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1 Euclidean spaces

1.1 Rn as a vector space

We are familiar with the vector space Rn, with the standard inner product

〈x,y〉 = x1y1 + · · ·+ xnyn.

The standard norm is defined as

‖x− y‖2 = 〈x− y,x− y〉 =
n∑

k=1

(xi − yi)
2.
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Exercise 1.1. What are all possible inner products on Rn?
Solution. Note that an inner product is a bilinear, symmetric map such that 〈x,x〉 ≥ 0, and
〈x,x〉 = 0 if and only if x = 0. Thus, an product map on Rn is completely and uniquely
determined by the values 〈ei, ej〉 = aij . Let A be the n × n matrix with entries aij . Note
that A is a real symmetric matrix with positive entries. Now,

〈x, ej〉 = x1a1j + · · ·+ xnanj = x>aj ,

where aj is the jth column of A. Thus,

〈x,y〉 = x>a1y1 + · · ·+ x>anyn = x>Ay.

Furthermore, any choice of real symmetric A with positive entries produces an inner prod-
uct.

Theorem 1.1 (Cauchy-Schwarz). Given two vectors v,w ∈ Rn, we have

|〈v,w〉| ≤ ‖v‖‖w‖.

Proof. This is trivial when w = 0. When w 6= 0, set λ = 〈v,w〉/‖w‖2. Thus,

0 ≤ ‖v − λw‖2 = ‖v‖2 − 2λ〈v,w〉+ λ2‖w‖2.

Simplifying,

0 ≤ ‖v‖2 − |〈v,w〉|2

‖w‖2
.

This gives the desired result. Clearly, equality holds if and only if v = λw.

Theorem 1.2 (Triangle inequality). Given two vectors v,w ∈ Rn, we have

‖v +w‖ ≤ ‖v‖+ ‖w‖.

Proof. Write

‖v +w‖2 = ‖v‖2 + 2〈v,w〉+ ‖w‖2 ≤ ‖v‖2 + 2|〈v,w〉|+ ‖w‖2.

Applying Cauchy-Schwarz gives

‖v +w‖2 ≤ (‖v‖+ ‖w‖)2.

Equality holds if and only if v = λw for λ ≥ 0.

1.2 Rn as a metric space

Our previous observations allow us to define the standard metric on Rn, seen as a point set.

d(x,y) = ‖x− y‖.
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Definition 1.1. For any δ > 0, the set

Bδ(x) = {y ∈ Rn : d(x,y) < δ}

is called the open ball centred at x ∈ Rn with radius δ. This is also called the δ neighbour-
hood of x.

Definition 1.2. A set U is open in Rn if for every x ∈ U , there exists an open ball
Bδ(x) ⊂ U .
Remark. Every open ball in Rn is open.
Remark. Both ∅ and Rn are open.

Definition 1.3. A set F is closed in Rn if its complement Rn \ F is open in Rn.
Remark. Both ∅ and Rn are closed.
Remark. Finite sets in Rn are closed.

Theorem 1.3. Unions and finite intersections of open sets are open.

Corollary 1.3.1. Intersections and finite unions of closed sets are closed.

Definition 1.4. An interior point x of a set S ⊆ Rn is such that there is a neighbourhood
of x contained within S.

Example. Every point in an open set is an interior point by definition. The interior of a set
is the largest open set contained within it.

Definition 1.5. An exterior point x of a set S ⊆ Rn is an interior point of the complement
Rn \ S.

Definition 1.6. A boundary point of a set is neither an interior point, nor an exterior
point.

Example. The boundary of the unit open ball B1(0) ⊂ Rn is the sphere Sn−1.
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Definition 1.7. A limit point x of a set S ⊆ Rn is such that every neighbourhood of x
contains a point from S other than itself.

Definition 1.8. The closure of a set S ⊆ Rn is the union of S and its limit points.
Remark. The closure of a set is the smallest closed set containing it.

Lemma 1.4. Every open set in Rn is a union of open balls.

Proof. Let U ⊆ Rn be open. Thus, for every x ∈ Rn, we can choose δx > 0 such that
Bδx(x) ⊂ U . The union of all such open balls is precisely the set U .

1.3 Rn as a topological space

Definition 1.9. A topology on a set X is a collection τ of subsets of X such that

1. ∅ ∈ τ

2. X ∈ τ

3. Arbitrary union of sets from τ belong to τ .
4. Finite intersections of sets from τ belong to τ .

Sets from τ are called open sets.

Example. The Euclidean metric induces the standard topology on Rn.

Example. The discrete topology on a set X is one where every singleton set is open. This
is the topology induced by the discrete metric,

ddiscrete : X ×X → R, (x, y) 7→

{
0, if x = y,

1, if x 6= y.

Example. Let X be an infinite set. The collection of sets consisting of ∅ along with all sets
A such that X \A is finite is a topology on X. This is called the Zariski topology.

Example. Consider the set of real numbers, and let τ be the collection ∅, R, and all intervals
(−x,+x) for x > 0. This constitutes a topology on R, very different from the usual one.

This topology cannot be induced by a metric; it is not metrizable.
Consider the constant sequence of zeros. In this topology (R, τ), this sequence converges

to every point in R. Given any ` ∈ R, the open neighbourhoods of ` are precisely the sets
R and the open intervals (−x,+x) for x > |`|. The tail of the constant sequence of zeros
is contained within every such neighbourhood of `, hence 0 → `. Indeed, the element zero
belongs to every open set apart from ∅ in this topology.
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Definition 1.10. A topological space is called Hausdorff if for every distinct x, y ∈ X,
there exist disjoint neighbourhoods of x and y.

Example. Every metric space is Hausdorff. Given distinct x, y in a metric space (X, d), set
δ = d(x, y)/3 and consider the open balls Bδ(x) and Bδ(y).

Lemma 1.5. Every convergent sequence in a Hausdorff space has exactly one limit.

