MA2202: Probability I **Random vectors**

Spring 2021

Satvik Saha 19MS154

Indian Institute of Science Education and Research, Kolkata, Mohanpur, West Bengal, 741246, India.

Definition 4.1 (Random vector). A random vector $\mathbf{X} : \Omega \to \mathbb{R}^n$ is a tuple of random variables $X_i: \Omega \to \mathbb{R}$.

Definition 4.2 (Joint cumulative distribution function)**.** The joint cumulative distribution function of a random vector **X** is the map $F_{\mathbf{X}} : \mathbb{R}^n \to [0, 1]$, given as

$$
F_{\mathbf{X}}(\mathbf{s}) = P(X_1 \leq s_1, \ldots, X_n \leq s_n).
$$

Definition 4.3 (Joint probability mass function). If X_i are discrete random variables, their joint probability mass function is the map $p_{\mathbf{X}}: \mathbb{R}^n \to [0,1],$

$$
p_{\boldsymbol{X}}(\boldsymbol{s}) = P(X_1 = s_1, \dots, X_n = s_n).
$$

Definition 4.4 (Joint probability density function)**.** Suppose that

$$
F_{\mathbf{X}}(\mathbf{s}) = \int_{-\infty}^{s_n} \cdots \int_{-\infty}^{s_1} f_{\mathbf{X}}(t_1,\ldots,t_n) dt_1 \ldots dt_n,
$$

then $f_{\mathbf{X}}: \mathbb{R}^n \to [0, 1]$ is the probability density function corresponding to the joint cumulative distribution function $F_{\mathbf{X}}$.

Remark. If f_X is continuous, then

$$
f_{\boldsymbol{X}} = \frac{\partial F_{\boldsymbol{X}}(t_1,\ldots,t_n)}{\partial t_1 \ldots \partial t_n}.
$$

Definition 4.5 (Joint moment generating function). Let X be a random vector. Then, its joint moment generating function is defined as

$$
M_{\mathbf{X}}(\mathbf{t}) = E\left[e^{\mathbf{t}^\top \mathbf{X}}\right] = E\left[e^{t_1 X_1 + \dots + t_n X_n}\right].
$$

Remark. If X_1, \ldots, X_n are independent, then

$$
M_{\boldsymbol{X}}(\boldsymbol{t})=\prod M_{X_i}(t_i).
$$

Theorem 4.1. *If* X *and* Y *are independent continuous random variables, then the probability density function of their sum is the convolution* $f_{X+Y} = f_X * f_Y$ *,*

$$
f_{X+Y}(x) = \int_{\mathbb{R}} f_X(x-t) f_Y(t) dt.
$$

Example. When X and Y are identical and uniform on [0, 1], then

$$
f_{X+Y}(x) = \int_0^1 f(x-t) dt = \begin{cases} x, & \text{if } a \in [0,1], \\ 2-x, & \text{if } a \in [1,2], \\ 0, & \text{otherwise}. \end{cases}
$$

Also,

$$
M_{X+Y}(t) = (M(t))^{2} = \frac{1}{t^{2}}(e^{t} - 1)^{2}.
$$

Definition 4.6 (Conditional distribution). Let X and Y be two discrete random variables. We write

$$
P(X = s | Y = t) = \frac{P(X = s, Y = t)}{P(Y = t)}
$$

for $P(Y = t) > 0$. We also have

$$
P(X \le s \, | \, Y = t) = \sum_{r \le s} P(X = r \, | \, Y = t).
$$

If X and Y are continuous random variables, then the conditional distribution of X given $Y = t$ is described as

$$
F_{X|Y=t}(r) = \int_{-\infty}^{s} \frac{f_{X,Y}(r,t)}{f_Y(t)} dr.
$$

Example. Consider two continuous random variables X and Y which have a joint probability mass function

$$
f_{X,Y}(s,t) = \begin{cases} \alpha t, & \text{if } 0 < t < s < 1, \\ 0, & \text{otherwise.} \end{cases}
$$

First normalize, by demanding

$$
\iint_{\mathbb{R}^2} f_{X,Y}(s,t) \, dt \, ds = \int_0^1 \int_0^s \alpha t \, dt \, ds = 1,
$$

whence $\alpha = 6$. Thus,

$$
E[Y \mid X = s] = \int_{\mathbb{R}} t \cdot \frac{f_{X,Y}(s,t)}{f_X(s)} dt.
$$

