products on R"?

Solution. Note that an inner product is a bilinear, symmetric map such that (x, ) > 0, and
(x,x) = 0 if and only if & = 0. Thus, an product map on R" is completely and uniquely
determined by the values (e;, e;) = a;;. Let A be the n x n matrix with entries a;;. Note
that A is a real symmetric matrix with positive entries. Now,

(x,€e5) = T1015 + -+ + Tpan; = a:Taj,
where a; is the 4% column of A. Thus,
<5Ba y) = $Ta1y1 SR wTanyn = :cTAy.

Furthermore, any choice of real symmetric A with positive entries produces an inner prod-
uct.

Theorem 1.1 (Cauchy-Schwarz). Given two vectors v,w € R"™, we have

(v, w)| < [lv][Jw]]

Proof. This is trivial when w = 0. When w # 0, set A\ = (v, w)/||w|*. Thus,

0 < [lv = dw|® = [|v[|* — 2\ (v, w) + X*|lw|.

Simplifying,
)< o [P
[Jw]?
This gives the desired result. Clearly, equality holds if and only if v = Aw. O

Theorem 1.2 (Triangle inequality). Given two vectors v, w € R™, we have

lv+w|| < [l + [Jwl]

Proof. Write
lv +wlf* = [|v]|* + 2(v,w) + [Jw|* < [Jv]* + 2[{v, w)| + [[w]*.
Applying Cauchy-Schwarz gives
lo +wl|* < (Jol| + [lwl])*.
Equality holds if and only if v = Aw for A > 0. O
1.2 R™ as a metric space

Our previous observations allow us to define the standard metric on R™, seen as a point set.

d(@,y) = [lz —yl|
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Definition 1.1. For any 6 > 0, the set
Bs(xz) ={y € R" : d(z, y) < 0}

is called the open ball centred at & € R™ with radius §. This is also called the é neighbour-
hood of .

Definition 1.2. A set U is open in R" if for every & € U, there exists an open ball
B(;(:L') cU.

Remark. Every open ball in R™ is open.

Remark. Both () and R™ are open.

Definition 1.3. A set F'is closed in R" if its complement R™ \ F' is open in R".
Remark. Both () and R™ are closed.

Remark. Finite sets in R™ are closed.

Theorem 1.3. Unions and finite intersections of open sets are open.

Corollary 1.3.1. Intersections and finite unions of closed sets are closed.

Definition 1.4. An interior point = of a set S C R"™ is such that there is a neighbourhood
of x contained within S.

Ezxample. Every point in an open set is an interior point by definition. The interior of a set
is the largest open set contained within it.

Definition 1.5. An exterior point x of a set S C R is an interior point of the complement
R™\ S.

Definition 1.6. A boundary point of a set is neither an interior point, nor an exterior
point.

Ezample. The boundary of the unit open ball B;(0) C R™ is the sphere "1,
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Definition 1.7. A limit point x of a set S C R" is such that every neighbourhood of x
contains a point from S other than itself.

Definition 1.8. The closure of a set S C R"™ is the union of S and its limit points.

Remark. The closure of a set is the smallest closed set containing it.

Lemma 1.4. Every open set in R™ is a union of open balls.

Proof. Let U C R"™ be open. Thus, for every & € R", we can choose §, > 0 such that
Bs,(x) C U. The union of all such open balls is precisely the set U. O

1.3 R" as a topological space

Definition 1.9. A topology on a set X is a collection 7 of subsets of X such that

l.O0er

2. Xer

3. Arbitrary union of sets from 7 belong to 7.
4

. Finite intersections of sets from 7 belong to 7.

Sets from 7 are called open sets.

Ezample. The Euclidean metric induces the standard topology on R™.

Ezample. The discrete topology on a set X is one where every singleton set is open. This
is the topology induced by the discrete metric,

0, ifx=y,

ddiscrete: X X X — R, z,Y) —
discrete ( y) {1’ ifm;éy.

Ezample. Let X be an infinite set. The collection of sets consisting of () along with all sets
A such that X \ A is finite is a topology on X. This is called the Zariski topology.

Ezample. Consider the set of real numbers, and let 7 be the collection @, R, and all intervals
(—x,+x) for x > 0. This constitutes a topology on R, very different from the usual one.

This topology cannot be induced by a metric; it is not metrizable.

Consider the constant sequence of zeros. In this topology (R, 7), this sequence converges
to every point in R. Given any £ € R, the open neighbourhoods of ¢ are precisely the sets
R and the open intervals (—xz,+z) for = > |[¢|. The tail of the constant sequence of zeros
is contained within every such neighbourhood of ¢, hence 0 — £. Indeed, the element zero
belongs to every open set apart from () in this topology.
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Definition 1.10. A topological space is called Hausdorff if for every distinct x,y € X,
there exist disjoint neighbourhoods of x and y.

Ezample. Every metric space is Hausdorff. Given distinct x,y in a metric space (X, d), set
d = d(z,y)/3 and consider the open balls Bs(z) and Bs(y).