Proof. Consider a sequence {xn}n∈N, and suppose that it converges to distinct x1 and x2.
Construct disjoint neighbourhoods U1 and U2 around x1 and x2. Now, convergence implies that
both U1 and U2 contain the tail of {xn}, which is impossible since they are disjoint and hence
contain no elements in common.

Definition 1.11. Given a topological space (X, τ) and a subset Y ⊆ X, the collection of
sets U ∩Y where U ∈ τ is a topology τY on Y . We call this collection the subspace topology
on Y , induced by the topology on X.

1.4 Compact sets in Rn

Definition 1.12. A set K ⊂ X in a topological space is compact if every open cover of
K has a finite sub-cover. That is, for every collection if {Uα}α∈A of open sets such that K
is contained in their union, there exists a finite sub-collection Uα1 , . . . , Uαk

such that K is
also contained in their union.

Example. All finite sets are compact.

Example. Given a convergent sequence of real numbers xn → x, the collection {xn}n∈N∪{x}
is compact.

Example. In Rn, compact sets are precisely those sets which are closed and bounded. This
is the Heine-Borel Theorem.

Theorem 1.6. The closed intervals [a, b] ⊂ R are compact.
Remark. This can be extended to show that any k-cell [a1, b1] × · · · × [an, bn] ⊂ Rn is
compact.

Proof. Let {Uα}α∈A be an open cover of [a, b], and suppose that I1 = [a, b] has no finite sub-
cover. Then, at least one of the intervals [a, (a+ b)/2] and [(a+ b)/2, b] must not have a finite
sub-cover; pick one and call it I2. Similarly, one of the halves of I2 must not have a finite
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sub-cover; call it I3. In this process, we generate a sequence of closed intervals I1 ⊃ I2 ⊃ . . . ,
none of which have a finite sub-cover. The length of each interval is given by

|In| = 2−n+1‖b− a‖ → 0.

Now, pick a sequence of points {xn} where each xn ∈ In. Then, {xn} is a Cauchy sequence. To
see this, given any ε > 0, we can find sufficiently large n0 such that 2−n0+1‖b − a‖ < ε. Thus,
xn ∈ In ⊂ In0 for all n ≥ n0, which means that for any m,n ≥ n0, we have xm, xn ∈ In0 forcing1

‖xm − xn‖ ≤ |In0 | = 2−n0+1‖b− a‖ < ε.

From the completeness of R, this sequence must converge in R, specifically in [a, b]. Thus,
xn → x for some x ∈ [a, b]. It can also be seen that the limit x ∈ In for all n ∈ N; if not,
say x /∈ In0 , then x ∈ [a, b] \ In0 which is open, hence there is an open interval such that
(x− δ, x+ δ) ∩ In0 = ∅. However, In0 contains all xn≥n0 , thus this δ-neighbourhood of x would
miss out a tail of {xn}.

Now, pick the open set U ∈ {Uα} which covers the point x. Thus, x ∈ U so U contains
some non-empty open interval (x− δ, x+ δ) around x. Choose n0 such that 2−n0+1‖b− a‖ < δ;
this immediately gives In0 ⊆ (x− δ, x+ δ) ⊂ U . This contradicts that fact that In0 has no finite
sub-cover from {Uα}, completing the proof.

Remark. The fact that Cauchy sequences in Rn converge isn’t immediately obvious; it is a
consequence of the completeness of Rn. Start by noting that R has the Least Upper Bound
property, from which the Monotone Convergence Theorem follows; every monotonic, bounded
sequence of reals converges. It can also be shown that any sequence of reals with contain a
monotone subsequence, from which it follows that every bounded sequence contains a convergent
subsequence (Bolzano-Weierstrass). Finally, it can be shown that if a subsequence of a Cauchy
sequence converges, then the entire sequence also converges to the same limit, giving us the
desired result for R. For sequence in Rn, we may apply this coordinate-wise to obtain the
result.

Lemma 1.7. Compact sets in Rn are closed and bounded.

Proof. Consider a compact set K ⊂ Rn. Let x ∈ Rn \ K, and let y ∈ K. Since x 6= y, we
choose open balls Uy around y and Vy around x such that Uy ∩ Vy = ∅. Repeating this for all
y ∈ K, we generate an open cover {Uy} of K consisting of open balls. The compactness of K
guarantees that this has a finite sub-cover, i.e. there is a finite set Y such that the collection
{Uy}y∈Y covers X. As a result, the finite intersection of all Vy for y ∈ Y is contained within
Rn \K. Thus, x is in the exterior of K. Since x was chosen arbitrarily from Rn \K, we see
that K is closed.

Now, consider the open cover {B1(x)}x∈K , and extract a finite sub-cover of unit open balls.
The distance between any two points in K is at most the maximum distance between the centres
of any two balls in our sub-cover, plus two.

Lemma 1.8. The intersection of a closed set and a compact set is compact.

1If x1, x2 ∈ [a, b] with x1 < x2, note that a ≤ x1 < x2 ≤ b, so

|x2 − x1| = x2 − x1 ≤ b− a.
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Proof. Let F ⊆ Rn be closed and let K ⊆ Rn be compact. Suppose that the open cover {Uα} of
F ∩K has no finite sub-cover. Now the complement U = F c is open in Rn, hence the collection
{Uα}∪{U} is an open cover of K, and hence must admit a finite sub-cover of K. In particular,
this must be a finite sub-cover of F ∩K. However, we can remove the set U from this sub-cover
since it shares no element with F ∩K; as a result, our sub-cover must be a finite sub-collection
of sets Uα, contradicting our assumption. This shows that F ∩K is compact.

Lemma 1.9 (Finite intersection property). Let {Kα} be a collection of compact sets in Rn

which have the property that any finite intersection of them is non-empty. Then,⋂
α

Kα 6= ∅.

