MA3101 **Analysis III**

Autumn 2021

Satvik Saha 19MS154

Indian Institute of Science Education and Research, Kolkata, Mohanpur, West Bengal, 741246, India.

Contents

1 Euclidean spaces

1.1 R \mathbb{R}^n as a vector space

We are familiar with the vector space \mathbb{R}^n , with the standard inner product

$$
\langle x, y \rangle = x_1y_1 + \cdots + x_ny_n.
$$

The standard norm is defined as

$$
\|\boldsymbol{x}-\boldsymbol{y}\|^2=\langle \boldsymbol{x}-\boldsymbol{y}, \boldsymbol{x}-\boldsymbol{y}\rangle=\sum_{k=1}^n(x_i-y_i)^2.
$$

Exercise 1.1. What are all possible inner products on \mathbb{R}^n ?

Solution. Note that an inner product is a bilinear, symmetric map such that $\langle x, x \rangle \geq 0$, and $\langle x, x \rangle = 0$ if and only if $x = 0$. Thus, an product map on \mathbb{R}^n is completely and uniquely determined by the values $\langle e_i, e_j \rangle = a_{ij}$. Let A be the $n \times n$ matrix with entries a_{ij} . Note that A is a real symmetric matrix with positive entries. Now,

$$
\langle \boldsymbol{x}, \boldsymbol{e}_j \rangle = x_1 a_{1j} + \cdots + x_n a_{nj} = \boldsymbol{x}^\top \boldsymbol{a}_j,
$$

where a_j is the jth column of A. Thus,

$$
\langle \boldsymbol{x}, \boldsymbol{y} \rangle = \boldsymbol{x}^\top \boldsymbol{a}_1 y_1 + \cdots + \boldsymbol{x}^\top \boldsymbol{a}_n y_n = \boldsymbol{x}^\top A \boldsymbol{y}.
$$

Furthermore, any choice of real symmetric A with positive entries produces an inner product.

Theorem 1.1 (Cauchy-Schwarz). *Given two vectors* $v, w \in \mathbb{R}^n$, we have

 $|\langle v, w \rangle| \leq ||v|| ||w||.$

Proof. This is trivial when $w = 0$. When $w \neq 0$, set $\lambda = \langle v, w \rangle / ||w||^2$. Thus,

$$
0 \le ||\boldsymbol{v} - \lambda \boldsymbol{w}||^2 = ||\boldsymbol{v}||^2 - 2\lambda \langle \boldsymbol{v}, \boldsymbol{w} \rangle + \lambda^2 ||\boldsymbol{w}||^2.
$$

Simplifying,

$$
0\leq \|\boldsymbol{v}\|^2-\frac{|\langle \boldsymbol{v}, \boldsymbol{w}\rangle|^2}{\|\boldsymbol{w}\|^2}.
$$

This gives the desired result. Clearly, equality holds if and only if $v = \lambda w$.

Theorem 1.2 (Triangle inequality). *Given two vectors* $v, w \in \mathbb{R}^n$, we have

 $||v + w|| \le ||v|| + ||w||.$

Proof. Write

$$
\|\bm{v}+\bm{w}\|^2=\|\bm{v}\|^2+2\langle\bm{v},\bm{w}\rangle+\|\bm{w}\|^2\leq \|\bm{v}\|^2+2|\langle\bm{v},\bm{w}\rangle|+\|\bm{w}\|^2.
$$

Applying Cauchy-Schwarz gives

$$
\|\bm{v}+\bm{w}\|^2\leq(\|\bm{v}\|+\|\bm{w}\|)^2.
$$

Equality holds if and only if $v = \lambda w$ for $\lambda \geq 0$.

1.2 \mathbb{R}^n as a metric space

Our previous observations allow us to define the standard metric on \mathbb{R}^n , seen as a point set.

$$
d(\boldsymbol{x},\boldsymbol{y}) = \|\boldsymbol{x} - \boldsymbol{y}\|.
$$

 \Box

 \Box

Definition 1.1. For any $\delta > 0$, the set

$$
B_{\delta}(\boldsymbol{x}) = \{\boldsymbol{y} \in \mathbb{R}^n : d(\boldsymbol{x}, \boldsymbol{y}) < \delta\}
$$

is called the open ball centred at $x \in \mathbb{R}^n$ with radius δ . This is also called the δ neighbourhood of x .

Definition 1.2. A set U is open in \mathbb{R}^n if for every $x \in U$, there exists an open ball $B_\delta(\boldsymbol{x}) \subset U$.

Remark. Every open ball in \mathbb{R}^n is open.

Remark. Both \emptyset and \mathbb{R}^n are open.

Definition 1.3. A set F is closed in \mathbb{R}^n if its complement $\mathbb{R}^n \setminus F$ is open in \mathbb{R}^n .

Remark. Both \emptyset and \mathbb{R}^n are closed.

Remark. Finite sets in \mathbb{R}^n are closed.

Theorem 1.3. *Unions and finite intersections of open sets are open.*

Corollary 1.3.1. *Intersections and finite unions of closed sets are closed.*

Definition 1.4. An interior point x of a set $S \subseteq \mathbb{R}^n$ is such that there is a neighbourhood of x contained within S.

Example. Every point in an open set is an interior point by definition. The interior of a set is the largest open set contained within it.

Definition 1.5. An exterior point x of a set $S \subseteq \mathbb{R}^n$ is an interior point of the complement $\mathbb{R}^n \setminus S$.

Definition 1.6. A boundary point of a set is neither an interior point, nor an exterior point.

Example. The boundary of the unit open ball $B_1(0) \subset \mathbb{R}^n$ is the sphere S^{n-1} .

Definition 1.7. A limit point x of a set $S \subseteq \mathbb{R}^n$ is such that every neighbourhood of x contains a point from S other than itself.

Definition 1.8. The closure of a set $S \subseteq \mathbb{R}^n$ is the union of S and its limit points. *Remark.* The closure of a set is the smallest closed set containing it.

Lemma 1.4. *Every open set in* \mathbb{R}^n *is a union of open balls.*

Proof. Let $U \subseteq \mathbb{R}^n$ be open. Thus, for every $x \in \mathbb{R}^n$, we can choose $\delta_x > 0$ such that $B_{\delta_x}(x) \subset U$. The union of all such open balls is precisely the set U. \Box

1.3 R \mathbb{R}^n as a topological space

Definition 1.9. A topology on a set X is a collection τ of subsets of X such that

- 1. $\emptyset \in \tau$
- 2. $X \in \tau$
- 3. Arbitrary union of sets from τ belong to τ .
- 4. Finite intersections of sets from τ belong to τ .

Sets from τ are called open sets.

Example. The Euclidean metric induces the standard topology on \mathbb{R}^n .

Example. The discrete topology on a set X is one where every singleton set is open. This is the topology induced by the discrete metric,

$$
d_{\text{discrete}} \colon X \times X \to \mathbb{R}, \qquad (x, y) \mapsto \begin{cases} 0, & \text{if } x = y, \\ 1, & \text{if } x \neq y. \end{cases}
$$

Example. Let X be an infinite set. The collection of sets consisting of \emptyset along with all sets A such that $X \setminus A$ is finite is a topology on X. This is called the Zariski topology.

Example. Consider the set of real numbers, and let τ be the collection \emptyset , R, and all intervals $(-x, +x)$ for $x > 0$. This constitutes a topology on R, very different from the usual one.

This topology cannot be induced by a metric; it is not metrizable.

Consider the constant sequence of zeros. In this topology (\mathbb{R}, τ) , this sequence converges to *every* point in R. Given any $\ell \in \mathbb{R}$, the open neighbourhoods of ℓ are precisely the sets R and the open intervals $(-x, +x)$ for $x > |\ell|$. The tail of the constant sequence of zeros is contained within every such neighbourhood of ℓ , hence $0 \to \ell$. Indeed, the element zero belongs to every open set apart from \emptyset in this topology.