Lemma 1.5. Fvery convergent sequence in a Hausdorff space has exactly one limit.

Proof. Consider a sequence {x,}nen, and suppose that it converges to distinct 1 and xs.
Construct disjoint neighbourhoods Uy and Uy around x1 and x2. Now, convergence implies that
both U; and Us contain the tail of {z,}, which is impossible since they are disjoint and hence
contain no elements in common. O

Definition 1.11. Given a topological space (X, 7) and a subset Y C X, the collection of
sets UNY where U € 7 is a topology 7y on Y. We call this collection the subspace topology
on Y, induced by the topology on X.

1.4 Compact sets in R”

Definition 1.12. A set K C X in a topological space is compact if every open cover of
K has a finite sub-cover. That is, for every collection if {U,}oca of open sets such that K
is contained in their union, there exists a finite sub-collection Uy, ..., U,, such that K is
also contained in their union.

Ezxample. All finite sets are compact.

Ezample. Given a convergent sequence of real numbers z,, — x, the collection {x, }nenU{z}
is compact.

Ezample. In R™, compact sets are precisely those sets which are closed and bounded. This
is the Heine-Borel Theorem.

Theorem 1.6. The closed intervals [a,b] C R are compact.

Remark. This can be extended to show that any k-cell [a1,b1] X -+ X [an,by] C R™ is
compact.

Proof. Let {Uy}aca be an open cover of [a,b], and suppose that I; = [a,b] has no finite sub-
cover. Then, at least one of the intervals [a, (a + b)/2] and [(a + b)/2,b] must not have a finite
sub-cover; pick one and call it I5. Similarly, one of the halves of I must not have a finite
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sub-cover; call it I3. In this process, we generate a sequence of closed intervals Iy D I3 D ...,
none of which have a finite sub-cover. The length of each interval is given by

|1, =27""|b—al — 0.

Now, pick a sequence of points {z,} where each z,, € I,,. Then, {z,} is a Cauchy sequence. To
see this, given any € > 0, we can find sufficiently large ng such that 2770*1||b — a|| < e. Thus,
xn € I, C I, for all n > ng, which means that for any m,n > ng, we have x,,, x,, € I, forcingE]

zm = @l < [Lng| = 277 b~ a| <.

From the completeness of R, this sequence must converge in R, specifically in [a,b]. Thus,
xn, — x for some x € [a,b]. It can also be seen that the limit x € I, for all n € N; if not,
say © ¢ Ip,, then = € [a,b] \ I,, which is open, hence there is an open interval such that
(x — 0,2+ 9) N I,, = 0. However, I, contains all z,>p,, thus this d-neighbourhood of = would
miss out a tail of {z,}.

Now, pick the open set U € {U,} which covers the point . Thus, x € U so U contains
some non-empty open interval (x — &,z + &) around z. Choose ng such that 270F1||b — a| < §;
this immediately gives I,y C (x — 6,2+ 6) C U. This contradicts that fact that I,,, has no finite
sub-cover from {U,}, completing the proof. O

Remark. The fact that Cauchy sequences in R™ converge isn’t immediately obvious; it is a
consequence of the completeness of R™. Start by noting that R has the Least Upper Bound
property, from which the Monotone Convergence Theorem follows; every monotonic, bounded
sequence of reals converges. It can also be shown that any sequence of reals with contain a
monotone subsequence, from which it follows that every bounded sequence contains a convergent
subsequence (Bolzano-Weierstrass). Finally, it can be shown that if a subsequence of a Cauchy
sequence converges, then the entire sequence also converges to the same limit, giving us the
desired result for R. For sequence in R", we may apply this coordinate-wise to obtain the
result.

Lemma 1.7. Compact sets in R™ are closed and bounded.

Proof. Consider a compact set K C R™. Let x € R"\ K, and let y € K. Since z # y, we
choose open balls U, around y and Vj, around z such that U, NV, = (. Repeating this for all
y € K, we generate an open cover {U,} of K consisting of open balls. The compactness of K
guarantees that this has a finite sub-cover, i.e. there is a finite set Y such that the collection
{Uy}yey covers X. As a result, the finite intersection of all V}, for y € Y is contained within
R™\ K. Thus, z is in the exterior of K. Since x was chosen arbitrarily from R" \ K, we see
that K is closed.

Now, consider the open cover {B;(z)}.ck, and extract a finite sub-cover of unit open balls.
The distance between any two points in K is at most the maximum distance between the centres
of any two balls in our sub-cover, plus two. ]

Lemma 1.8. The intersection of a closed set and a compact set is compact.

Yf 21, 22 € [a,b] with 21 < 2, note that a < 21 < x2 < b, 50

|t —x1| =22 — 21 < b—a.
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Proof. Let F' C R™ be closed and let K C R™ be compact. Suppose that the open cover {U,} of
F'N K has no finite sub-cover. Now the complement U = F“ is open in R™, hence the collection
{U,}U{U} is an open cover of K, and hence must admit a finite sub-cover of K. In particular,
this must be a finite sub-cover of F'N K. However, we can remove the set U from this sub-cover
since it shares no element with /"N K; as a result, our sub-cover must be a finite sub-collection
of sets Uy, contradicting our assumption. This shows that F'N K is compact. O

Lemma 1.9 (Finite intersection property). Let {K,} be a collection of compact sets in R™
which have the property that any finite intersection of them is non-empty. Then,

(Ko #0.