Proof. Suppose to the contrary that the intersection of all Kα is empty. Fix an index β, and
note that no element of Kβ lies in every Kα. Set Jα = Kc

α, whence the collection {Jα : α 6= β}
is an open cover of Kβ. This must admit a finite sub-cover {Jα1 , . . . , Jαk

} of Kβ. Thus, we
must have

Kc
β ∪ Jα1 ∪ · · · ∪ Jαk

= Rn.

This immediately gives the contradiction

Kβ ∩Kα1 ∩ · · · ∩Kαk
= ∅.

Theorem 1.10 (Heine-Borel). Compact sets in Rn are precisely those that are closed and
bounded.

Proof. Given a compact set in Rn, we have already shown that it must be closed and bounded.
Next, if F ⊂ Rn is closed and bounded, it can be enclosed within a k-cell which we know is
compact. Thus, F is the intersection of the closed set F and the compact k-cell, proving that
F must be compact.

1.5 Continuous maps

Definition 1.13. A map f : X → Y is continuous if the pre-image of every open set from
Y is open in X.

Lemma 1.11. A map f : X → Y is continuous if the pre-image of every closed set from Y
is closed in X.

Theorem 1.12. The projection maps πi : Rn → R, x 7→ xi are continuous.

Proof. Let U ⊆ R be open; we claim that π−1
i (U) is open. Pick x ∈ π−1

i (U), and note that
πi(x) = xi ∈ U . Thus, there exists δ > 0 such that (xi − δ, xi + δ) ⊂ U . Now examine Bδ(x);
for any point y within this open ball, we have d(x,y) < δ hence

|xi − yi|2 ≤
n∑

k=1

(xk − yk)
2 = d(x,y)2 < δ2.
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In other words, πi(y) = yi ∈ (xi − δ, xi + δ), hence πiBδ(x) ⊆ (xi − δ, xi + δ) ⊂ U . Thus, given
arbitrary x ∈ π−1

i (U), we have found an open ball Bδ(x) ⊂ π−1
i (U).

Lemma 1.13. Finite sums, products, and compositions of continuous functions are con-
tinuous.

Corollary 1.13.1. A function f : [a, b] → Rn is continuous if and only if the components,
πi ◦ f , are continuous.

Theorem 1.14. All polynomial functions of the coordinates in Rn are continuous.

Example. The unit sphere Sn−1 ⊂ Rn is closed. It is by definition the pre-image of the
singleton closed set {1} under the continuous map

x 7→ x21 + · · ·+ x2n.

Theorem 1.15. The continuous image of a compact set is compact.

Proof. Let f : X → Y be continuous, where Y is the image of the compact set X, and let
{Uα} be an open cover of Y . Then, the collection {f−1(Uα)} is an open cover of X. Using the
compactness of X, extract a finite sub-cover f−1(Uα1), . . . , f

−1(Uαk
) of X. It follows that the

collection Uα1 , . . . , Uαk
is a finite sub-cover of Y .

1.6 Connectedness

Definition 1.14. Let X be a topological space. A separation of X is a pair U, V of
non-empty disjoint open subsets such that X = U ∪ V .

Definition 1.15. A connected topological space is one which cannot be separated.

Lemma 1.16. A topological space X is connected if and only if the only sets which are
both open and closed are ∅ and X.

Example. The intervals (a, b) ⊂ R are connected. To see this, suppose that U , V is a
separation of (a, b). Pick x ∈ U , y ∈ V , and without loss of generality let x < y. Define
S = [x, y] ∩ U , and set c = supS. It can be argued that c ∈ (a, b), but c /∈ U , c /∈ V , using
the properties of the supremum.
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Theorem 1.17. The continuous image of a connected set is connected.

Proof. Let f be a continuous map on the connected set X, and let Y be the image of X. If U ,
V is a separation of Y , then it can be shown that γ−1(U), γ−1(V ) constitutes a separation of
X, which is a contradiction.

Definition 1.16. A path γ joining two points x, y ∈ X is a continuous map γ : [a, b] → X
such that γ(a) = x, γ(b) = y.

Definition 1.17. A set in X is path connected if given any two distinct points in X, there
exists a path joining them.

Lemma 1.18. Every path connected set is connected.

Proof. Let X be path connected, and suppose that U , V is a separation of X. Then, pick
x ∈ U , y ∈ V , and choose a path γ : [0, 1] → X between x and y. The sets f−1(U) and f−1(V )
separate the interval [0, 1], which is a contradiction.

Example. All connected sets are not path connected. Consider the topologist’s sine curve,{(
x, sin

1

x

)
: 0 < x ≤ 1

}
∪ {(0, 0)}.

Definition 1.18. The ε neighbourhood of a set K in a metric space X is defined as⋃
a∈K

Bε(a) =
⋃
a∈K

{x ∈ X : d(x, a) < ε}.

Exercise 1.2. Let K ⊆ Rn be compact, and define f : Rn → R,

f(x) = dist(x,K) = inf
a∈K

d(x, a).

Show that f is continuous on Rn, and f−1({0}) = K.

Exercise 1.3. If K ⊆ Rn is compact and K ∩ L = ∅, then

dist(K,L) = inf
a∈K

dist(a, L) > 0.
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Exercise 1.4. If K ⊆ Rn is compact and U is an open set containing K, then there exists
ε > 0 such that U contains the ε neighbourhood of K.

Is the compactness of K necessary?

2 Differential calculus

2.1 Differentiability

Definition 2.1. Let f : (a, b) → Rn, and let fi = πi ◦ f be its components. Then, f is
differentiable at t0 ∈ (a, b) if the following limit exists.

f ′(t0) = lim
h→0

f(t0 + h)− f(t0)

h
.

Remark. The vector f ′(t0) represents the tangent to the curve f at the point f(t0). The
full tangent line is the parametric curve f(t) + f ′(t0)(t− t0).

Definition 2.2. Let U ⊆ Rn be open, and let f : U → Rm. Then, f is differentiable at
x ∈ U if there exists a linear transformation λ : Rn → Rm such that

lim
h→0

f(x+ h)− f(x)− λh

‖h‖
= 0.