Now,

$$
f_X(s) = \int_{\mathbb{R}} f_{X,Y}(s,t) dt = \int_0^s 6t\alpha dt = 3s^2
$$

for $0 < s < 1$, and simply 3 for $s \ge 1$. Thus,

$$
E[Y \mid X = s] = \int_0^s t \cdot \frac{6t}{3s^2} dt = \frac{2}{3}s,
$$

in the region $0 < s < 1$. For $s \ge 1$, the expectation becomes 2/3. Also,

$$
Var[Y \,|\, X = s] = E[Y^2 \,|\, X = s] - E[Y \,|\, X = s]^2.
$$

The first term is

$$
E[Y^2 | X = s] = \int_0^s t^2 \cdot \frac{6t}{3s^2} dt = \frac{1}{2}s^2.
$$

Thus,

$$
\text{Var}[Y \mid X = s] = \frac{1}{2}s^2 - \frac{4}{9}s^2 = \frac{1}{18}s^2.
$$

Note that

$$
f_Y(t) = \int_{\mathbb{R}} f_{X,Y}(s,t) \, ds = \int_t^1 6t\alpha \, ds = 6t(1-t)
$$

in the region $0 < t < 1$. Thus,

$$
F_Y(t) = \int_0^t 6t'(1 - t') dt' = t^2(3 - 2t)
$$

for $0 < t < 1$. $F_Y(t) = 1$ for $t \ge 1$.

Theorem 4.2. *For discrete or continuous random variables* X *and* Y *,*

$$
E\left[E\left[X\,|\,Y\right]\right]=E\left[X\right].
$$

Proof.

$$
E [E [X | Y]] = \sum_{n} E [X | Y = n] P(Y = n) = \sum_{nm} m P(X = m, Y = n).
$$

Reordering the summations, we get

$$
\sum_{m} m \sum_{n} P(X = m, Y = n) = \sum_{m} m P(X = m) = E[X].
$$

3 *Updated on April 6, 2021*

The proof for discrete random variables is analogous, switching the sums for integrals. \Box

Theorem 4.3. *For random variables* X *and* Y *,*

$$
Var[X] = Var[E[X|Y]] + E[Var[X|Y]].
$$

Proof. Using the previous theorem,

$$
Var[E[X|Y]] = E[E[X|Y]^2] - E[E[X|Y]]^2 = E[E[X|Y]^2] - E[X]^2,
$$

and

$$
E\left[\text{Var}[X \mid Y]\right] = E\left[E\left[X^2 \mid Y\right] - E\left[X \mid Y\right]^2\right] = E\left[X^2\right] - E\left[E\left[X \mid Y\right]^2\right].
$$

Adding the above gives the desired result.

Definition 4.7 (Order statistics). Let X_1, \ldots, X_n be discrete independent identically distributed random variables, with a common probability mass function. We define

$$
X_{(1)} = min(X_1, ..., X_n), \qquad ... \qquad X_{(n)} = max(X_1, ..., X_n).
$$

Note that we must have

$$
X_{(1)} \le X_{(2)} \le \cdots \le X_{(n-1)} \le X_{(n)}.
$$

Lemma 4.4. *If* X_1, \ldots, X_n *be discrete independent identically distributed random variables, with a common probability mass function, for any permutation* σ of $\{1, \ldots, n\}$,

$$
P(X_1 = s_1, \ldots, X_n = s_n) = P(X_1 = s_{\sigma(1)}, \ldots, X_n = s_{\sigma(n)}).
$$

Proof. The expressions are both equal to $p(s_1) \ldots p(s_n)$, where p is the common probability mass function. \Box

Theorem 4.5. Let X_1, \ldots, X_n be discrete independent identically distributed random vari*ables, and let* g *denote the joint probability mass function of the order statistics.*

$$
g(s_1, \ldots, s_n) = \begin{cases} P(X_{(1)} = s_1, \ldots, X_{(n)} = s_n), & \text{if } s_1 \leq \cdots \leq s_n, \\ 0, & \text{otherwise.} \end{cases}
$$

