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Definition 4.1 (Random vector). A random vector X : Ω → Rn is a tuple of random
variables Xi : Ω → R.

Definition 4.2 (Joint cumulative distribution function). The joint cumulative distribution
function of a random vector X is the map FX : Rn → [0, 1], given as

FX(s) = P (X1 ≤ s1, . . . , Xn ≤ sn).

Definition 4.3 (Joint probability mass function). If Xi are discrete random variables, their
joint probability mass function is the map pX : Rn → [0, 1],

pX(s) = P (X1 = s1, . . . , Xn = sn).

Definition 4.4 (Joint probability density function). Suppose that

FX(s) =

∫ sn

−∞
· · ·

∫ s1

−∞
fX(t1, . . . , tn) dt1 . . . dtn,

then fX : Rn → [0, 1] is the probability density function corresponding to the joint cumula-
tive distribution function FX .
Remark. If fX is continuous, then

fX =
∂FX(t1, . . . , tn)

∂t1 . . . ∂tn
.
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Definition 4.5 (Joint moment generating function). Let X be a random vector. Then, its
joint moment generating function is defined as

MX(t) = E
[
et

>X
]
= E

[
et1X1+···+tnXn

]
.

Remark. If X1, . . . , Xn are independent, then

MX(t) =
∏

MXi(ti).

Theorem 4.1. If X and Y are independent continuous random variables, then the proba-
bility density function of their sum is the convolution fX+Y = fX ∗ fY ,

fX+Y (x) =

∫
R
fX(x− t) fY (t) dt.

Example. When X and Y are identical and uniform on [0, 1], then

fX+Y (x) =

∫ 1

0
f(x− t) dt =


x, if a ∈ [0, 1],

2− x, if a ∈ [1, 2],

0, otherwise .

Also,
MX+Y (t) = (M(t))2 =

1

t2
(et − 1)2.

Definition 4.6 (Conditional distribution). Let X and Y be two discrete random variables.
We write

P (X = s |Y = t) =
P (X = s, Y = t)

P (Y = t)

for P (Y = t) > 0. We also have

P (X ≤ s |Y = t) =
∑
r≤s

P (X = r |Y = t).

If X and Y are continuous random variables, then the conditional distribution of X given
Y = t is described as

FX |Y=t(r) =

∫ s

−∞

fX,Y (r, t)

fY (t)
dr.
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Example. Consider two continuous random variables X and Y which have a joint probability
mass function

fX,Y (s, t) =

{
αt, if 0 < t < s < 1,

0, otherwise.

First normalize, by demanding∫∫
R2

fX,Y (s, t) dt ds =

∫ 1

0

∫ s

0
αt dt ds = 1,

whence α = 6. Thus,

E [Y |X = s] =

∫
R
t ·

fX,Y (s, t)

fX(s)
dt.

Now,
fX(s) =

∫
R
fX,Y (s, t) dt =

∫ s

0
6tα dt = 3s2

for 0 < s < 1, and simply 3 for s ≥ 1. Thus,

E [Y |X = s] =

∫ s

0
t · 6t

3s2
dt =

2

3
s,

in the region 0 < s < 1. For s ≥ 1, the expectation becomes 2/3. Also,

Var[Y |X = s] = E
[
Y 2 |X = s

]
− E [Y |X = s]2 .

The first term is
E
[
Y 2 |X = s

]
=

∫ s

0
t2 · 6t

3s2
dt =

1

2
s2.

Thus,
Var[Y |X = s] =

1

2
s2 − 4

9
s2 =

1

18
s2.

Note that
fY (t) =

∫
R
fX,Y (s, t) ds =

∫ 1

t
6tα ds = 6t(1− t)

in the region 0 < t < 1. Thus,

FY (t) =

∫ t

0
6t′(1− t′) dt′ = t2(3− 2t)

for 0 < t < 1. FY (t) = 1 for t ≥ 1.

Theorem 4.2. For discrete or continuous random variables X and Y ,

E [E [X |Y ]] = E [X] .

Proof.
E [E [X |Y ]] =

∑
n

E [X |Y = n] P (Y = n) =
∑
nm

mP (X = m,Y = n).

Reordering the summations, we get∑
m

m
∑
n

P (X = m,Y = n) =
∑
m

mP (X = m) = E [X] .
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The proof for discrete random variables is analogous, switching the sums for integrals.

Theorem 4.3. For random variables X and Y ,

Var[X] = Var[E [X |Y ]] + E [Var[X |Y ]] .