The derivative of f at x is denoted by λ = Df(x).
Remark. In a neighbourhood of x, we may approximate

f(x+ h) ≈ f(x) +Df(x)(h).

Remark. The statement that this quantity goes to zero means that each of the m compo-
nents must also go to zero. For each of these limits, there are n axes along which we can let
h→ 0. As a result, we obtain m×n limits, which allow us to identify the m×n components
of the matrix representing the linear transformation λ (in the standard basis). These are
the partial derivatives of f , and the matrix of λ is the Jacobian matrix of f evaluated at x.

Example. Let T : Rn → Rm be a linear map. By choosing λ = T , we see that T is
differentiable everywhere, with DT (x) = T for every choice of x ∈ Rn. This is made
obvious by the fact that the best linear approximation of a linear map at some point is the
map itself; indeed, the ‘approximation’ is exact.

Lemma 2.1. If f : Rn → Rm is differentiable at x ∈ Rn, with derivative Df(x), then

1. f is continuous at x.
2. The linear transformation Df(x) is unique.
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Proof. We prove the second part. Suppose that λ, µ satisfy the requirements for Df(x); it can
be shown that limh→0(λ−µ)h/‖h‖ = 0. Now, if λv 6= µv for some non-zero vector v ∈ Rn, then

λv − µv =
λ(tv)− µ(tv)

‖tv‖
· ‖v‖ → 0,

a contradiction.

2.2 Chain rule

Exercise 2.1. Let T : Rn → Rm be a linear transformation. Then, there exists M > 0
such that for all x ∈ Rn, we have

‖Tx‖ ≤M‖x‖.

Solution. Set vi = T (ei) where ei are the standard unit basis vectors of Rn. Then,

‖Tx‖ = ‖
∑
i

xivi‖ ≤
∑
i

‖xivi‖ ≤ max ‖vi‖
∑
i

|xi|.

Since each |xi| ≤ ‖x‖, set M = nmax ‖vi‖ and write

‖Tx‖ ≤ max ‖vi‖
∑
i

|xi| ≤ max ‖vi‖ · n‖x‖ =M‖x‖.

Theorem 2.2. Let f : Rn → Rm, g : Rm → Rk where f is differentiable at a ∈ Rn and g
is differentiable at f(a) ∈ Rm. Then, g ◦ f is differentiable, with D(g ◦ f)(a) = Dg(f(a)) ◦
Df(a). Note that this means that the Jacobian matrices simply multiply.

Proof. Set b = f(a) ∈ Rm, λ = Df(a), µ = Dg(f(a)). Define

ϕ : Rn → Rm, ϕ(x) = f(x)− f(a)− λ(x− a),

ψ : Rm → Rk, ψ(y) = g(y)− g(b)− µ(y − b).

We claim that
lim
x→a

g ◦ f(x)− g ◦ f(a)− µ ◦ λ(x− a)

‖x− a‖
= 0.

Write the numerator as

g ◦ f(x)− g ◦ f(a)− µ ◦ λ(x− a) = ψ(f(x)) + µ(ϕ(x)).

Note that
lim
x→a

ϕ(x)

‖x− a‖
= 0, lim

y→b

ψ(y)

‖y − b‖
= 0.

Thus, find M > 0 such that ‖µ(ϕ(x))‖ ≤ ‖ϕ(x)‖ for all x ∈ Rn, hence

lim
x→a

‖µ(ϕ(x))‖
‖x− a‖

≤ lim
x→a

M‖ϕ(x)‖
‖x− a‖

= 0.

Now write
lim

f(x)→b

ψ(f(x))

‖f(x)− b‖
= 0,
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hence for any ε > 0, there is a neighbourhood of b on which

‖ψ(f(x))‖ ≤ ε‖f(x)− b‖ = ε‖ϕ(x) + λ(x− a)‖.

Apply the triangle inequality and find M ′ > 0 such that

‖ψ(f(x))‖ ≤ ε‖ϕ(x)‖+ εM ′‖x− a‖.

Thus,
lim
x→a

‖ψ(f(x))‖
‖x− a‖

≤ lim
x→a

ε‖ϕ(x)‖
‖x− a‖

+ εM ′ = εM ′.

Since ε > 0 was arbitrary, this limit is zero, completing the proof.

2.3 Partial derivatives

Definition 2.3. Let U ⊆ Rn be open, and let f : U → R. The partial derivative of f with
respect to the coordinate xj at some a ∈ U is defined by the following limit, if it exists.

∂f

∂xj
(a) = lim

h→0

f(a+ hej)− f(a)

h
.

Lemma 2.3. If f : U → R is differentiable at a point a ∈ Rn, then

Df(a)(x1, . . . , xn) = x1
∂f

∂x1
(a) + · · ·+ xn

∂f

∂xn
(a).

Example. Consider

f : R2 → R, (x, y) 7→

{
xy/(x2 + y2), if (x, y) 6= (0, 0),

0, if (x, y) = (0, 0).

Note that f is not differentiable at (0, 0); it is not even continuous there. However, both
partial derivatives of f exist at (0, 0).

Lemma 2.4. If f : Rn → Rm is differentiable at a ∈ Rn, then the matrix representation of
Df(a) in the standard basis is given by

[Df(a)] =

[
∂fi
∂xj

(a)

]
ij

.
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Lemma 2.5. Let f : Rn → Rm be differentiable at a ∈ Rn, and let g : Rm → Rk be
differentiable at f(a) ∈ Rm. Then, the matrix representation of D(g ◦ f)(a) in the standard
basis is the product

[D(g ◦ f)(a)] = [Dg(f(a))][Df(a)] =

[
m∑
`=1

∂gi
∂y`

∂f`
∂xj

]
ij

.

In other words,
∂

∂xj
(g ◦ f)i(a) =

m∑
`=1

∂gi
∂y`

(f(a))
∂f`
∂xj

(a).