Definition 1.10. A topological space is called Hausdorff if for every distinct $x, y \in X$, there exist disjoint neighbourhoods of x and y .

Example. Every metric space is Hausdorff. Given distinct x, y in a metric space (X, d) , set $\delta = d(x, y)/3$ and consider the open balls $B_\delta(x)$ and $B_\delta(y)$.

Lemma 1.5. *Every convergent sequence in a Hausdorff space has exactly one limit.*

Proof. Consider a sequence $\{x_n\}_{n\in\mathbb{N}}$, and suppose that it converges to distinct x_1 and x_2 . Construct disjoint neighbourhoods U_1 and U_2 around x_1 and x_2 . Now, convergence implies that both U_1 and U_2 contain the tail of $\{x_n\}$, which is impossible since they are disjoint and hence contain no elements in common. \Box

Definition 1.11. Given a topological space (X, τ) and a subset $Y \subseteq X$, the collection of sets $U \cap Y$ where $U \in \tau$ is a topology τ_Y on Y. We call this collection the subspace topology on Y , induced by the topology on X .

1.4 Compact sets in \mathbb{R}^n

Definition 1.12. A set $K \subset X$ in a topological space is compact if every open cover of K has a finite sub-cover. That is, for every collection if ${U_{\alpha}}_{\alpha \in A}$ of open sets such that K is contained in their union, there exists a finite sub-collection $U_{\alpha_1}, \ldots, U_{\alpha_k}$ such that K is also contained in their union.

Example. All finite sets are compact.

Example. Given a convergent sequence of real numbers $x_n \to x$, the collection $\{x_n\}_{n\in\mathbb{N}}\cup\{x\}$ is compact.

Example. In \mathbb{R}^n , compact sets are precisely those sets which are closed and bounded. This is the Heine-Borel Theorem.

Theorem 1.6. *The closed intervals* $[a, b] \subset \mathbb{R}$ *are compact.*

Remark. This can be extended to show that any k-cell $[a_1, b_1] \times \cdots \times [a_n, b_n] \subset \mathbb{R}^n$ is compact.

Proof. Let ${U_\alpha}_{\alpha \in A}$ be an open cover of [a, b], and suppose that $I_1 = [a, b]$ has no finite subcover. Then, at least one of the intervals $[a,(a + b)/2]$ and $[(a + b)/2, b]$ must not have a finite sub-cover; pick one and call it I_2 . Similarly, one of the halves of I_2 must not have a finite sub-cover; call it I₃. In this process, we generate a sequence of closed intervals I₁ $\supset I_2 \supset \ldots$, none of which have a finite sub-cover. The length of each interval is given by

$$
|I_n| = 2^{-n+1} ||b - a|| \to 0.
$$

Now, pick a sequence of points $\{x_n\}$ where each $x_n \in I_n$. Then, $\{x_n\}$ is a Cauchy sequence. To see this, given any $\epsilon > 0$, we can find sufficiently large n_0 such that $2^{-n_0+1} ||b-a|| < \epsilon$. Thus, $x_n \in I_n \subset I_{n_0}$ for all $n \geq n_0$, which means that for any $m, n \geq n_0$, we have $x_m, x_n \in I_{n_0}$ forcing^{[1](#page-5-0)}

$$
||x_m - x_n|| \le |I_{n_0}| = 2^{-n_0 + 1} ||b - a|| < \epsilon.
$$

From the completeness of R, this sequence must converge in R, specifically in $[a, b]$. Thus, $x_n \to x$ for some $x \in [a, b]$. It can also be seen that the limit $x \in I_n$ for all $n \in \mathbb{N}$; if not, say $x \notin I_{n_0}$, then $x \in [a, b] \setminus I_{n_0}$ which is open, hence there is an open interval such that $(x-\delta, x+\delta) \cap I_{n_0} = \emptyset$. However, I_{n_0} contains all $x_{n \ge n_0}$, thus this δ -neighbourhood of x would miss out a tail of $\{x_n\}$.

Now, pick the open set $U \in \{U_{\alpha}\}\$ which covers the point x. Thus, $x \in U$ so U contains some non-empty open interval $(x - \delta, x + \delta)$ around x. Choose n_0 such that $2^{-n_0+1} ||b - a|| < \delta$; this immediately gives $I_{n_0} \subseteq (x-\delta, x+\delta) \subset U$. This contradicts that fact that I_{n_0} has no finite sub-cover from $\{U_{\alpha}\}\$, completing the proof. \Box

Remark. The fact that Cauchy sequences in \mathbb{R}^n converge isn't immediately obvious; it is a consequence of the completeness of \mathbb{R}^n . Start by noting that $\mathbb R$ has the Least Upper Bound property, from which the Monotone Convergence Theorem follows; every monotonic, bounded sequence of reals converges. It can also be shown that any sequence of reals with contain a monotone subsequence, from which it follows that every bounded sequence contains a convergent subsequence (Bolzano-Weierstrass). Finally, it can be shown that if a subsequence of a Cauchy sequence converges, then the entire sequence also converges to the same limit, giving us the desired result for \mathbb{R} . For sequence in \mathbb{R}^n , we may apply this coordinate-wise to obtain the result.

Lemma 1.7. *Compact sets in* \mathbb{R}^n *are closed and bounded.*

Proof. Consider a compact set $K \subset \mathbb{R}^n$. Let $x \in \mathbb{R}^n \setminus K$, and let $y \in K$. Since $x \neq y$, we choose open balls U_y around y and V_y around x such that $U_y \cap V_y = \emptyset$. Repeating this for all $y \in K$, we generate an open cover $\{U_y\}$ of K consisting of open balls. The compactness of K guarantees that this has a finite sub-cover, i.e. there is a finite set Y such that the collection ${U_y}_{y\in Y}$ covers X. As a result, the finite intersection of all V_y for $y \in Y$ is contained within $\mathbb{R}^n \setminus K$. Thus, x is in the exterior of K. Since x was chosen arbitrarily from $\mathbb{R}^n \setminus K$, we see that K is closed.

Now, consider the open cover ${B_1(x)}_{x\in K}$, and extract a finite sub-cover of unit open balls. The distance between any two points in K is at most the maximum distance between the centres of any two balls in our sub-cover, plus two. \Box

Lemma 1.8. *The intersection of a closed set and a compact set is compact.*

¹If $x_1, x_2 \in [a, b]$ with $x_1 < x_2$, note that $a \leq x_1 < x_2 \leq b$, so

 $|x_2 - x_1| = x_2 - x_1 \leq b - a.$

Proof. Let $F \subseteq \mathbb{R}^n$ be closed and let $K \subseteq \mathbb{R}^n$ be compact. Suppose that the open cover $\{U_\alpha\}$ of $F \cap K$ has no finite sub-cover. Now the complement $U = F^c$ is open in \mathbb{R}^n , hence the collection $\{U_{\alpha}\}\cup\{U\}$ is an open cover of K, and hence must admit a finite sub-cover of K. In particular, this must be a finite sub-cover of $F \cap K$. However, we can remove the set U from this sub-cover since it shares no element with $F \cap K$; as a result, our sub-cover must be a finite sub-collection of sets U_{α} , contradicting our assumption. This shows that $F \cap K$ is compact. \Box

Lemma 1.9 (Finite intersection property). Let $\{K_{\alpha}\}\$ be a collection of compact sets in \mathbb{R}^{n} *which have the property that any finite intersection of them is non-empty. Then,*

$$
\bigcap_{\alpha} K_{\alpha} \neq \emptyset.
$$

Proof. Suppose to the contrary that the intersection of all K_{α} is empty. Fix an index β , and note that no element of K_{β} lies in every K_{α} . Set $J_{\alpha} = K_{\alpha}^{c}$, whence the collection $\{J_{\alpha} : \alpha \neq \beta\}$ is an open cover of K_{β} . This must admit a finite sub-cover $\{J_{\alpha_1},\ldots,J_{\alpha_k}\}\,$ of K_{β} . Thus, we must have

$$
K_{\beta}^{c} \cup J_{\alpha_{1}} \cup \cdots \cup J_{\alpha_{k}} = \mathbb{R}^{n}.
$$

This immediately gives the contradiction

$$
K_{\beta} \cap K_{\alpha_1} \cap \dots \cap K_{\alpha_k} = \emptyset.
$$

Theorem 1.10 (Heine-Borel). *Compact sets in* \mathbb{R}^n are precisely those that are closed and *bounded.*

Proof. Given a compact set in \mathbb{R}^n , we have already shown that it must be closed and bounded. Next, if $F \subset \mathbb{R}^n$ is closed and bounded, it can be enclosed within a k-cell which we know is compact. Thus, F is the intersection of the closed set F and the compact k -cell, proving that F must be compact. \Box

1.5 Continuous maps

Definition 1.13. A map $f: X \to Y$ is continuous if the pre-image of every open set from Y is open in X .