Proof. Suppose to the contrary that the intersection of all K, is empty. Fix an index §, and
note that no element of Kz lies in every K,. Set J, = K¢, whence the collection {J, : a # (}
is an open cover of Kz. This must admit a finite sub-cover {Jy,,...,Jo,} of Kz. Thus, we
must have

KU Jo, U---UJy, =R™

This immediately gives the contradiction

KsNKy N---NK,, = 0. O

Theorem 1.10 (Heine-Borel). Compact sets in R™ are precisely those that are closed and
bounded.

Proof. Given a compact set in R", we have already shown that it must be closed and bounded.
Next, if FF C R™ is closed and bounded, it can be enclosed within a k-cell which we know is
compact. Thus, F' is the intersection of the closed set F' and the compact k-cell, proving that

F must be compact. O

1.5 Continuous maps
Definition 1.13. A map f: X — Y is continuous if the pre-image of every open set from

Y is open in X.

Lemma 1.11. A map f: X — Y is continuous if the pre-image of every closed set from 'Y
is closed in X.

Theorem 1.12. The projection maps m;: R" — R, & — x; are continuous.

Proof. Let U C R be open; we claim that 7; ' (U) is open. Pick € 7; *(U), and note that
mi(x) = x; € U. Thus, there exists 6 > 0 such that (z; — d,z; + ) C U. Now examine Bs(x);
for any point y within this open ball, we have d(x,y) < § hence

i — wil? <> (wk —yp)® = d(m,y)? < 5%
k=1
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In other words, m;(y) = v; € (v; — 0, x; + ), hence m; Bs(x) C (z; — 6,x; +0) C U. Thus, given
arbitrary « € 7; 1 (U), we have found an open ball Bs(z) C 7; ' (U). O

Lemma 1.13. Finite sums, products, and compositions of continuous functions are con-
tinuous.

Corollary 1.13.1. A function f: [a,b] — R™ is continuous if and only if the components,
;o f, are continuous.

Theorem 1.14. All polynomial functions of the coordinates in R™ are continuous.

Ezample. The unit sphere S™! C R” is closed. It is by definition the pre-image of the
singleton closed set {1} under the continuous map

:c»—>m%+-~+x,21.

Theorem 1.15. The continuous image of a compact set is compact.

Proof. Let f: X — Y be continuous, where Y is the image of the compact set X, and let
{U,} be an open cover of Y. Then, the collection {f~(U,)} is an open cover of X. Using the
compactness of X, extract a finite sub-cover f~1(Uy,,),..., f 1 (Uy,) of X. It follows that the
collection Uy, ..., Uy, is a finite sub-cover of Y. ]

1.6 Connectedness

Definition 1.14. Let X be a topological space. A separation of X is a pair U,V of
non-empty disjoint open subsets such that X =U U V.

Definition 1.15. A connected topological space is one which cannot be separated.

Lemma 1.16. A topological space X is connected if and only if the only sets which are
both open and closed are O and X .

Ezample. The intervals (a,b) C R are connected. To see this, suppose that U, V is a
separation of (a,b). Pick x € U, y € V, and without loss of generality let x < y. Define
S =[z,y]NU, and set ¢ =sup S. It can be argued that ¢ € (a,b), but ¢ ¢ U, ¢ ¢ V, using
the properties of the supremum.
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Theorem 1.17. The continuous image of a connected set is connected.

Proof. Let f be a continuous map on the connected set X, and let Y be the image of X. If U,
V is a separation of Y, then it can be shown that v~1(U), y~1(V) constitutes a separation of
X, which is a contradiction. O

Definition 1.16. A path v joining two points z,y € X is a continuous map 7: [a,b] — X
such that v(a) = z, y(b) = y.

Definition 1.17. A set in X is path connected if given any two distinct points in X, there
exists a path joining them.

Lemma 1.18. FEvery path connected set is connected.

Proof. Let X be path connected, and suppose that U, V is a separation of X. Then, pick
x €U,y €V, and choose a path 7: [0,1] — X between x and y. The sets f~1(U) and f~(V)
separate the interval [0, 1], which is a contradiction. O

Ezxample. All connected sets are not path connected. Consider the topologist’s sine curve,

{@,mi) 0<az< 1} U{(0,0)}.

Definition 1.18. The € neighbourhood of a set K in a metric space X is defined as

U Be(a) = U {r e X :d(z,a) < €}.

aeK aeK

Exercise 1.2. Let K C R" be compact, and define f: R™ — R,

f(x) =dist(z, K) = inf d(z,a).

aeK

Show that f is continuous on R™, and f~1({0}) = K.