Example. Let f : R2 → R be differentiable, and let Γ(f) = {(x, y, f(x, y)) : x, y ∈ R} be the
graph of f . Now, let γ : [−1, 1] → Γ(f) be a differentiable curve, represented by

γ(t) = (g(t), h(t), f(g(t), h(t))).

Then, we can compute the derivative

γ′(a) =

(
g′(a), h′(a), g′(a)

∂f

∂x
+ h′(a)

∂f

∂y

∣∣∣
(g(a),h(a))

)

Exercise 2.2. Consider the inner product map, 〈·, ·〉 : Rn×Rn → R. What is its derivative?
Solution. We treat the inner product as a map g : R2n → R, which acts as

〈x,y〉 ∼= g(x1, . . . , xn, y1, . . . , yn) = x1y1 + · · ·+ xnyn.

Now, note that
∂g

∂xi
= yi,

∂g

∂yi
= xi.

Thus,

Dg(a, b)(x,y) =

n∑
i=1

xi
∂g

∂xi
(a, b) +

n∑
i=1

yi
∂g

∂yi
(a, b)

=
n∑

i=1

xibi +
n∑

i=1

yiai

= 〈x, b〉+ 〈y,a〉.

In other words, the matrix representation of the derivative of the inner product map at the
point (a, b) is given by [b> a>].
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Exercise 2.3. Let γ : R → Rn be a differentiable curve. What is the derivative of the real
map t 7→ ‖γ(t)‖2?
Solution. We write this map as t 7→ 〈γ(t), γ(t)〉. Consider the scheme

R → R2n → R, t 7→
[
γ(t)
γ(t)

]
7→ 〈γ(t), γ(t)〉.

Pick a point t ∈ R, whence the derivative of the map at t is

[
γ(t)> γ(t)>

] [γ′(t)
γ′(t)

]
= 2〈γ(t), γ′(t)〉.

Remark. Consider the surface Sn−1 ⊂ Rn, and pick an arbitrary differentiable curve γ : R →
Sn−1. Now, the tangent vector γ′(t) is tangent to the sphere Sn−1 at any point γ(t). We
claim that this tangent drawn at γ(t) is always perpendicular to the position vector γ(t).
This is made trivial by our exercise: the map t 7→ ‖γ(t)‖2 = 1 is a constant map since γ is
a curve on the unit sphere. This means that it has zero derivative, forcing 〈γ(t), γ′(t)〉 = 0.

2.3.1 Directional derivatives

Definition 2.4. Let U ⊆ Rn be open, and let f : U → R. The directional derivative of f
along a direction v ∈ Rn at a point a ∈ U is defined by the following limit, if it exists.

∇vf(a) = lim
h→0

f(a+ hv)− f(a)

h
.

Example. Consider

f : R2 → R, (x, y) 7→

{
x3/(x2 + y2), if (x, y) 6= (0, 0),

0, if (x, y) = (0, 0).

Note that f is not differentiable at (0, 0). However, all directional derivatives derivatives of
f exist at (0, 0). Indeed, consider a direction (cos θ, sin θ), and examine the limit

lim
t→0

1

t
[f(t cos θ, t sin θ)− f(0, 0)] = cos3 θ.

Definition 2.5. Let f : Rn → R be differentiable. The gradient of f is defined as the map

∇f : Rn → Rn, x 7→
[
∂f

∂xi
(x)

]
i

.

Remark. The gradient at a point x ∈ Rn is thought of as a vector. In contrast, the derivative
is thought of as a linear transformation. Otherwise, we see that ∇f(x) = [Df(x)].

14 Updated on November 30, 2021



MA3101: Analysis III 2 DIFFERENTIAL CALCULUS

Definition 2.6. Let C1(Rn) be the set of real-valued differentiable functions on Rn. Fix a
point a ∈ Rn, then fix a tangent vector v ∈ Rn. Then, the map

∇v : C
1(Rn) → R, f 7→ Df(a)(v)

is a linear functional. The quantity ∇vf is called the directional derivative of f in the
direction v at the point a.
Remark. We can represent ∇v as the operator

∇v(·) = D(·)(a)(v) =
∑
i

vi
∂

∂xi

∣∣∣
a
= v · ∇(·).

Lemma 2.6. The directional derivatives ∇v form a vector space called the tangent space,
attached to the point a ∈ Rn. This can be identified with the vector space Rn by the natural
map ∇v 7→ v. The standard basis can be informally denoted by the vectors

∇e1 ≡ ∂

∂x1
, . . . ,∇en ≡ ∂

∂xn
.

2.3.2 Differentiation on manifolds *

Definition 2.7. A homeomorphism is a continuous, bijective map whose inverse is also
continuous.

Lemma 2.7. Let f : Rn → R be continuous. Denote the graph of f as

Γ(f) = {(x, f(x)) : x ∈ Rn}.

Then, Γ(f) is a smooth manifold.

Proof. Consider the homeomorphism

ϕ : Γ(f) → Rn, (x, f(x)) 7→ x.

This is clearly bijective, continuous (restriction of a projection map), with a continuous inverse
(from the continuity of f). Call this homeomorphism ϕ a coordinate map on Γ(f).

Definition 2.8. Let f : M → R where M is a smooth manifold, with a coordinate map
ϕ : M → Rn. We say that f is differentiable at a point a ∈ M if f ◦ ϕ−1 : Rn → R is
differentiable at ϕ(a).
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Definition 2.9. Let f : M → R where M is a smooth manifold, let ϕ : M → Rn be a
coordinate map, and let a ∈M . Let γ : R →M be a curve such that γ(0) = a, and further
let γ be differentiable in the sense that ϕ ◦ γ : R → Rn is differentiable. The directional
derivative of f at a along γ is defined as

d

dt
f(γ(t))

∣∣∣
t=0

= lim
h→0

f(γ(t+ h))− f(γ(t))

h

∣∣∣
t=0

.