Lemma 1.11. *A map* $f: X \to Y$ *is continuous if the pre-image of every closed set from* Y *is closed in* X*.*

Theorem 1.12. *The projection maps* $\pi_i: \mathbb{R}^n \to \mathbb{R}$, $\boldsymbol{x} \mapsto x_i$ are continuous.

Proof. Let $U \subseteq \mathbb{R}$ be open; we claim that $\pi_i^{-1}(U)$ is open. Pick $\mathbf{x} \in \pi_i^{-1}(U)$, and note that $\pi_i(\boldsymbol{x}) = x_i \in U$. Thus, there exists $\delta > 0$ such that $(x_i - \delta, x_i + \delta) \subset U$. Now examine $B_{\delta}(\boldsymbol{x})$; for any point y within this open ball, we have $d(x, y) < \delta$ hence

$$
|x_i - y_i|^2 \leq \sum_{k=1}^n (x_k - y_k)^2 = d(\mathbf{x}, \mathbf{y})^2 < \delta^2.
$$

In other words, $\pi_i(\mathbf{y}) = y_i \in (x_i - \delta, x_i + \delta)$, hence $\pi_i B_\delta(\mathbf{x}) \subseteq (x_i - \delta, x_i + \delta) \subset U$. Thus, given arbitrary $\boldsymbol{x} \in \pi_i^{-1}(U)$, we have found an open ball $B_\delta(\boldsymbol{x}) \subset \pi_i^{-1}(U)$. \Box

Lemma 1.13. *Finite sums, products, and compositions of continuous functions are continuous.*

Corollary 1.13.1. A function $f : [a, b] \to \mathbb{R}^n$ is continuous if and only if the components, $\pi_i \circ f$, are continuous.

Theorem 1.14. All polynomial functions of the coordinates in \mathbb{R}^n are continuous.

Example. The unit sphere $S^{n-1} \subset \mathbb{R}^n$ is closed. It is by definition the pre-image of the singleton closed set {1} under the continuous map

$$
x \mapsto x_1^2 + \cdots + x_n^2.
$$

Theorem 1.15. *The continuous image of a compact set is compact.*

Proof. Let $f: X \to Y$ be continuous, where Y is the image of the compact set X, and let ${U_\alpha}$ be an open cover of Y. Then, the collection ${f^{-1}(U_\alpha)}$ is an open cover of X. Using the compactness of X, extract a finite sub-cover $f^{-1}(U_{\alpha_1}), \ldots, f^{-1}(U_{\alpha_k})$ of X. It follows that the collection $U_{\alpha_1}, \ldots, U_{\alpha_k}$ is a finite sub-cover of Y. \Box

1.6 Connectedness

Definition 1.14. Let X be a topological space. A separation of X is a pair U, V of non-empty disjoint open subsets such that $X = U \cup V$.

Definition 1.15. A connected topological space is one which cannot be separated.

Lemma 1.16. *A topological space* X *is connected if and only if the only sets which are both open and closed are* \emptyset *and* X.

Example. The intervals $(a, b) \subset \mathbb{R}$ are connected. To see this, suppose that U, V is a separation of (a, b) . Pick $x \in U$, $y \in V$, and without loss of generality let $x \leq y$. Define $S = [x, y] \cap U$, and set $c = \sup S$. It can be argued that $c \in (a, b)$, but $c \notin U$, $c \notin V$, using the properties of the supremum.

Theorem 1.17. *The continuous image of a connected set is connected.*

Proof. Let f be a continuous map on the connected set X , and let Y be the image of X . If U , V is a separation of Y, then it can be shown that $\gamma^{-1}(U)$, $\gamma^{-1}(V)$ constitutes a separation of X, which is a contradiction. \Box

Definition 1.16. A path γ joining two points $x, y \in X$ is a continuous map $\gamma : [a, b] \to X$ such that $\gamma(a) = x, \gamma(b) = y$.

Definition 1.17. A set in X is path connected if given any two distinct points in X , there exists a path joining them.

Lemma 1.18. *Every path connected set is connected.*

Proof. Let X be path connected, and suppose that U, V is a separation of X. Then, pick $x \in U, y \in V$, and choose a path $\gamma: [0,1] \to X$ between x and y. The sets $f^{-1}(U)$ and $f^{-1}(V)$ \Box separate the interval [0, 1], which is a contradiction.

Example. All connected sets are not path connected. Consider the topologist's sine curve,

$$
\left\{ \left(x, \sin \frac{1}{x}\right) : 0 < x \le 1 \right\} \cup \{ (0, 0) \}.
$$

Definition 1.18. The ϵ neighbourhood of a set K in a metric space X is defined as

$$
\bigcup_{a \in K} B_{\epsilon}(a) = \bigcup_{a \in K} \{x \in X : d(x, a) < \epsilon\}.
$$

Exercise 1.2. Let $K \subseteq \mathbb{R}^n$ be compact, and define $f: \mathbb{R}^n \to \mathbb{R}$,

$$
f(x) = \text{dist}(x, K) = \inf_{a \in K} d(x, a).
$$

Show that f is continuous on \mathbb{R}^n , and $f^{-1}(\{0\}) = K$.

Exercise 1.3. If $K \subseteq \mathbb{R}^n$ is compact and $K \cap L = \emptyset$, then

$$
dist(K, L) = \inf_{a \in K} dist(a, L) > 0.
$$

Exercise 1.4. If $K \subseteq \mathbb{R}^n$ is compact and U is an open set containing K, then there exists $\epsilon > 0$ such that U contains the ϵ neighbourhood of K.

Is the compactness of K necessary?

2 Differential calculus

2.1 Differentiability

Definition 2.1. Let $f: (a, b) \to \mathbb{R}^n$, and let $f_i = \pi_i \circ f$ be its components. Then, f is differentiable at $t_0 \in (a, b)$ if the following limit exists.

$$
f'(t_0) = \lim_{h \to 0} \frac{f(t_0 + h) - f(t_0)}{h}.
$$

Remark. The vector $f'(t_0)$ represents the tangent to the curve f at the point $f(t_0)$. The full tangent line is the parametric curve $f(t) + f'(t_0)(t - t_0)$.

Definition 2.2. Let $U \subseteq \mathbb{R}^n$ be open, and let $f: U \to \mathbb{R}^m$. Then, f is differentiable at $x \in U$ if there exists a linear transformation $\lambda \colon \mathbb{R}^n \to \mathbb{R}^m$ such that

$$
\lim_{h \to 0} \frac{f(x+h) - f(x) - \lambda h}{\|h\|} = 0.
$$

The derivative of f at x is denoted by $\lambda = Df(x)$.

