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Definition 4.1 (Random vector). A random vector X: 2 — R™ is a tuple of random
variables X;: Q@ — R.

Definition 4.2 (Joint cumulative distribution function). The joint cumulative distribution
function of a random vector X is the map Fx: R™ — [0, 1], given as

Fx(s) :P(Xl S 81,...,Xn S Sn).

Definition 4.3 (Joint probability mass function). If X; are discrete random variables, their
joint probability mass function is the map px: R™ — [0, 1],

px(s) = P(X1=s1,..., X5, = sn).

Definition 4.4 (Joint probability density function). Suppose that

Sn 51
Fx(S):/ / fx(tl,...,tn)dtl...dtn,

then fx: R™ — [0, 1] is the probability density function corresponding to the joint cumula-
tive distribution function Fx.

Remark. If fx is continuous, then

_ OFx(t1,. .. tn)

Ix oty ...0t,
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Definition 4.5 (Joint moment generating function). Let X be a random vector. Then, its
joint moment generating function is defined as

Mx(t)=E {etTX} — E [ehXatHtnXa]
Remark. If Xy,..., X, are independent, then

Mx (t) = [ [ Mx, ().

Theorem 4.1. If X and Y are independent continuous random variables, then the proba-
bility density function of their sum is the convolution fxiy = fx * fv,

fxyy(z) = /fo(:c —t) fy (t) dt.

Ezample. When X and Y are identical and uniform on [0, 1], then

. x, if a € [0,1],
vy (@) :/ fo—tdi={2—2 ifac1,2,
0 0, otherwise .

Also,

Definition 4.6 (Conditional distribution). Let X and Y be two discrete random variables.
We write
P(X =sY =t)

P(Y =t)

P(X=s|Y=t)=
for P(Y =t) > 0. We also have
PX<s|Y=t)=)» P(X=r|Y=t).
r<s

If X and Y are continuous random variables, then the conditional distribution of X given
Y =1t is described as s
fX,Y (Tv t)

Fx|y—(r) = r>on dr.
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Ezxample. Consider two continuous random variables X and Y which have a joint probability

mass function
at, f0<t<s<l,

fxy(s,t) = {

0, otherwise.

First normalize, by demanding

1 S
// Ixy(s,t)dtds = / / atdtds =1,
R2 o Jo

E[Y\X_s]_/Rt-Wdt.

)

whence a = 6. Thus,

Now,
S
fx(s) = / fxy(s,t)dt = / 6t dt = 3s°
R 0
for 0 < s < 1, and simply 3 for s > 1. Thus,

s 6t 2
¥ |X =s) /0 Sar=2s

in the region 0 < s < 1. For s > 1, the expectation becomes 2/3. Also,
VarlY | X =s] = E[Y?|X =s] —E[Y | X = s]*.

The first term is

s 6t 1
E[Y2|X=5|= [ 2. 2 dt = =s>.
[ | 5} /0 352 25
Thus,
1 4 1
Var[Y’X:S]:§S2_§S2:T852-
Note that

1
fy(t)Z/fo,y(sjt) ds:/t 6t ds = 6t(1 —t)

in the region 0 < ¢ < 1. Thus,

Fy(t) = /Ot 6t'(1 —t') dt’ = (3 — 2t)

for0 <t <1 Fy(t)=1fort>1.

Theorem 4.2. For discrete or continuous random variables X and Y,
E[E[X|Y]|=FE[X].
Proof.
EEX|Y]]=) E[X|Y=n] P(Y=n)=)> mP(X=m,Y =n).

nm

Reordering the summations, we get

Y m) P(X=mY =n)=) mP(X=m)=E[X].
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The proof for discrete random variables is analogous, switching the sums for integrals. O

Theorem 4.3. For random wvariables X and Y,

Var[X] = Var[E [X | Y]] + E [Var[X | Y]].

Proof. Using the previous theorem,
Var[E[X | Y]] = E [E X | Yﬂ _EBEX|Y]2P=E [E X | Yﬂ ~ E[X]?,

and
E[Var[X |Y] = E [E [X?|Y] —E[X|Yﬂ —E[XY-E [E[Xmﬂ .

Adding the above gives the desired result. O

Definition 4.7 (Order statistics). Let X, ..., X,, be discrete independent identically dis-
tributed random variables, with a common probability mass function. We define

X(l) :min(Xl,...,Xn), X(n) :max(le.”,Xn)‘
Note that we must have

X1y £ Xg) <+ £ X1y £ Xy

Lemma 4.4. If X1,..., X, be discrete independent identically distributed random variables,
with a common probability mass function, for any permutation o of {1,...,n},

P(Xl =581,..-,Xn :Sn) :P(Xl :30(1)7-'-aXn :Sa(n))'

Proof. The expressions are both equal to p(s1)...p(s,), where p is the common probability
mass function. O

Theorem 4.5. Let X1,..., X, be discrete independent identically distributed random vari-
ables, and let g denote the joint probability mass function of the order statistics.

g(s1,. ..

P(X(l):sl')--'aX(n):Sn)u ifSlS"'SSn,
7311) = .
0, otherwise.

Furthermore, let G5 denote the group of all permutations of {s1,...,sn}. Recall that |G5| =
nl/(ri!...rn!) where vy of the s;’s are equal to some t;. Thus for increasing si, ..., Sp,

g(s1, .., 8n) = Y P(X1=0(s1),...,Xn = 0(sn)) = |Gs| P(X1 = 51,..., Xpn = 50).
€G3

This can also be written as

9(51,- .., 8n) = (7"1 “".Tm>p(t1)” D)™
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Theorem 4.6. Let Xq,..., X, be discrete independent identically distributed random vari-
ables, and let F' denote their common cumulative distribution function. Then,

P(X) <s)=P(X1<s,..., X, < 8) = F(s)".

Now,
Similarly,

Thus,

Theorem 4.7. Let X1,...,X, be continuous independent identically distributed random
variables, let f denote their common probability density function, and let g denote their
joint probability density function. As before, for any permutation of {s1,...,sn},

9(80(1)7' o 'asa(n)) = f(sl) : f(sn)

For small € > 0, we can write

€ € € n
P(‘Sa(l)* §X1§50(1)+§,«--7Sa(n)*§SXnSSU(n)+§) ~e€"f(s1)... f(sn)

€
2
Therefore, for s1 < sg < --- < S, we have

€ € € € L
P (Sa(l) - 5 < X(l) < So(1) + 5’ <y 8g(n) — 5 < X(n) < So(n) + 5) ~nie f(sl) T f(sn)
Therefore, dividing by € and letting e — 0, we have

9(81,.-.,8n) =nlf(s1)(sn).

Thus, assuming the continuity of f, we have

n! hm(m,...,rn)—>(51,,..,sn) f(rl) s f(r’n)a if s1 <00 < s,
9(S1,...,8n) = 1< <rn

0 otherwise.

Theorem 4.8. Let Xi,...,X,, be continuous independent identically distributed random
variables, and let F denote their common cumulative distribution function. Then, like
before,

P(Xq) <s)=1-(1-F(s))", P(X(n) < s)=F(s)"

Thus, the probability density functions are given by

Fxan(5) = S P(Xqyy < 8) = (1 — F())"" £(s),
Py (8) = = P(X(uy < 1) = ()" f(s).
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