Note that we are taking the derivative of f ◦ γ : R → R in the conventional sense.

Lemma 2.8. Let γ1 and γ2 be two curves in M such that γ1(0) = γ2(0) = a, and

d

dt
ϕ ◦ γ1(t)

∣∣∣
t=0

=
d

dt
ϕ ◦ γ2(t)

∣∣∣
t=0

.

In other words, γ1 and γ2 pass through the same point a at t = 0, and have the same
velocities there. Then, the directional derivatives of f at a along γ1 and γ2 are the same.

Definition 2.10. Let M be a smooth manifold, and let a ∈ M . Consider the following
equivalence relation on the set of all curves γ in M such that γ(0) = a.

γ1 ∼ γ2 ⇐⇒ d

dt
ϕ ◦ γ1(t)

∣∣∣
t=0

=
d

dt
ϕ ◦ γ2(t)

∣∣∣
t=0

.

Each resultant equivalence class of curves is called a tangent vector at a ∈M . Note that all
these curves in a particular equivalence class pass through a with the same velocity vector.

The collection of all such tangent vectors, i.e. the space of all curves through a modulo
the equivalence relation which identifies curves with the same velocity vector through a, is
called the tangent space to M at a, denoted TaM .
Remark. Each tangent vector v ∈ TaM acts on a differentiable function f : M → R yielding
a (well-defined) directional derivative at a.

v : C1(M) → R, f 7→ d

dt
f(γv(t))

∣∣∣
t=0

.

Thus, the tangent space represents all the directions in which taking a derivative of f makes
sense.
Remark. The tangent space TaM is a vector space. Upon fixing f , the map Df(a) : TaM →
R, v 7→ vf(a) is a linear functional on the tangent space.
Remark. Given a tangent vector v ∈ TaM , it can be identified with its corresponding
velocity vector in Rn. Thus, the tangent space TaM can be identified with the geometric
tangent plane drawn to the manifold M at the point a.

2.4 Mean value theorem

Consider a differentiable function f : Rn → R, and fix a ∈ Rn. Define the functions

gi : R → R, gi(x) = f(a1, . . . , ai−1, x, ai+1, . . . , an).
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Then, each gi is differentiable, with

g′i(x) =
∂f

∂xi
(a1, . . . , ai−1, x, ai+1, . . . , an).

By applying the Mean Value Theorem on some interval [c, d], we can find α ∈ (c, d) such that
gi(d)− gi(c) = g′i(α)(d− c). In other words,

f(. . . , d, . . . )− f(. . . , c, . . . ) =
∂f

∂xi
(. . . , α, . . . )(d− c).

Theorem 2.9. Let f : Rn → Rm and a ∈ Rn. Then, f is differentiable at a if all the partial
derivatives ∂f/∂xj exist in a neighbourhood of a and are continuous at a.

Proof. Without loss of generality, let m = 1. We claim that

lim
h→0

1

‖h‖
‖f(a+ h)− f(a)−

n∑
i=0

∂f

∂xi
(a)hi‖ = 0.

Examine

f(a+ h)− f(a) = f(a1 + h1, . . . , an + hn)− f(a1, . . . , an)

= f(a1 + h1, . . . , an + hn)− f(a1 + h1, . . . , an−1 + hn−1, an)+

f(a1 + h1, . . . , an−1 + hn−1, an)− f(a1 + h1, . . . , an−1, an)+

...
f(a1 + h1, a2, . . . , an)− f(a1, . . . , an)

=
∂f

∂xn
(cn)hn + · · ·+ ∂f

∂x1
(c1)h1.

The last step follows from the Mean Value Theorem. As h→ 0, each ci → a. Thus,

1

‖h‖
‖f(a+ h)− f(a)−

n∑
i=0

∂f

∂xi
(a)hi‖ =

1

‖h‖
‖

n∑
i=0

(
∂f

∂xi
(ci)−

∂f

∂xi
(a)

)
hi‖

≤
n∑

i=0

∣∣∣∣ ∂f∂xi (ci)− ∂f

∂xi
(a)

∣∣∣∣ |hi|‖h‖

≤
n∑

i=0

∣∣∣∣ ∂f∂xi (ci)− ∂f

∂xi
(a)

∣∣∣∣ .
Taking the limit h → 0, observe that ∂f/∂xi(ci) → ∂f/∂xi(a) by the continuity of the partial
derivatives, completing the proof.

Corollary 2.9.1. All polynomial functions on Rn are differentiable.

Theorem 2.10. Let f : Rn → R be differentiable with continuous partial derivatives, and
let a ∈ Rn be a point of local maximum. Then, Df(a) = 0.

Proof. We need only show that each
∂f

∂xi
(a) = 0.

This must be true, since a is also a local maximum of each of the restrictions gi as defined
earlier.
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2.5 Inverse and implicit function theorems

Theorem 2.11 (Inverse function theorem). Let f : Rn → Rn be continuously differentiable
on a neighbourhood of a ∈ Rn, and let det(Df(a)) 6= 0. Then, there exist neighbourhoods
U of a and W of f(a) such that the restriction f : U →W is invertible. Furthermore, f−1

is continuous on U and differentiable on U .

Lemma 2.12. Consider a continuously differentiable function f : Rn → R, and let M
denote the surface defined by the zero set of f . Then, M can be represented as the graph of
a differentiable function h : Rn−1 → R at those points where Df 6= 0.

Proof. Without loss of generality, suppose that ∂f/∂xn 6= 0 at some point a ∈ M . It can be
shown that the map

F : Rn → Rn, x 7→ (x1, x2, . . . , xn−1, f(x))

is invertible in a neighbourhood W of a, with a continuous and differentiable inverse of the form

G : Rn → Rn, u 7→ (u1, u2, . . . , un−1, g(u)).