Remark. In a neighbourhood of x , we may approximate

$$
f(x+h) \approx f(x) + Df(x)(h).
$$

Remark. The statement that this quantity goes to zero means that each of the m components must also go to zero. For each of these limits, there are n axes along which we can let $h \to 0$. As a result, we obtain $m \times n$ limits, which allow us to identify the $m \times n$ components of the matrix representing the linear transformation λ (in the standard basis). These are the partial derivatives of f, and the matrix of λ is the Jacobian matrix of f evaluated at x.

Example. Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear map. By choosing $\lambda = T$, we see that T is differentiable everywhere, with $DT(x) = T$ for every choice of $x \in \mathbb{R}^n$. This is made obvious by the fact that the best linear approximation of a linear map at some point is the map itself; indeed, the 'approximation' is exact.

Lemma 2.1. If $f: \mathbb{R}^n \to \mathbb{R}^m$ is differentiable at $x \in \mathbb{R}^n$, with derivative $Df(x)$, then

- *1.* f *is continuous at* x*.*
- *2. The linear transformation* Df(x) *is unique.*

Proof. We prove the second part. Suppose that λ , μ satisfy the requirements for $Df(x)$; it can be shown that $\lim_{h\to 0} (\lambda - \mu)h/\Vert h\Vert = 0$. Now, if $\lambda v \neq \mu v$ for some non-zero vector $v \in \mathbb{R}^n$, then

$$
\lambda v - \mu v = \frac{\lambda(tv) - \mu(tv)}{\|tv\|} \cdot \|v\| \to 0,
$$

a contradiction.

2.2 Chain rule

Exercise 2.1. Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Then, there exists $M > 0$ such that for all $\boldsymbol{x} \in \mathbb{R}^n$, we have

$$
||Tx|| \le M||x||.
$$

Solution. Set $v_i = T(e_i)$ where e_i are the standard unit basis vectors of \mathbb{R}^n . Then,

$$
||T\boldsymbol{x}|| = ||\sum_i x_i \boldsymbol{v}_i|| \leq \sum_i ||x_i \boldsymbol{v}_i|| \leq \max ||\boldsymbol{v}_i|| \sum_i |x_i|.
$$

Since each $|x_i| \le ||x||$, set $M = n \max ||v_i||$ and write

$$
||Tx|| \leq \max ||\boldsymbol{v}_i|| \sum_i |x_i| \leq \max ||\boldsymbol{v}_i|| \cdot n||\boldsymbol{x}|| = M||\boldsymbol{x}||.
$$

Theorem 2.2. Let $f: \mathbb{R}^n \to \mathbb{R}^m$, $g: \mathbb{R}^m \to \mathbb{R}^k$ where f is differentiable at $a \in \mathbb{R}^n$ and g *is differentiable at* $f(a) \in \mathbb{R}^m$. Then, $g \circ f$ *is differentiable, with* $D(g \circ f)(a) = Dg(f(a)) \circ f(a)$ Df(a)*. Note that this means that the Jacobian matrices simply multiply.*

Proof. Set $b = f(a) \in \mathbb{R}^m$, $\lambda = Df(a)$, $\mu = Dg(f(a))$. Define

$$
\varphi: \mathbb{R}^n \to \mathbb{R}^m, \qquad \varphi(x) = f(x) - f(a) - \lambda(x - a),
$$

$$
\psi: \mathbb{R}^m \to \mathbb{R}^k, \qquad \psi(y) = g(y) - g(b) - \mu(y - b).
$$

We claim that

$$
\lim_{x \to a} \frac{g \circ f(x) - g \circ f(a) - \mu \circ \lambda(x - a)}{\|x - a\|} = 0.
$$

Write the numerator as

$$
g \circ f(x) - g \circ f(a) - \mu \circ \lambda(x - a) = \psi(f(x)) + \mu(\varphi(x)).
$$

Note that

$$
\lim_{x \to a} \frac{\varphi(x)}{\|x - a\|} = 0, \qquad \lim_{y \to b} \frac{\psi(y)}{\|y - b\|} = 0.
$$

Thus, find $M > 0$ such that $\|\mu(\varphi(x))\| \leq \|\varphi(x)\|$ for all $x \in \mathbb{R}^n$, hence

$$
\lim_{x \to a} \frac{\|\mu(\varphi(x))\|}{\|x - a\|} \le \lim_{x \to a} \frac{M \|\varphi(x)\|}{\|x - a\|} = 0.
$$

Now write

$$
\lim_{f(x)\to b} \frac{\psi(f(x))}{\|f(x)-b\|} = 0,
$$

 \Box

hence for any $\epsilon > 0$, there is a neighbourhood of b on which

$$
\|\psi(f(x))\| \le \epsilon \|f(x) - b\| = \epsilon \|\varphi(x) + \lambda(x - a)\|.
$$

Apply the triangle inequality and find $M' > 0$ such that

$$
\|\psi(f(x))\|\leq \epsilon \|\varphi(x)\|+\epsilon M'\|x-a\|.
$$

Thus,

$$
\lim_{x \to a} \frac{\|\psi(f(x))\|}{\|x - a\|} \le \lim_{x \to a} \frac{\epsilon \|\varphi(x)\|}{\|x - a\|} + \epsilon M' = \epsilon M'.
$$

Since $\epsilon > 0$ was arbitrary, this limit is zero, completing the proof.

2.3 Partial derivatives

Definition 2.3. Let $U \subseteq \mathbb{R}^n$ be open, and let $f: U \to \mathbb{R}$. The partial derivative of f with respect to the coordinate x_i at some $a \in U$ is defined by the following limit, if it exists.

$$
\frac{\partial f}{\partial x_j}(a) = \lim_{h \to 0} \frac{f(a + he_j) - f(a)}{h}.
$$

Lemma 2.3. *If* $f: U \to \mathbb{R}$ *is differentiable at a point* $a \in \mathbb{R}^n$ *, then*

$$
Df(a)(x_1,\ldots,x_n)=x_1\frac{\partial f}{\partial x_1}(a)+\cdots+x_n\frac{\partial f}{\partial x_n}(a).
$$

Example. Consider

$$
f: \mathbb{R}^2 \to \mathbb{R},
$$
 $(x, y) \mapsto \begin{cases} xy/(x^2 + y^2), & \text{if } (x, y) \neq (0, 0), \\ 0, & \text{if } (x, y) = (0, 0). \end{cases}$

Note that f is not differentiable at $(0, 0)$; it is not even continuous there. However, both partial derivatives of f exist at $(0, 0)$.

Lemma 2.4. If $f: \mathbb{R}^n \to \mathbb{R}^m$ is differentiable at $a \in \mathbb{R}^n$, then the matrix representation of Df(a) *in the standard basis is given by*

$$
[Df(a)] = \left[\frac{\partial f_i}{\partial x_j}(a)\right]_{ij}.
$$

 \Box

Lemma 2.5. Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be differentiable at $a \in \mathbb{R}^n$, and let $g: \mathbb{R}^m \to \mathbb{R}^k$ be *differentiable at* $f(a) \in \mathbb{R}^m$. Then, the matrix representation of $D(g \circ f)(a)$ in the standard *basis is the product*

$$
[D(g \circ f)(a)] = [Dg(f(a))][Df(a)] = \left[\sum_{\ell=1}^{m} \frac{\partial g_i}{\partial y_\ell} \frac{\partial f_\ell}{\partial x_j}\right]_{ij}.
$$

In other words,

$$
\frac{\partial}{\partial x_j}(g \circ f)_i(a) = \sum_{\ell=1}^m \frac{\partial g_i}{\partial y_\ell}(f(a)) \frac{\partial f_\ell}{\partial x_j}(a).
$$

Example. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be differentiable, and let $\Gamma(f) = \{(x, y, f(x, y)) : x, y \in \mathbb{R}\}$ be the graph of f. Now, let $\gamma: [-1, 1] \to \Gamma(f)$ be a differentiable curve, represented by

$$
\gamma(t) = (g(t), h(t), f(g(t), h(t))).
$$

Then, we can compute the derivative

$$
\gamma'(a) = \left(g'(a), h'(a), g'(a)\frac{\partial f}{\partial x} + h'(a)\frac{\partial f}{\partial y} \Big|_{(g(a),h(a))} \right)
$$