Exercise 1.3. If K C R" is compact and K N L = (), then

dist(K, L) = in}f{ dist(a, L) > 0.
ae
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Exercise 1.4. If K C R" is compact and U is an open set containing K, then there exists
€ > 0 such that U contains the € neighbourhood of K.
Is the compactness of K necessary?

2 Differential calculus

2.1 Differentiability

Definition 2.1. Let f: (a,b) — R", and let f; = m; o f be its components. Then, f is
differentiable at ¢y € (a,b) if the following limit exists.

—0 h

Remark. The vector f’(ty) represents the tangent to the curve f at the point f(¢p). The
full tangent line is the parametric curve f(t) + f'(to)(t — to).

Definition 2.2. Let U C R™ be open, and let f: U — R™. Then, f is differentiable at
x € U if there exists a linear transformation A: R™” — R™ such that

i F@+ 1) = f() = M

=0.
h—0 12l

The derivative of f at x is denoted by A = D f(z).

Remark. In a neighbourhood of z, we may approximate

flz+h) = f(z)+ Df(x)(h).

Remark. The statement that this quantity goes to zero means that each of the m compo-
nents must also go to zero. For each of these limits, there are n axes along which we can let
h — 0. As a result, we obtain m x n limits, which allow us to identify the m x n components
of the matrix representing the linear transformation A (in the standard basis). These are
the partial derivatives of f, and the matrix of X is the Jacobian matrix of f evaluated at z.

Ezample. Let T: R — R™ be a linear map. By choosing A = T, we see that T is
differentiable everywhere, with DT'(x) = T for every choice of x € R™. This is made
obvious by the fact that the best linear approximation of a linear map at some point is the
map itself; indeed, the ‘approximation’ is exact.

Lemma 2.1. If f: R" — R™ is differentiable at x € R"™, with derivative D f(x), then

1. f is continuous at x.

2. The linear transformation D f(x) is unique.

10 Updated on November 30, 2021
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Proof. We prove the second part. Suppose that A, u satisfy the requirements for D f(z); it can
be shown that limp,_o(A— u)h/||h|| = 0. Now, if Av # pwv for some non-zero vector v € R™, then

Atv) — p(tv)

-|[oll =0,
[[t]]

AV — pv =
a contradiction. O
2.2 Chain rule

Exercise 2.1. Let T: R® — R™ be a linear transformation. Then, there exists M > 0
such that for all € R™, we have

[ Tz| < M|

Solution. Set v; = T'(e;) where e; are the standard unit basis vectors of R™. Then,
Tl = || Y wovill < llwsvill < max ogl| > |-

Since each |z;| < [|z||, set M = nmax ||v;|| and write

IT|| < max oil| Y |2i] < max||vs| - nllzl| = M.

@

Theorem 2.2. Let f: R® — R™, g: R™ — R where f is differentiable at a € R™ and g
is differentiable at f(a) € R™. Then, go f is differentiable, with D(go f)(a) = Dg(f(a)) o
Df(a). Note that this means that the Jacobian matrices simply multiply.

Proof. Set b= f(a) e R™, A= Df(a), p = Dg(f(a)). Define
p: R = R™ o(z) = f(z) — fla) — Az —a),
G R™ = RY, y(y) = gly) — g(b) — uly — b).
We claim that

i 90 0@ =g f(@ = poA@—a)

=—a [l — all

Write the numerator as

gof(x) —go fla)—po A —a)=¢(f(x) + pule(x)).

Note that
Y(y)

y=b [ly = b
Thus, find M > 0 such that ||u(p(z))|| < ||l¢(x)|| for all x € R™, hence

e late@)l L Mle@)]

lim #(2)

=0,
e=a ||l — a

=0.

5 o —al == o
Now write
i SUED
()b | f@) =]
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hence for any € > 0, there is a neighbourhood of b on which

[P(f @) < ellf(z) = bl = ellp(z) + Az = ).

Apply the triangle inequality and find M’ > 0 such that

[(f @)l < elle@)]| + M|z — all.

Thus,
7o) I TG P
5 [z —al T 2=allz—a
Since € > 0 was arbitrary, this limit is zero, completing the proof. O

2.3 Partial derivatives

Definition 2.3. Let U C R" be open, and let f: U — R. The partial derivative of f with
respect to the coordinate x; at some a € U is defined by the following limit, if it exists.

of - f(aJrhej)—f(a).

1
8:17j h—0 h

Lemma 2.3. If f: U — R is differentiable at a point a € R", then

of of

Df(a)(z1,...,2pn) = 21 =—— 91, a—xn(a).

(@) +-- + 2y

Ezxample. Consider

zy/(a? +y?), if (z,y) # (0,0),

™2
f: R = R, (z,y) = {07 if (z,y) = (0,0).

Note that f is not differentiable at (0,0); it is not even continuous there. However, both
partial derivatives of f exist at (0,0).