Since F ◦G must be the identity map on W , we demand

(x1, x2, . . . , xn−1, f(x1, x2, . . . , xn−1, g(x))) = (x1, x2, . . . , xn−1, xn).

Thus, the zero set of f in this neighbourhood of a satisfies xn = 0, hence

f(x1, x2, . . . , xn−1, g(x1, x2, . . . , xn−1, 0)) = 0.

In other words, the part of the surface M in the neighbourhood of a is precisely the set of points

(x1, x2, . . . , xn−1, g(x1, x2, . . . , xn−1, 0)).

Simply set
h : Rn−1 → R, x 7→ g(x1, x2, . . . , xn−1, 0),

whence the surface M is locally represented by the graph of h.

Remark. Note that by using

f(x1, . . . , xn−1, h(x1, . . . , xn−1)) = 0

on the surface, we can use the chain rule to conclude that for all 1 ≤ i < n, we have

∂f

∂xi
(a) +

∂f

∂xn
(a)

∂h

∂xi
(a1, . . . , an−1) = 0.

Theorem 2.13 (Implicit function theorem). Let f : Rn × Rm → Rm be continuously dif-
ferentiable in an open set containing (a, b), with f(a, b) = 0. Let det(∂f j/∂xn+k(a, b)) 6= 0.
Then, there exists an open set U ⊂ Rn containing a, an open set V ⊂ Rm containing b, and
a differentiable function g : U → V such that f(x, g(x)) = 0.
Remark. The condition on the determinant can be rephrased as rankDf(a, b) = m.
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Theorem 2.14. Let f : Rn → R be continuously differentiable, and let M be the surface
defined by its zero set. Furthermore, let ∇f(a) 6= 0 for some a ∈M ; thus, M can be locally
represented by a graph on Rn−1. Then, ∇f(a) is normal to the tangent vectors drawn at a
to M ; in fact, the perpendicular space of ∇f(a) is precisely the tangent space TaM .

Proof. Consider a tangent vector drawn at a to M , represented by the differentiable curve
γ : R →M , γ(0) = a; note that we use the identification γ′(0) = v ∈ Rn. Then, calculate

d

dt
f(γ(t))

∣∣∣
t=0

= Df(γ(0))(γ′(0)) = Df(a)(v).

On the other hand, we have f(γ(t)) = 0 identically. Thus,

v · ∇f(a) = Df(a)(v) = 0.

2.6 Taylor’s theorem

Theorem 2.15. Let f : Rn → R have continuous second order partial derivatives. Then,

∂2f

∂xi∂xj
=

∂2f

∂xj∂xi
.

Theorem 2.16. Let f : R2 → R have continuous second order partial derivatives, and let
(x0, y0) ∈ R2. Then, there exists ε > 0 such that for all ‖(x− x0, y − y0)‖ < ε,

f(x, y) = f(x0, y0) +
∂f

∂x
(x− x0) +

∂f

∂y
(y − y0)

+
1

2

∂2f

∂x2
(x− x0)

2 +
1

2

∂2f

∂y2
(y − y0)

2

+
∂2f

∂x∂y
(x− x0)(y − x0) +R(x, y),

where as (x, y) → (x0, y0), the remainder term vanishes as

|R(x, y)|
‖(x− x0, y − y0)‖2

→ 0.

All partial derivatives here are evaluated at (x0, y0).

Proof. This follows from applying the Taylor’s Theorem in one variable to the real function
g : R → R, t 7→ f((1− t)(x0, y0) + t(x, y)).

2.7 Critical points and extrema

Definition 2.11. We say that a ∈ Rn is a critical point of f : Rn → R if all ∂f/∂xj = 0
there.
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Lemma 2.17. All points of extrema of a differentiable function are critical points.

Proof. We already know that Df(a) = 0 where a is either a point of maximum or minimum.

Example. In order to find a point of extrema of a C2-smooth function f : R2 → R, we first
identify a critical point (x0, y0). Next, we must find a neighbourhood of (x0, y0) which
contains no other critical points – to do this, apply Taylor’s Theorem. Indeed, we see that

f(x, y) = f(x0, y0) +A(x− x0)
2 + 2B(x− x0)(y − y0) + C(y − y0)

2 +R2.

For non-degeneracy of solutions, we demand AC −B2 6= 0, i.e. at (x0, y0), we want[
∂2f

∂x∂y

]2
6= ∂2f

∂x2
∂2f

∂y2
.

If AC−B2 > 0 and ∂2f/∂x2 > 0, then we have found a point of minima; if ∂2f/∂x2 < 0,
then we have found a point of maximum. If AC − B2 < 0, then we have found a saddle
point.

Example. Suppose that we wish to maximize the function f : R2 → R, given an equation
of constraint g = 0, where g : R2 → R. Using the method of Lagrange multipliers, we look
for solutions of the system {

∇f(x, y) + λ∇g(x, y) = 0,

g(x, y) = 0.

3 Integral calculus

3.1 Path integrals

Definition 3.1. A closed curve γ : [a, b] → Rn is closed if γ(a) = γ(b). It is called simple
if it has no self intersections.

Definition 3.2. Let p, q : U → R be continuous, where U ⊆ R2 is an open set, and let
γ : [a, b] → U be piecewise smooth, i.e. smooth on (a, b) at all but finitely many points.
Then, we define ∫

γ
p dx+ q dy =

∫ b

a
p(γ(t)) γ′1(t) + q(γ(t)) γ′2(t) dt.
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Lemma 3.1. Let γ : [a, b] → R2 be a smooth curve, and let ϕ : [c, d] → [a, b] be smooth, such
that ϕ(c) = a and ϕ(d) = b. Then, the composition γ : ϕ : [c, d] → R2 is a smooth curve,
and ∫

γ◦ϕ
p dx+ q dy =

∫ d

c

[
p(γ ◦ ϕ(s)) γ′1(ϕ(s)) + p(γ ◦ ϕ(s)) γ′2(ϕ(s))

]
ϕ′(s) ds.