Exercise 2.2. Consider the inner product map, $\langle \cdot, \cdot \rangle \colon \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$. What is its derivative? *Solution*. We treat the inner product as a map $g: \mathbb{R}^{2n} \to \mathbb{R}$, which acts as

$$
\langle x, y \rangle \cong g(x_1, \ldots, x_n, y_1, \ldots, y_n) = x_1 y_1 + \cdots + x_n y_n.
$$

Now, note that

$$
\frac{\partial g}{\partial x_i} = y_i, \qquad \frac{\partial g}{\partial y_i} = x_i.
$$

Thus,

$$
Dg(\mathbf{a}, \mathbf{b})(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{n} x_i \frac{\partial g}{\partial x_i}(\mathbf{a}, \mathbf{b}) + \sum_{i=1}^{n} y_i \frac{\partial g}{\partial y_i}(\mathbf{a}, \mathbf{b})
$$

=
$$
\sum_{i=1}^{n} x_i b_i + \sum_{i=1}^{n} y_i a_i
$$

= $\langle \mathbf{x}, \mathbf{b} \rangle + \langle \mathbf{y}, \mathbf{a} \rangle$.

In other words, the matrix representation of the derivative of the inner product map at the point (a, b) is given by $[b^{\top} a^{\top}]$.

Exercise 2.3. Let $\gamma: \mathbb{R} \to \mathbb{R}^n$ be a differentiable curve. What is the derivative of the real map $t \mapsto ||\gamma(t)||^2$?

Solution. We write this map as $t \mapsto \langle \gamma(t), \gamma(t) \rangle$. Consider the scheme

$$
\mathbb{R} \to \mathbb{R}^{2n} \to \mathbb{R}, \qquad t \mapsto \begin{bmatrix} \gamma(t) \\ \gamma(t) \end{bmatrix} \mapsto \langle \gamma(t), \gamma(t) \rangle.
$$

Pick a point $t \in \mathbb{R}$, whence the derivative of the map at t is

$$
\begin{bmatrix} \gamma(t)^\top & \gamma(t)^\top \end{bmatrix} \begin{bmatrix} \gamma'(t) \\ \gamma'(t) \end{bmatrix} = 2 \langle \gamma(t), \gamma'(t) \rangle.
$$

Remark. Consider the surface $S^{n-1} \subset \mathbb{R}^n$, and pick an arbitrary differentiable curve $\gamma: \mathbb{R} \to$ S^{n-1} . Now, the tangent vector $\gamma'(t)$ is tangent to the sphere S^{n-1} at any point $\gamma(t)$. We claim that this tangent drawn at $\gamma(t)$ is always perpendicular to the position vector $\gamma(t)$. This is made trivial by our exercise: the map $t \mapsto ||\gamma(t)||^2 = 1$ is a constant map since γ is a curve on the unit sphere. This means that it has zero derivative, forcing $\langle \gamma(t), \gamma'(t) \rangle = 0$.

2.3.1 Directional derivatives

Definition 2.4. Let $U \subseteq \mathbb{R}^n$ be open, and let $f: U \to \mathbb{R}$. The directional derivative of f along a direction $v \in \mathbb{R}^n$ at a point $a \in U$ is defined by the following limit, if it exists.

$$
\nabla_v f(a) = \lim_{h \to 0} \frac{f(a + hv) - f(a)}{h}.
$$

Example. Consider

$$
f: \mathbb{R}^2 \to \mathbb{R},
$$
 $(x, y) \mapsto \begin{cases} x^3/(x^2 + y^2), & \text{if } (x, y) \neq (0, 0), \\ 0, & \text{if } (x, y) = (0, 0). \end{cases}$

Note that f is not differentiable at $(0, 0)$. However, all directional derivatives derivatives of f exist at (0,0). Indeed, consider a direction $(\cos \theta, \sin \theta)$, and examine the limit

$$
\lim_{t \to 0} \frac{1}{t} \left[f(t \cos \theta, t \sin \theta) - f(0, 0) \right] = \cos^3 \theta.
$$

Definition 2.5. Let $f: \mathbb{R}^n \to \mathbb{R}$ be differentiable. The gradient of f is defined as the map

$$
\nabla f \colon \mathbb{R}^n \to \mathbb{R}^n, \qquad x \mapsto \left[\frac{\partial f}{\partial x_i}(x)\right]_i.
$$

Remark. The gradient at a point $x \in \mathbb{R}^n$ is thought of as a vector. In contrast, the derivative is thought of as a linear transformation. Otherwise, we see that $\nabla f(x) = [Df(x)].$

Definition 2.6. Let $C^1(\mathbb{R}^n)$ be the set of real-valued differentiable functions on \mathbb{R}^n . Fix a point $a \in \mathbb{R}^n$, then fix a tangent vector $v \in \mathbb{R}^n$. Then, the map

$$
\nabla_v \colon C^1(\mathbb{R}^n) \to \mathbb{R}, \qquad f \mapsto Df(a)(v)
$$

is a linear functional. The quantity $\nabla_v f$ is called the directional derivative of f in the direction v at the point a .

Remark. We can represent ∇_v as the operator

$$
\nabla_v(\cdot) = D(\cdot)(a)(v) = \sum_i v_i \frac{\partial}{\partial x_i} \Big|_a = v \cdot \nabla(\cdot).
$$

Lemma 2.6. *The directional derivatives* ∇_v *form a vector space called the tangent space, attached to the point* $a \in \mathbb{R}^n$. This can be identified with the vector space \mathbb{R}^n by the natural *map* $\nabla_v \mapsto v$. The standard basis can be informally denoted by the vectors

$$
\nabla_{\boldsymbol{e}_1} \equiv \frac{\partial}{\partial x_1}, \ldots, \nabla_{\boldsymbol{e}_n} \equiv \frac{\partial}{\partial x_n}.
$$

2.3.2 Differentiation on manifolds *

Definition 2.7. A homeomorphism is a continuous, bijective map whose inverse is also continuous.

Lemma 2.7. Let $f: \mathbb{R}^n \to \mathbb{R}$ be continuous. Denote the graph of f as

$$
\Gamma(f) = \{(x, f(x)) : x \in \mathbb{R}^n\}.
$$

Then, Γ(f) *is a smooth manifold.*

Proof. Consider the homeomorphism

$$
\varphi \colon \Gamma(f) \to \mathbb{R}^n, \qquad (x, f(x)) \mapsto x.
$$

This is clearly bijective, continuous (restriction of a projection map), with a continuous inverse (from the continuity of f). Call this homeomorphism φ a coordinate map on $\Gamma(f)$. \Box

Definition 2.8. Let $f: M \to \mathbb{R}$ where M is a smooth manifold, with a coordinate map $\varphi: M \to \mathbb{R}^n$. We say that f is differentiable at a point $a \in M$ if $f \circ \varphi^{-1}: \mathbb{R}^n \to \mathbb{R}$ is differentiable at $\varphi(a)$.

Definition 2.9. Let $f: M \to \mathbb{R}$ where M is a smooth manifold, let $\varphi: M \to \mathbb{R}^n$ be a coordinate map, and let $a \in M$. Let $\gamma : \mathbb{R} \to M$ be a curve such that $\gamma(0) = a$, and further let γ be differentiable in the sense that $\varphi \circ \gamma : \mathbb{R} \to \mathbb{R}^n$ is differentiable. The directional derivative of f at a along γ is defined as

$$
\frac{d}{dt}f(\gamma(t))\Big|_{t=0}=\lim_{h\to 0}\frac{f(\gamma(t+h))-f(\gamma(t))}{h}\Big|_{t=0}.
$$

Note that we are taking the derivative of $f \circ \gamma : \mathbb{R} \to \mathbb{R}$ in the conventional sense.