Lemma 2.4. If f: R® — R™ is differentiable at a € R", then the matriz representation of
Df(a) in the standard basis is given by

Df @)= |52 (@)]
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Lemma 2.5. Let f: R® — R™ be differentiable at a € R™, and let g: R™ — R be
differentiable at f(a) € R™. Then, the matriz representation of D(go f)(a) in the standard
basis is the product

[D(g ° f)(a)] = [Dy(f(a) =[ gzé gj:j] .
ij
In other words,
0 B 0g; dfe
5, (92 Dil0) = 3 5@ g7t (w)

Ezample. Let f: R? — R be differentiable, and let '(f) = {(z,y, f(z,v)) : #, € R} be the
graph of f. Now, let 7: [-1,1] — I'(f) be a differentiable curve, represented by

Then, we can compute the derivative

v (a) = (g’(a), h'(a), g'(a )gi W (a )85 (g (a),h<a))>

Exercise 2.2. Consider the inner product map, (-,-): R” xR™ — R. What is its derivative?

Solution. We treat the inner product as a map ¢g: R*” — R, which acts as

<w7y> gg('rlﬂ"'vxn7y17"‘7yn) :xlyl—i_'”—i_mnyN'

Now, note that
9y 9y

ox; v 0y;

= Z;.

Thus,

Zmz ab -l—ZyZ

= Z z3b; + Z Yiai
i=1 i=1
= (@,b) +(y. a).

In other words, the matrix representation of the derivative of the inner product map at the
point (a, b) is given by [b" a'].
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Exercise 2.3. Let 7: R — R” be a differentiable curve. What is the derivative of the real
map t = [|y(t)]|*?

Solution. We write this map as ¢t — (y(t),(t)). Consider the scheme
R R™ SR, e D(t)] = (1(8),7(®))-
Pick a point t € R, whence the derivative of the map at ¢ is
L@ 207 || =200

Remark. Consider the surface S"~! ¢ R”, and pick an arbitrary differentiable curve v: R —
S"=1. Now, the tangent vector 7/(¢) is tangent to the sphere S"~! at any point (). We
claim that this tangent drawn at (t) is always perpendicular to the position vector ~(t).
This is made trivial by our exercise: the map t +— ||(¢)||*> = 1 is a constant map since 7 is
a curve on the unit sphere. This means that it has zero derivative, forcing (y(t),~/(t)) = 0.

2.3.1 Directional derivatives

Definition 2.4. Let U C R" be open, and let f: U — R. The directional derivative of f
along a direction v € R™ at a point a € U is defined by the following limit, if it exists.

V.f(a) = lim f(a+h’l;1) — fla)

Ezample. Consider

/(2 +y?), if (x,y) # (0,0),

.2
fTRT=R, (2,y)— {07 if (z,y) = (0,0).

Note that f is not differentiable at (0,0). However, all directional derivatives derivatives of
f exist at (0,0). Indeed, consider a direction (cos®,sin#), and examine the limit

1
lim n [f(tcos®,tsinf) — £(0,0)] = cos® 6.

t—0

Definition 2.5. Let f: R™ — R be differentiable. The gradient of f is defined as the map

Vf:R" - R", x%[gi(:):)}z

Remark. The gradient at a point x € R" is thought of as a vector. In contrast, the derivative
is thought of as a linear transformation. Otherwise, we see that V f(x) = [Df(z)].
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Definition 2.6. Let C'(R") be the set of real-valued differentiable functions on R”. Fix a
point a € R™, then fix a tangent vector v € R™. Then, the map

V,: CYR") = R, f— Df(a)(v)

is a linear functional. The quantity V,f is called the directional derivative of f in the
direction v at the point a.
Remark. We can represent V, as the operator

=v-V().

a

Vo) = DO(@)©) = S g

Lemma 2.6. The directional derivatives V,, form a vector space called the tangent space,
attached to the point a € R™. This can be identified with the vector space R™ by the natural
map V, — v. The standard basis can be informally denoted by the vectors

Vza Vezi.

e — DY
! 81’1’ ’

2.3.2 Differentiation on manifolds *

Definition 2.7. A homeomorphism is a continuous, bijective map whose inverse is also
continuous.

Lemma 2.7. Let f: R™ — R be continuous. Denote the graph of f as

L(f) ={(=, f(z)) : x € R"}.
Then, T'(f) is a smooth manifold.

Proof. Consider the homeomorphism

e: I(f) = R", (z, f(x)) — .

This is clearly bijective, continuous (restriction of a projection map), with a continuous inverse
(from the continuity of f). Call this homeomorphism ¢ a coordinate map on I'(f). O

Definition 2.8. Let f: M — R where M is a smooth manifold, with a coordinate map
@: M — R™ We say that f is differentiable at a point a € M if fop ™ ': R® — R is
differentiable at (a).
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Definition 2.9. Let f: M — R where M is a smooth manifold, let ¢: M — R” be a
coordinate map, and let a € M. Let v: R — M be a curve such that v(0) = a, and further
let v be differentiable in the sense that ¢ o yv: R — R" is differentiable. The directional
derivative of f at a along ~ is defined as

4 gay| = tim ZOEER) = F00)

t=0  h—0 h t=0

Note that we are taking the derivative of f oy: R — R in the conventional sense.