By substituting the parameter ϕ(s) = t, ϕ′(s) ds = dt, we retrieve∫
γ◦ϕ

p dx+ q dy =

∫ b

a
p(γ(t)) γ′1(t) + q(γ(t)) γ′2(t) dt =

∫
γ
p dx+ q dy.

Theorem 3.2. Let p, q : U → R2 be continuous, and let γ : [a, b] → U be a smooth curve.
The integral ∫

γ
p dx+ q dy

depends only on the endpoints of γ if and only if there exists u : U → R such that

p =
∂u

∂x
, q =

∂u

∂y
.

In other words, we demand that that the vector field (p, q) be the gradient of u.

Proof. First suppose that there exists u such that ∇u = (p, q). Then,∫
γ
p dx+ q dy =

∫ b

a

∂u

∂x
(γ(t))γ′1(t) +

∂u

∂y
(γ(t))γ′2(t) dt.

The chain rule shows that this is simply∫ b

a

d

dt
u(γ(t)) dt = u(γ(b))− u(γ(a)).

Conversely, suppose that the given integral depends only on the endpoints of γ. Given two
points α, β ∈ U , we construct a path from α to β by travelling only along the axes. Pick
(x, y) ∈ U , and define u : U → R,

u(x, y) =

∫
γ
p dx+ q dy,

where γ is such a polygonal path from a fixed point α to (x, y). Note that u is well-defined by
the independence of choice of path γ.

Example. Let f : R2 → R2 be continuous, and let γ be a smooth curve in R2. We may
denote ∫

γ
f · ds =

∫
γ
f1 dx+ f2 dy.
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3.2 Multiple integrals

Definition 3.3. Let f : [a1, b1]× [a2, b2] → R be continuous. Now, let P be a partition of
the rectangular domain into n× n sub-rectangles, and define

Mij = sup
[xi,xi+1]×[yj ,yj+1]

f(x, y), yij = inf
[xi,xi+1]×[yj ,yj+1]

f(x, y).

We also define,

U(f, P ) =
∑
i,j

Mij(xi − xi−1)(yj − yj−1), L(f, P ) =
∑
i,j

mij(xi − xi−1)(yj − yj−1).

Finally define the upper and lower sums

U(f) = sup
P
U(f, P ), L(f) = sup

P
L(f, P ).

Then, f is Riemann integrable if U(f) = L(f), and this integral is denoted by∫
[a1,b1]×[a2,b2]

f

Remark. This definition naturally extends to integrals over any k-cell.

Definition 3.4. A measure zero set E ⊂ Rn is such that given any ε > 0, there exists a
countable collection of rectangles {Aj} such that their union contains E, and the sum of
their volumes is less than ε.

Example. Any countable subset of Rn has measure zero.

Example. Any line in R2, plane in R3, etc. has measure zero.

Lemma 3.3. The countable union of measure zero sets has measure zero.

Theorem 3.4. A bounded function f : A→ R where A ⊂ Rn is a rectangle is integrable if
and only if for every ε > 0, there exists a partition P of A such that U(f, P )−L(f, P ) < ε.

Theorem 3.5. Let f : A → R be bounded, where A ⊂ Rn is a rectangle. Then, f is
Riemann integrable if and only if its set of discontinuities has measure zero.
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Theorem 3.6. Let f : A1×A2 → R be continuous, where A1 ⊂ Rn and A2 ⊂ Rm are closed
rectangles. Then, we can write∫

A1×A2

f =

∫
A2

(∫
A1

f(x, y) dx

)
dy =

∫
A1

(∫
A2

f(x, y) dy

)
dx.

Theorem 3.7 (Green’s theorem). Let γ be a smooth simple closed curve in R2 oriented
counter-clockwise, and let Ω be the region enclosed by γ. If p, q : Ω → R have continuous
partial derivatives, then ∫

γ
p dx+ q dy =

∫∫
Ω

(
∂q

∂x
− ∂p

∂y

)
dx dy.

Example. Let γ : [0, 2π] → R, γ(t) = (cos t, sin t). Then, γ enclosed the unit disc in R2. To
calculate its area, we can set p = 0, q = x, giving∫∫

Ω
dx dy =

∫ 2π

0
cos2 t dt = π.

Another option is to set p = −y/2, q = x/2, giving∫∫
Ω
dx dy =

1

2

∫ 2π

0
cos2 t+ sin2 t dt =

1

2

∫ 2π

0
dt = π.

Theorem 3.8 (Change of variables). Let U ⊂ Rn be an open set, and get g : U → Rn be a
bijective, continuously differentiable map such that detDg(x) 6= 0 on U . If f : g(U) → R is
integrable, then ∫

g(U)
f =

∫
U
f ◦ g |detDg|

Definition 3.5. For S ⊂ A ⊂ Rn where A is a rectangle, we can define∫
S
f =

∫
A
f · χS .

Here, χS is the characteristic function of S, defined as

χS(x) =

{
1, if x ∈ S,

0, if x /∈ S.

Lemma 3.9. For any set A ⊂ Rn, the characteristic function χA is continuous precisely
on Rn \ ∂A, and discontinuous on ∂A.
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Definition 3.6. Let A ⊂ Rn, and let {Uα} be an open cover of A. Suppose that {ψα} are
smooth functions defined on a neighbourhood of A, satisfying the following properties.

1. 0 ≤ ψα ≤ 1 on A.
2. For each x ∈ A, there exists a neighbourhood Ux of x such that only finitely many
ψα are non-zero on Ux.

3.
∑

α ψα = 1 on A.
4. Each support of ψα is contained in Uα.

Remark. The support of a function is the closure of the set on which it is non-zero.
The collection {ψα} is called a partition of unity subordinate to the open cover {Uα}.

Theorem 3.10. For every set A ⊂ Rn and every locally finite open cover {Uα} of A, there
exists a partition of unity subordinate to that open cover.
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