Furthermore, let $G_{\tilde{s}}$ *denote the group of all permutations of* $\{s_1, \ldots, s_n\}$ *. Recall that* $|G_{\tilde{s}}|$ = $n!/(r_1! \ldots r_m!)$ where r_i of the s_j 's are equal to some t_i . Thus for increasing s_1, \ldots, s_n ,

$$
g(s_1,...,s_n) = \sum_{\sigma \in G_{\tilde{s}}} P(X_1 = \sigma(s_1),...,X_n = \sigma(s_n)) = |G_{\tilde{s}}| P(X_1 = s_1,...,X_n = s_n).
$$

This can also be written as

$$
g(s_1,\ldots,s_n)=\binom{n}{r_1\ldots r_m}p(t_1)^{r_1}\ldots p(t_m)^{r_m}.
$$

 \Box

Theorem 4.6. Let X_1, \ldots, X_n be discrete independent identically distributed random vari*ables, and let* F *denote their common cumulative distribution function. Then,*

$$
P(X_{(n)} \le s) = P(X_1 \le s, \dots, X_n \le s) = F(s)^n.
$$

Now,

$$
P(X_{(n)} = s) = P(X_{(n)} \le s) - P(X_{(n)} \le s - 1) = F(s)^{n} - F(s - 1)^{n}.
$$

Similarly,

$$
P(X_{(1)} \le s) = 1 - P(X_1 \ge s, \dots, X_n \ge s) = 1 - (1 - F(s))^n.
$$

Thus,

$$
P(X_{(1)} = s) = (1 - F(s - 1))^n - (1 - F(s))^n.
$$

Theorem 4.7. Let X_1, \ldots, X_n be continuous independent identically distributed random *variables, let* f *denote their common probability density function, and let* g *denote their joint probability density function. As before, for any permutation of* $\{s_1, \ldots, s_n\}$,

$$
g(s_{\sigma(1)},\ldots,s_{\sigma(n)})=f(s_1)\ldots f(s_n).
$$

For small $\epsilon > 0$ *, we can write*

$$
P\left(s_{\sigma(1)}-\frac{\epsilon}{2}\leq X_1\leq s_{\sigma(1)}+\frac{\epsilon}{2},\ldots,s_{\sigma(n)}-\frac{\epsilon}{2}\leq X_n\leq s_{\sigma(n)}+\frac{\epsilon}{2}\right)\approx \epsilon^n f(s_1)\ldots f(s_n).
$$

Therefore, for $s_1 < s_2 < \cdots < s_n$ *, we have*

$$
P\left(s_{\sigma(1)}-\frac{\epsilon}{2}\leq X_{(1)}\leq s_{\sigma(1)}+\frac{\epsilon}{2},\ldots,s_{\sigma(n)}-\frac{\epsilon}{2}\leq X_{(n)}\leq s_{\sigma(n)}+\frac{\epsilon}{2}\right)\approx n!\epsilon^n f(s_1)\ldots f(s_n).
$$

Therefore, dividing by ϵ^n *and letting* $\epsilon \to 0$ *, we have*

$$
g(s_1,\ldots,s_n)=n!f(s_1)(s_n).
$$

Thus, assuming the continuity of f*, we have*

$$
g(s_1,\ldots,s_n) = \begin{cases} n! \lim_{\substack{(r_1,\ldots,r_n) \to (s_1,\ldots,s_n) \\ r_1 < \cdots < r_n}} f(r_1) \ldots f(r_n), & \text{if } s_1 \leq \cdots \leq s_n, \\ 0 & \text{otherwise.} \end{cases}
$$

Theorem 4.8. Let X_1, \ldots, X_n be continuous independent identically distributed random *variables, and let* F *denote their common cumulative distribution function. Then, like before,*

$$
P(X_{(1)} \le s) = 1 - (1 - F(s))^n, \qquad P(X_{(n)} \le s) = F(s)^n.
$$

Thus, the probability density functions are given by

$$
f_{X_{(1)}}(s) = \frac{d}{ds} P(X_{(1)} \le t) = n(1 - F(s))^{n-1} f(s),
$$

$$
f_{X_{(n)}}(s) = \frac{d}{ds} P(X_{(n)} \le t) = nF(s)^{n-1} f(s).
$$