Lemma 2.8. Let vy, and v2 be two curves in M such that v1(0) = v2(0) = a, and

d d
—pom(t) = —ponry(t)

dt t=0 dt =0

In other words, v1 and 73 pass through the same point a at t = 0, and have the same
velocities there. Then, the directional derivatives of f at a along v1 and o are the same.

Definition 2.10. Let M be a smooth manifold, and let a € M. Consider the following
equivalence relation on the set of all curves v in M such that v(0) = a.

d d

M~Ye = —pom(t) = -—pom(t)

dt t=0 dt t=0

Each resultant equivalence class of curves is called a tangent vector at a € M. Note that all
these curves in a particular equivalence class pass through a with the same velocity vector.

The collection of all such tangent vectors, i.e. the space of all curves through a modulo
the equivalence relation which identifies curves with the same velocity vector through a, is
called the tangent space to M at a, denoted T, M.

Remark. Fach tangent vector v € T, M acts on a differentiable function f: M — R yielding
a (well-defined) directional derivative at a.

d
el
v:C'(M) >R, for fu®)| _.

Thus, the tangent space represents all the directions in which taking a derivative of f makes
sense.

Remark. The tangent space T, M is a vector space. Upon fixing f, the map Df(a): T,M —
R, v — vf(a) is a linear functional on the tangent space.

Remark. Given a tangent vector v € T, M, it can be identified with its corresponding
velocity vector in R™. Thus, the tangent space T,M can be identified with the geometric
tangent plane drawn to the manifold M at the point a.

2.4 Mean value theorem

Consider a differentiable function f: R” — R, and fix a € R™. Define the functions

gi:R%Rv gi(l‘):f(alu"'vai—lax)ai-‘rlv"‘7an)'
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Then, each g; is differentiable, with
of

gi(x) = 81:-(a1’ e Qi1 Ty Qg Ty ey G-
(2

By applying the Mean Value Theorem on some interval [c,d], we can find « € (¢, d) such that
gi(d) — gi(c) = gi(a)(d — ¢). In other words,

= g (oo )d =)

Theorem 2.9. Let f: R™ — R™ and a € R™. Then, f is differentiable at a if all the partial
derivatives Of /Ox; exist in a neighbourhood of a and are continuous at a.

Proof. Without loss of generality, let m = 1. We claim that

£+ h) ~ f@) =3 2L @ml =0,

HhH i—0 Ox;

Examine
f(a+h) _f(a’) :f(a1+h17"'7an+hn) _f(alv"'7an)
= f(a1 + hl,. e, Qp T+ hn) — f(a1 + hl,. ey Qp—1 T+ hn_l,an)—i—
f(a1 +hi,...,an_1+ hn_l,an) — f(a1 + hq,... ,an_l,an)+

f(al +h’17a27"‘7an) _f(alu"'van)
af of
8:1:” (Cn)h + -+ 871‘1(01)}11

The last step follows from the Mean Value Theorem. As h — 0, each ¢; — a. Thus,

_ 0 0
il = 1@ = 3 2 @l - WHZ( )= @) bl

|l
Z axz ' axi(“) 7]
of
= Z 8351 8:1:1( )‘

Taking the limit h — 0, observe that df/dx;(¢;) — 8 f/0x;(a) by the continuity of the partial
derivatives, completing the proof. ]

Corollary 2.9.1. All polynomial functions on R™ are differentiable.

Theorem 2.10. Let f: R™ — R be differentiable with continuous partial derivatives, and
let a € R™ be a point of local mazimum. Then, D f(a) = 0.

Proof. We need only show that each

of
8:51( a) =0.

This must be true, since a is also a local maximum of each of the restrictions g; as defined

earlier. O
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2.5 Inverse and implicit function theorems

Theorem 2.11 (Inverse function theorem). Let f: R™ — R™ be continuously differentiable
on a neighbourhood of a € R™, and let det(Df(a)) # 0. Then, there exist neighbourhoods
U of a and W of f(a) such that the restriction f: U — W is invertible. Furthermore, f~!
is continuous on U and differentiable on U.

Lemma 2.12. Consider a continuously differentiable function f: R™ — R, and let M
denote the surface defined by the zero set of f. Then, M can be represented as the graph of
a differentiable function h: R"' — R at those points where Df # 0.

Proof. Without loss of generality, suppose that df/0x, # 0 at some point a € M. It can be
shown that the map

F:R" — R", x = (21,22, .., Tp_1, f(T))
is invertible in a neighbourhood W of a, with a continuous and differentiable inverse of the form
G:R" — R", u = (ug,ug, .. Up—1, g(u)).
Since F' o G must be the identity map on W, we demand
(1,22, ..y Tn—1, f(z1, 22, ..., 2p_1,9(x))) = (1, T2, ..., Tpn_1,Ty).
Thus, the zero set of f in this neighbourhood of a satisfies x,, = 0, hence
flxy, e, .. xpn_1,9(x1,22,...,2p-1,0)) = 0.