Proof. Using the previous theorem,

Var[E [X |Y ]] = E
[
E [X |Y ]2

]
− E [E [X |Y ]]2 = E

[
E [X |Y ]2

]
− E [X]2 ,

and
E [Var[X |Y ]] = E

[
E
[
X2 |Y

]
− E [X |Y ]2

]
= E

[
X2

]
− E

[
E [X |Y ]2

]
.

Adding the above gives the desired result.

Definition 4.7 (Order statistics). Let X1, . . . , Xn be discrete independent identically dis-
tributed random variables, with a common probability mass function. We define

X(1) = min(X1, . . . , Xn), . . . X(n) = max(X1, . . . , Xn).

Note that we must have

X(1) ≤ X(2) ≤ · · · ≤ X(n−1) ≤ X(n).

Lemma 4.4. If X1, . . . , Xn be discrete independent identically distributed random variables,
with a common probability mass function, for any permutation σ of {1, . . . , n},

P (X1 = s1, . . . , Xn = sn) = P (X1 = sσ(1), . . . , Xn = sσ(n)).

Proof. The expressions are both equal to p(s1) . . . p(sn), where p is the common probability
mass function.

Theorem 4.5. Let X1, . . . , Xn be discrete independent identically distributed random vari-
ables, and let g denote the joint probability mass function of the order statistics.

g(s1, . . . , sn) =

{
P (X(1) = s1, . . . , X(n) = sn), if s1 ≤ · · · ≤ sn,

0, otherwise.

Furthermore, let Gs̃ denote the group of all permutations of {s1, . . . , sn}. Recall that |Gs̃| =
n!/(r1! . . . rm!) where ri of the sj’s are equal to some ti. Thus for increasing s1, . . . , sn,

g(s1, . . . , sn) =
∑
σ∈Gs̃

P (X1 = σ(s1), . . . , Xn = σ(sn)) = |Gs̃|P (X1 = s1, . . . , Xn = sn).

This can also be written as

g(s1, . . . , sn) =

(
n

r1 . . . rm

)
p(t1)

r1 . . . p(tm)rm .
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Theorem 4.6. Let X1, . . . , Xn be discrete independent identically distributed random vari-
ables, and let F denote their common cumulative distribution function. Then,

P (X(n) ≤ s) = P (X1 ≤ s, . . . , Xn ≤ s) = F (s)n.

Now,
P (X(n) = s) = P (X(n) ≤ s)− P (X(n) ≤ s− 1) = F (s)n − F (s− 1)n.

Similarly,
P (X(1) ≤ s) = 1− P (X1 ≥ s, . . . , Xn ≥ s) = 1− (1− F (s))n.

Thus,
P (X(1) = s) = (1− F (s− 1))n − (1− F (s))n.

Theorem 4.7. Let X1, . . . , Xn be continuous independent identically distributed random
variables, let f denote their common probability density function, and let g denote their
joint probability density function. As before, for any permutation of {s1, . . . , sn},

g(sσ(1), . . . , sσ(n)) = f(s1) . . . f(sn).

For small ε > 0, we can write

P
(
sσ(1) −

ε

2
≤ X1 ≤ sσ(1) +

ε

2
, . . . , sσ(n) −

ε

2
≤ Xn ≤ sσ(n) +

ε

2

)
≈ εnf(s1) . . . f(sn).

Therefore, for s1 < s2 < · · · < sn, we have

P
(
sσ(1) −

ε

2
≤ X(1) ≤ sσ(1) +

ε

2
, . . . , sσ(n) −

ε

2
≤ X(n) ≤ sσ(n) +

ε

2

)
≈ n!εnf(s1) . . . f(sn).

Therefore, dividing by εn and letting ε → 0, we have

g(s1, . . . , sn) = n!f(s1)(sn).

Thus, assuming the continuity of f , we have

g(s1, . . . , sn) =

n! lim(r1,...,rn)→(s1,...,sn)
r1<···<rn

f(r1) . . . f(rn), if s1 ≤ · · · ≤ sn,

0 otherwise.

Theorem 4.8. Let X1, . . . , Xn be continuous independent identically distributed random
variables, and let F denote their common cumulative distribution function. Then, like
before,

P (X(1) ≤ s) = 1− (1− F (s))n, P (X(n) ≤ s) = F (s)n.

Thus, the probability density functions are given by

fX(1)
(s) =

d

ds
P (X(1) ≤ t) = n(1− F (s))n−1f(s),

fX(n)
(s) =

d

ds
P (X(n) ≤ t) = nF (s)n−1f(s).
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