Lemma 2.8. *Let* γ_1 *and* γ_2 *be two curves in* M *such that* $\gamma_1(0) = \gamma_2(0) = a$ *, and*

$$
\frac{d}{dt}\varphi\circ\gamma_1(t)\Big|_{t=0} = \frac{d}{dt}\varphi\circ\gamma_2(t)\Big|_{t=0}.
$$

In other words, γ_1 *and* γ_2 *pass through the same point* a *at* $t = 0$ *, and have the same velocities there. Then, the directional derivatives of* f *at* a *along* γ_1 *and* γ_2 *are the same.*

Definition 2.10. Let M be a smooth manifold, and let $a \in M$. Consider the following equivalence relation on the set of all curves γ in M such that $\gamma(0) = a$.

$$
\gamma_1 \sim \gamma_2 \quad \Longleftrightarrow \quad \left. \frac{d}{dt} \varphi \circ \gamma_1(t) \right|_{t=0} = \left. \frac{d}{dt} \varphi \circ \gamma_2(t) \right|_{t=0}.
$$

Each resultant equivalence class of curves is called a tangent vector at $a \in M$. Note that all these curves in a particular equivalence class pass through a with the same velocity vector.

The collection of all such tangent vectors, i.e. the space of all curves through α modulo the equivalence relation which identifies curves with the same velocity vector through a , is called the tangent space to M at a, denoted T_aM .

Remark. Each tangent vector $v \in T_aM$ acts on a differentiable function $f: M \to \mathbb{R}$ yielding a (well-defined) directional derivative at a.

$$
v \colon C^1(M) \to \mathbb{R}, \qquad f \mapsto \frac{d}{dt} f(\gamma_v(t)) \Big|_{t=0}.
$$

Thus, the tangent space represents all the directions in which taking a derivative of f makes sense.

Remark. The tangent space T_aM is a vector space. Upon fixing f, the map $Df(a): T_aM \to$ $\mathbb{R}, v \mapsto v f(a)$ is a linear functional on the tangent space.

Remark. Given a tangent vector $v \in T_aM$, it can be identified with its corresponding velocity vector in \mathbb{R}^n . Thus, the tangent space T_aM can be identified with the geometric tangent plane drawn to the manifold M at the point a.

2.4 Mean value theorem

Consider a differentiable function $f: \mathbb{R}^n \to \mathbb{R}$, and fix $a \in \mathbb{R}^n$. Define the functions

$$
g_i: \mathbb{R} \to \mathbb{R}, \qquad g_i(x) = f(a_1, \ldots, a_{i-1}, x, a_{i+1}, \ldots, a_n).
$$

Then, each g_i is differentiable, with

$$
g_i'(x) = \frac{\partial f}{\partial x_i}(a_1,\ldots,a_{i-1},x,a_{i+1},\ldots,a_n).
$$

By applying the Mean Value Theorem on some interval [c, d], we can find $\alpha \in (c, d)$ such that $g_i(d) - g_i(c) = g'_i(\alpha)(d - c)$. In other words,

$$
f(\ldots,d,\ldots)-f(\ldots,c,\ldots)=\frac{\partial f}{\partial x_i}(\ldots,\alpha,\ldots)(d-c).
$$

Theorem 2.9. Let $f: \mathbb{R}^n \to \mathbb{R}^m$ and $a \in \mathbb{R}^n$. Then, f is differentiable at a if all the partial *derivatives* ∂f /∂x^j *exist in a neighbourhood of* a *and are continuous at* a*.*

Proof. Without loss of generality, let $m = 1$. We claim that

$$
\lim_{h \to 0} \frac{1}{\|h\|} \|f(a+h) - f(a) - \sum_{i=0}^{n} \frac{\partial f}{\partial x_i}(a) h_i\| = 0.
$$

Examine

$$
f(a+h) - f(a) = f(a_1 + h_1, ..., a_n + h_n) - f(a_1, ..., a_n)
$$

= $f(a_1 + h_1, ..., a_n + h_n) - f(a_1 + h_1, ..., a_{n-1} + h_{n-1}, a_n) +$
 $f(a_1 + h_1, ..., a_{n-1} + h_{n-1}, a_n) - f(a_1 + h_1, ..., a_{n-1}, a_n) +$
:
 $f(a_1 + h_1, a_2, ..., a_n) - f(a_1, ..., a_n)$
 $= \frac{\partial f}{\partial x_n}(c_n)h_n + \dots + \frac{\partial f}{\partial x_1}(c_1)h_1.$

The last step follows from the Mean Value Theorem. As $h \to 0$, each $c_i \to a$. Thus,

$$
\frac{1}{\|h\|} \|f(a+h) - f(a) - \sum_{i=0}^{n} \frac{\partial f}{\partial x_i}(a) h_i\| = \frac{1}{\|h\|} \|\sum_{i=0}^{n} \left(\frac{\partial f}{\partial x_i}(c_i) - \frac{\partial f}{\partial x_i}(a)\right) h_i\|
$$

$$
\leq \sum_{i=0}^{n} \left|\frac{\partial f}{\partial x_i}(c_i) - \frac{\partial f}{\partial x_i}(a)\right| \frac{|h_i|}{\|h\|}
$$

$$
\leq \sum_{i=0}^{n} \left|\frac{\partial f}{\partial x_i}(c_i) - \frac{\partial f}{\partial x_i}(a)\right|.
$$

Taking the limit $h \to 0$, observe that $\partial f / \partial x_i(c_i) \to \partial f / \partial x_i(a)$ by the continuity of the partial derivatives, completing the proof. \Box

Corollary 2.9.1. All polynomial functions on \mathbb{R}^n are differentiable.

Theorem 2.10. Let $f: \mathbb{R}^n \to \mathbb{R}$ be differentiable with continuous partial derivatives, and *let* $a \in \mathbb{R}^n$ *be a point of local maximum. Then,* $Df(a) = 0$ *.*

Proof. We need only show that each

$$
\frac{\partial f}{\partial x_i}(a) = 0.
$$

This must be true, since a is also a local maximum of each of the restrictions g_i as defined earlier. \Box

2.5 Inverse and implicit function theorems

Theorem 2.11 (Inverse function theorem). Let $f: \mathbb{R}^n \to \mathbb{R}^n$ be continuously differentiable *on a neighbourhood of* $a \in \mathbb{R}^n$, and let $\det(Df(a)) \neq 0$. Then, there exist neighbourhoods U of a and W of $f(a)$ such that the restriction $f: U \to W$ is invertible. Furthermore, f^{-1} *is continuous on* U *and differentiable on* U*.*

Lemma 2.12. *Consider a continuously differentiable function* $f: \mathbb{R}^n \to \mathbb{R}$ *, and let* M *denote the surface defined by the zero set of* f*. Then,* M *can be represented as the graph of a differentiable function* h : \mathbb{R}^{n-1} → \mathbb{R} *at those points where* $Df \neq 0$ *.*

Proof. Without loss of generality, suppose that $\partial f/\partial x_n \neq 0$ at some point $a \in M$. It can be shown that the map

$$
F: \mathbb{R}^n \to \mathbb{R}^n, \qquad x \mapsto (x_1, x_2, \dots, x_{n-1}, f(x))
$$

is invertible in a neighbourhood W of a , with a continuous and differentiable inverse of the form

$$
G: \mathbb{R}^n \to \mathbb{R}^n, \qquad u \mapsto (u_1, u_2, \dots, u_{n-1}, g(u)).
$$

Since $F \circ G$ must be the identity map on W, we demand

$$
(x_1, x_2, \ldots, x_{n-1}, f(x_1, x_2, \ldots, x_{n-1}, g(x))) = (x_1, x_2, \ldots, x_{n-1}, x_n).
$$

Thus, the zero set of f in this neighbourhood of a satisfies $x_n = 0$, hence

$$
f(x_1, x_2, \ldots, x_{n-1}, g(x_1, x_2, \ldots, x_{n-1}, 0)) = 0.
$$

In other words, the part of the surface M in the neighbourhood of a is precisely the set of points

$$
(x_1, x_2, \ldots, x_{n-1}, g(x_1, x_2, \ldots, x_{n-1}, 0)).
$$

Simply set

$$
h\colon\mathbb{R}^{n-1}\to\mathbb{R},\qquad x\mapsto g(x_1,x_2,\ldots,x_{n-1},0),
$$

whence the surface M is locally represented by the graph of h .