In other words, the part of the surface M in the neighbourhood of a is precisely the set of points

(1,29, .., Tn-1,9(z1,22,...,2yn—1,0)).
Simply set
h: R 5 R, x = g(x1,22,...,2n-1,0),
whence the surface M is locally represented by the graph of h. O

Remark. Note that by using
f($1, ey n—1, h(:l,‘l, PN ,:Enfl)) =0

on the surface, we can use the chain rule to conclude that for all 1 < ¢ < n, we have

of of , . oh B
axi (CL) + Tl‘n(a) axz (al, e ,an_l) =0.

Theorem 2.13 (Implicit function theorem). Let f: R™ x R™ — R™ be continuously dif-
ferentiable in an open set containing (a,b), with f(a,b) = 0. Let det(0f7/0x, 1(a,b)) # 0.
Then, there exists an open set U C R™ containing a, an open set V. C R™ containing b, and
a differentiable function g: U — V such that f(z,g(z)) = 0.

Remark. The condition on the determinant can be rephrased as rank D f(a,b) = m.
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Theorem 2.14. Let f: R™ — R be continuously differentiable, and let M be the surface
defined by its zero set. Furthermore, let V f(a) # 0 for some a € M; thus, M can be locally
represented by a graph on R"~Y. Then, V f(a) is normal to the tangent vectors drawn at a
to M ; in fact, the perpendicular space of V f(a) is precisely the tangent space T, M.

Proof. Consider a tangent vector drawn at a to M, represented by the differentiable curve
v: R — M, v(0) = a; note that we use the identification 7/(0) = v € R™. Then, calculate

d
/0@ _ = DrH0)((0)) = Df(a)(v).
On the other hand, we have f(v(t)) = 0 identically. Thus,

v-Vf(a)=Df(a)(v) =0. O
2.6 Taylor’s theorem

Theorem 2.15. Let f: R™ — R have continuous second order partial derivatives. Then,

o0 f B o0 f
al‘ial‘j N 6:@61‘1

Theorem 2.16. Let f: R? — R have continuous second order partial derivatives, and let
(w0,y0) € R2. Then, there exists € > 0 such that for all ||[(x — z0,y — yo)|| < e,

F@,9) = Fwo,90) + 2L (z — 20) + Zi@ )

Ox
19°f o 10°f 2
+§W(x—$o) +§@(y—yo)
0% f

where as (z,y) — (zo,y0), the remainder term vanishes as

|R(z,y)|

— 0.
[(z — 0,y — yo)||?

All partial derivatives here are evaluated at (g, o).

Proof. This follows from applying the Taylor’s Theorem in one variable to the real function
gR—)R,t’%f((l—t)(l'o,yo)—Ft(LE,y)) O

2.7 Critical points and extrema

Definition 2.11. We say that a € R" is a critical point of f: R* — R if all 9f /027 = 0
there.
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Lemma 2.17. All points of extrema of a differentiable function are critical points.

Proof. We already know that D f(a) = 0 where a is either a point of maximum or minimum. [

Ezample. In order to find a point of extrema of a C%-smooth function f: R? — R, we first
identify a critical point (zg,y0). Next, we must find a neighbourhood of (xg,yo) which
contains no other critical points — to do this, apply Taylor’s Theorem. Indeed, we see that

f(@,y) = f(zo,y0) + A(z — 20)* + 2B(x — 20)(y — o) + C(y — y0)* + Ra.

For non-degeneracy of solutions, we demand AC — B2 # 0, i.e. at (x9,v0), we want

[82fr7é82f82f
0xdy 022 Oy?”

If AC—B? > 0and §?f/02% > 0, then we have found a point of minima; if 9 f /022 < 0,
then we have found a point of maximum. If AC — B% < 0, then we have found a saddle
point.

Example. Suppose that we wish to maximize the function f: R?> — R, given an equation
of constraint g = 0, where g: R> — R. Using the method of Lagrange multipliers, we look
for solutions of the system

{Vf(w,y) +AVg(z,y) =0,
g(z,y) = 0.

3 Integral calculus
3.1 Path integrals

Definition 3.1. A closed curve v: [a,b] — R" is closed if v(a) = v(b). It is called simple
if it has no self intersections.

Definition 3.2. Let p,q: U — R be continuous, where U C R? is an open set, and let
v: la,b] — U be piecewise smooth, i.e. smooth on (a,b) at all but finitely many points.
Then, we define

b
/ pds+qdy = / (Y)Y, (1) + a(v(£) %) dt.
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Lemma 3.1. Letvy: [a,b] — R? be a smooth curve, and let : [c,d] — [a,b] be smooth, such
that o(c) = a and p(d) = b. Then, the composition v: @: [c,d] — R? is a smooth curve,
and

d
/ e+ qdy = / [0y © 9(8)) Y (0(s)) + By © 9(8) Valep())] ¥'(5) ds.

By substituting the parameter p(s) =t, ¢'(s) ds = dt, we retrieve

b
/ e < 1l = / P(Y(E) A(E) + (v (8)) V() dt = / pde + qdy.
Yo a Y

Theorem 3.2. Let p,q: U — R? be continuous, and let v: [a,b] — U be a smooth curve.
The integral

/p dz + qdy
,Y
depends only on the endpoints of v if and only if there exists u: U — R such that
L
P= 5 4= Ay

In other words, we demand that that the vector field (p,q) be the gradient of w.

Proof. First suppose that there exists u such that Vu = (p, ¢). Then,

/pd:c+qdy= b@(v(t))v’(tH%( ()75 (t) dt
. o 1 ay Y)) V2 .

The chain rule shows that this is simply
bd
[ Gt ®) dt = u(r(0) ~ ulr(@).

Conversely, suppose that the given integral depends only on the endpoints of . Given two
points «, 8 € U, we construct a path from « to § by travelling only along the axes. Pick
(z,y) € U, and define u: U — R,

u(z,y) —/pderqdy,
Yy

where 7 is such a polygonal path from a fixed point « to (x,y). Note that u is well-defined by
the independence of choice of path . O

Example. Let f: R? — R? be continuous, and let v be a smooth curve in R%. We may

denote
/f-ds:/fld:c+f2dy.
il Y
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3.2 Multiple integrals

Definition 3.3. Let f: [a1,b;1] X [a2,b2] — R be continuous. Now, let P be a partition of
the rectangular domain into n x n sub-rectangles, and define

M;; = sup f(z,y), By — inf f(z,y).

@i, it1] X [Y;,Y5+1] [zi, it 1] X[y ,Y5+1]

We also define,

U(f,P)=> Miy(wi—xi)(yj —yi—1),  L(HP) =D mij(@i — zi1) (Y5 — yj1)-
ij ij

Finally define the upper and lower sums
U(f) = S U(f.,P), L(f)= S L(f,P).

Then, f is Riemann integrable if U(f) = L(f), and this integral is denoted by

/ f
[a1 ,bl] X [a2 ,bg]

Remark. This definition naturally extends to integrals over any k-cell.

Definition 3.4. A measure zero set £ C R™ is such that given any ¢ > 0, there exists a
countable collection of rectangles {A4;} such that their union contains F, and the sum of
their volumes is less than e.

Ezxample. Any countable subset of R has measure zero.

Example. Any line in R?, plane in R3, etc. has measure zero.

Lemma 3.3. The countable union of measure zero sets has measure zero.

Theorem 3.4. A bounded function f: A — R where A C R" is a rectangle is integrable if
and only if for every € > 0, there exists a partition P of A such that U(f, P)— L(f, P) < e.

Theorem 3.5. Let f: A — R be bounded, where A C R™ is a rectangle. Then, f is
Riemann integrable if and only if its set of discontinuities has measure zero.
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Theorem 3.6. Let f: Ay x A5 — R be continuous, where Ay C R™ and Ay C R™ are closed
rectangles. Then, we can write

[ o= [ ([ sena)a=[ ([ sena)

Theorem 3.7 (Green’s theorem). Let v be a smooth simple closed curve in R? oriented
counter-clockwise, and let ) be the region enclosed by ~v. If p,q: @ — R have continuous

partial derivatives, then
/pdx—I—qdy:// <8q — 8p) dx dy.
p o \O0x Oy

Ezample. Let v: [0,27] — R, v(t) = (cost,sint). Then, v enclosed the unit disc in R2. To
calculate its area, we can set p =0, ¢ = z, giving

2w
//dwdy:/ cos’t dt = .
Q 0

Another option is to set p = —y/2, ¢ = x/2, giving

1 2m 1 2w
// da:dy:/ cos2t+sin2tdt:/ dt = .
Q 2 Jo 2 Jo

Theorem 3.8 (Change of variables). Let U C R™ be an open set, and get g: U — R™ be a
bijective, continuously differentiable map such that det Dg(x) #0 on U. If f: g(U) — R is

integrable, then
[ #= sogldetpy
9(U) U

Definition 3.5. For S C A C R"™ where A is a rectangle, we can define

/SfZ/Af-Xs.

Here, xs is the characteristic function of S, defined as

() 1, ifxes,
xTr) =
xS 0, iftzgs.

Lemma 3.9. For any set A C R™, the characteristic function x4 is continuous precisely
on R"\ 0A, and discontinuous on 0A.
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Definition 3.6. Let A C R", and let {U,} be an open cover of A. Suppose that {1} are
smooth functions defined on a neighbourhood of A, satisfying the following properties.

1. 0 <1, <1on A.

2. For each x € A, there exists a neighbourhood U, of x such that only finitely many
1, are non-zero on U,.

3. > g%a=1o0n A
4. Fach support of 9, is contained in Ul,.

Remark. The support of a function is the closure of the set on which it is non-zero.

The collection {1, } is called a partition of unity subordinate to the open cover {U,}.

Theorem 3.10. For every set A C R™ and every locally finite open cover {Uy} of A, there
exists a partition of unity subordinate to that open cover.
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