Remark. Note that by using

$$
f(x_1,\ldots,x_{n-1},h(x_1,\ldots,x_{n-1}))=0
$$

on the surface, we can use the chain rule to conclude that for all $1 \leq i \leq n$, we have

$$
\frac{\partial f}{\partial x_i}(a) + \frac{\partial f}{\partial x_n}(a) \frac{\partial h}{\partial x_i}(a_1, \dots, a_{n-1}) = 0.
$$

Theorem 2.13 (Implicit function theorem). Let $f: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m$ be continuously dif*ferentiable in an open set containing* (a, b) *, with* $f(a, b) = 0$ *. Let* $\det(\partial f^j / \partial x_{n+k}(a, b)) \neq 0$ *. Then, there exists an open set* $U \subset \mathbb{R}^n$ *containing* a*, an open set* $V \subset \mathbb{R}^m$ *containing* b*, and a differentiable function* $q: U \to V$ *such that* $f(x, q(x)) = 0$.

Remark. The condition on the determinant can be rephrased as rank $Df(a, b) = m$.

 \Box

Theorem 2.14. Let $f: \mathbb{R}^n \to \mathbb{R}$ be continuously differentiable, and let M be the surface *defined by its zero set. Furthermore, let* $\nabla f(a) \neq 0$ *for some* $a \in M$ *; thus,* M *can be locally represented by a graph on* \mathbb{R}^{n-1} *. Then,* $\nabla f(a)$ *is normal to the tangent vectors drawn at a to* M; in fact, the perpendicular space of $\nabla f(a)$ is precisely the tangent space T_aM .

Proof. Consider a tangent vector drawn at a to M, represented by the differentiable curve $\gamma: \mathbb{R} \to M$, $\gamma(0) = a$; note that we use the identification $\gamma'(0) = v \in \mathbb{R}^n$. Then, calculate

$$
\frac{d}{dt}f(\gamma(t))\Big|_{t=0} = Df(\gamma(0))(\gamma'(0)) = Df(a)(v).
$$

On the other hand, we have $f(\gamma(t)) = 0$ identically. Thus,

$$
v \cdot \nabla f(a) = Df(a)(v) = 0.
$$

2.6 Taylor's theorem

Theorem 2.15. Let $f: \mathbb{R}^n \to \mathbb{R}$ have continuous second order partial derivatives. Then,

$$
\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial^2 f}{\partial x_j \partial x_i}.
$$

Theorem 2.16. Let $f: \mathbb{R}^2 \to \mathbb{R}$ have continuous second order partial derivatives, and let $(x_0, y_0) \in \mathbb{R}^2$. Then, there exists $\epsilon > 0$ such that for all $\|(x - x_0, y - y_0)\| < \epsilon$,

$$
f(x,y) = f(x_0, y_0) + \frac{\partial f}{\partial x}(x - x_0) + \frac{\partial f}{\partial y}(y - y_0)
$$

+
$$
\frac{1}{2} \frac{\partial^2 f}{\partial x^2}(x - x_0)^2 + \frac{1}{2} \frac{\partial^2 f}{\partial y^2}(y - y_0)^2
$$

+
$$
\frac{\partial^2 f}{\partial x \partial y}(x - x_0)(y - x_0) + R(x, y),
$$

where as $(x, y) \rightarrow (x_0, y_0)$ *, the remainder term vanishes as*

$$
\frac{|R(x,y)|}{\|(x-x_0,y-y_0)\|^2} \to 0.
$$

All partial derivatives here are evaluated at (x_0, y_0) *.*

Proof. This follows from applying the Taylor's Theorem in one variable to the real function $g: \mathbb{R} \to \mathbb{R}, t \mapsto f((1-t)(x_0, y_0) + t(x, y)).$ \Box

2.7 Critical points and extrema

Definition 2.11. We say that $a \in \mathbb{R}^n$ is a critical point of $f: \mathbb{R}^n \to \mathbb{R}$ if all $\partial f / \partial x^j = 0$ there.

Lemma 2.17. *All points of extrema of a differentiable function are critical points.*

Proof. We already know that $Df(a) = 0$ where a is either a point of maximum or minimum. \Box

Example. In order to find a point of extrema of a C^2 -smooth function $f: \mathbb{R}^2 \to \mathbb{R}$, we first identify a critical point (x_0, y_0) . Next, we must find a neighbourhood of (x_0, y_0) which contains no other critical points – to do this, apply Taylor's Theorem. Indeed, we see that

$$
f(x,y) = f(x_0, y_0) + A(x - x_0)^2 + 2B(x - x_0)(y - y_0) + C(y - y_0)^2 + R_2.
$$

For non-degeneracy of solutions, we demand $AC - B^2 \neq 0$, i.e. at (x_0, y_0) , we want

$$
\left[\frac{\partial^2 f}{\partial x \partial y}\right]^2 \neq \frac{\partial^2 f}{\partial x^2} \frac{\partial^2 f}{\partial y^2}.
$$

If $AC - B^2 > 0$ and $\partial^2 f / \partial x^2 > 0$, then we have found a point of minima; if $\partial^2 f / \partial x^2 < 0$, then we have found a point of maximum. If $AC - B^2 < 0$, then we have found a saddle point.

Example. Suppose that we wish to maximize the function $f: \mathbb{R}^2 \to \mathbb{R}$, given an equation of constraint $g = 0$, where $g: \mathbb{R}^2 \to \mathbb{R}$. Using the method of Lagrange multipliers, we look for solutions of the system

$$
\begin{cases} \nabla f(x, y) + \lambda \nabla g(x, y) = 0, \\ g(x, y) = 0. \end{cases}
$$

3 Integral calculus

3.1 Path integrals

Definition 3.1. A closed curve γ : $[a, b] \to \mathbb{R}^n$ is closed if $\gamma(a) = \gamma(b)$. It is called simple if it has no self intersections.

Definition 3.2. Let $p, q: U \to \mathbb{R}$ be continuous, where $U \subseteq \mathbb{R}^2$ is an open set, and let $\gamma: [a, b] \to U$ be piecewise smooth, i.e. smooth on (a, b) at all but finitely many points. Then, we define

$$
\int_{\gamma} p \, dx + q \, dy = \int_{a}^{b} p(\gamma(t)) \, \gamma'_1(t) + q(\gamma(t)) \, \gamma'_2(t) \, dt.
$$

Lemma 3.1. Let $\gamma: [a, b] \to \mathbb{R}^2$ be a smooth curve, and let $\varphi: [c, d] \to [a, b]$ be smooth, such *that* $\varphi(c) = a$ and $\varphi(d) = b$. Then, the composition $\gamma: \varphi: [c, d] \to \mathbb{R}^2$ is a smooth curve, *and*

$$
\int_{\gamma\circ\varphi} p\,dx + q\,dy = \int_c^d \left[p(\gamma \circ \varphi(s)) \gamma'_1(\varphi(s)) + p(\gamma \circ \varphi(s)) \gamma'_2(\varphi(s)) \right] \varphi'(s) \,ds.
$$

By substituting the parameter $\varphi(s) = t$, $\varphi'(s) ds = dt$, we retrieve

$$
\int_{\gamma \circ \varphi} p \, dx + q \, dy = \int_a^b p(\gamma(t)) \, \gamma_1'(t) + q(\gamma(t)) \, \gamma_2'(t) \, dt = \int_{\gamma} p \, dx + q \, dy.
$$

Theorem 3.2. Let $p, q: U \to \mathbb{R}^2$ be continuous, and let $\gamma: [a, b] \to U$ be a smooth curve. *The integral*

$$
\int_{\gamma} p \, dx + q \, dy
$$

depends only on the endpoints of γ *if and only if there exists* $u: U \to \mathbb{R}$ *such that*

$$
p = \frac{\partial u}{\partial x}, \qquad q = \frac{\partial u}{\partial y}.
$$

In other words, we demand that that the vector field (p, q) *be the gradient of* u.

Proof. First suppose that there exists u such that $\nabla u = (p, q)$. Then,

$$
\int_{\gamma} p \, dx + q \, dy = \int_{a}^{b} \frac{\partial u}{\partial x} (\gamma(t)) \gamma'_1(t) + \frac{\partial u}{\partial y} (\gamma(t)) \gamma'_2(t) \, dt.
$$

The chain rule shows that this is simply

$$
\int_a^b \frac{d}{dt} u(\gamma(t)) dt = u(\gamma(b)) - u(\gamma(a)).
$$

Conversely, suppose that the given integral depends only on the endpoints of γ . Given two points $\alpha, \beta \in U$, we construct a path from α to β by travelling only along the axes. Pick $(x, y) \in U$, and define $u: U \to \mathbb{R}$,

$$
u(x,y) = \int_{\gamma} p \, dx + q \, dy,
$$

where γ is such a polygonal path from a fixed point α to (x, y) . Note that u is well-defined by the independence of choice of path γ . \Box

Example. Let $f: \mathbb{R}^2 \to \mathbb{R}^2$ be continuous, and let γ be a smooth curve in \mathbb{R}^2 . We may denote Z

$$
\int_{\gamma} f \cdot ds = \int_{\gamma} f^1 dx + f^2 dy.
$$

3.2 Multiple integrals

Definition 3.3. Let $f : [a_1, b_1] \times [a_2, b_2] \rightarrow \mathbb{R}$ be continuous. Now, let P be a partition of the rectangular domain into $n \times n$ sub-rectangles, and define

$$
M_{ij} = \sup_{[x_i, x_{i+1}] \times [y_j, y_{j+1}]} f(x, y), \qquad y_{ij} = \inf_{[x_i, x_{i+1}] \times [y_j, y_{j+1}]} f(x, y).
$$

We also define,

$$
U(f, P) = \sum_{i,j} M_{ij}(x_i - x_{i-1})(y_j - y_{j-1}), \qquad L(f, P) = \sum_{i,j} m_{ij}(x_i - x_{i-1})(y_j - y_{j-1}).
$$

Finally define the upper and lower sums

$$
U(f) = \sup_P U(f, P), \qquad L(f) = \sup_P L(f, P).
$$

Then, f is Riemann integrable if $U(f) = L(f)$, and this integral is denoted by

$$
\int_{[a_1,b_1]\times[a_2,b_2]} f
$$

Remark. This definition naturally extends to integrals over any k-cell.

Definition 3.4. A measure zero set $E \subset \mathbb{R}^n$ is such that given any $\epsilon > 0$, there exists a countable collection of rectangles $\{A_i\}$ such that their union contains E, and the sum of their volumes is less than ϵ .

Example. Any countable subset of \mathbb{R}^n has measure zero.

Example. Any line in \mathbb{R}^2 , plane in \mathbb{R}^3 , etc. has measure zero.

Lemma 3.3. *The countable union of measure zero sets has measure zero.*

Theorem 3.4. *A bounded function* $f: A \to \mathbb{R}$ where $A \subset \mathbb{R}^n$ is a rectangle is integrable if *and only if for every* $\epsilon > 0$, there exists a partition P of A such that $U(f, P) - L(f, P) < \epsilon$.

Theorem 3.5. Let $f: A \to \mathbb{R}$ be bounded, where $A \subset \mathbb{R}^n$ is a rectangle. Then, f is *Riemann integrable if and only if its set of discontinuities has measure zero.*

Theorem 3.6. Let $f: A_1 \times A_2 \to \mathbb{R}$ be continuous, where $A_1 \subset \mathbb{R}^n$ and $A_2 \subset \mathbb{R}^m$ are closed *rectangles. Then, we can write*

$$
\int_{A_1 \times A_2} f = \int_{A_2} \left(\int_{A_1} f(x, y) \, dx \right) \, dy = \int_{A_1} \left(\int_{A_2} f(x, y) \, dy \right) \, dx.
$$

Theorem 3.7 (Green's theorem). Let γ be a smooth simple closed curve in \mathbb{R}^2 oriented *counter-clockwise, and let* Ω *be the region enclosed by* γ *. If* $p, q: \Omega \to \mathbb{R}$ *have continuous partial derivatives, then*

$$
\int_{\gamma} p \, dx + q \, dy = \iint_{\Omega} \left(\frac{\partial q}{\partial x} - \frac{\partial p}{\partial y} \right) \, dx \, dy.
$$

Example. Let $\gamma: [0, 2\pi] \to \mathbb{R}, \gamma(t) = (\cos t, \sin t)$. Then, γ enclosed the unit disc in \mathbb{R}^2 . To calculate its area, we can set $p = 0, q = x$, giving

$$
\iint_{\Omega} dx dy = \int_0^{2\pi} \cos^2 t dt = \pi.
$$

Another option is to set $p = -y/2$, $q = x/2$, giving

$$
\iint_{\Omega} dx dy = \frac{1}{2} \int_0^{2\pi} \cos^2 t + \sin^2 t dt = \frac{1}{2} \int_0^{2\pi} dt = \pi.
$$

Theorem 3.8 (Change of variables). Let $U \subset \mathbb{R}^n$ be an open set, and get $g: U \to \mathbb{R}^n$ be a *bijective, continuously differentiable map such that* det $Dg(x) \neq 0$ *on* U. If $f : g(U) \to \mathbb{R}$ *is integrable, then*

$$
\int_{g(U)} f = \int_U f \circ g \,|\det Dg|
$$

Definition 3.5. For $S \subset A \subset \mathbb{R}^n$ where A is a rectangle, we can define

$$
\int_{S} f = \int_{A} f \cdot \chi_{S}.
$$

Here, χ_S is the characteristic function of S, defined as

$$
\chi_S(x) = \begin{cases} 1, & \text{if } x \in S, \\ 0, & \text{if } x \notin S. \end{cases}
$$

Lemma 3.9. For any set $A \subset \mathbb{R}^n$, the characteristic function χ_A is continuous precisely *on* $\mathbb{R}^n \setminus \partial A$ *, and discontinuous on* ∂A *.*

Definition 3.6. Let $A \subset \mathbb{R}^n$, and let $\{U_\alpha\}$ be an open cover of A. Suppose that $\{\psi_\alpha\}$ are smooth functions defined on a neighbourhood of A, satisfying the following properties.

- 1. $0 \leq \psi_{\alpha} \leq 1$ on A.
- 2. For each $x \in A$, there exists a neighbourhood U_x of x such that only finitely many ψ_{α} are non-zero on U_x .
- 3. $\sum_{\alpha} \psi_{\alpha} = 1$ on A.
- 4. Each support of ψ_{α} is contained in U_{α} .

Remark. The support of a function is the closure of the set on which it is non-zero.

The collection $\{\psi_{\alpha}\}\$ is called a partition of unity subordinate to the open cover $\{U_{\alpha}\}\$.

Theorem 3.10. For every set $A \subset \mathbb{R}^n$ and every locally finite open cover $\{U_\alpha\}$ of A, there *exists a partition of unity subordinate to that open cover.*