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Definition 3.1 (Random variable). Given a probability space (Ω, E , P ), a function X : Ω →
R is called a random variable if X−1(r,∞) ∈ E for all r ∈ R.
Remark. For some S ⊆ R, we denote

P (X ∈ S) = P ({ω ∈ Ω: X(ω) ∈ S}).

Definition 3.2 (Discrete random variable). A random variable which can assume only a
countably infinite number of values is called a discrete random variable.

Example. Let X : Ω → R denote the number of heads obtained when a fair coin is tossed
thrice. Note that Ω = {0, 1, 2, 3}. Thus, P (X = 0) = P (X = 4) = 1/8 and P (X = 1) =
P (X = 2) = 3/8.

Definition 3.3 (Probability distribution). The probability distribution of a random vari-
able X is the set of pairs (X(A), P (A)) for all A ∈ E .

Definition 3.4 (Probability mass function). Let X be a discrete random variable. The
probability mass function of X is the function pX : R → [0, 1],

pX(α) = P (X = α).

Remark. Since X is a discrete random variable, the set S = {x ∈ R : pX(α) > 0} is
countable, and ∑

x∈S
pX(x) = 1.
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Definition 3.5 (Expectation). The expectation of g(X), for g : R → R and a discrete
random variable X is defined as

E [g(X)] =
∑
x∈S

g(x) pX(x),

if the series converges absolutely.

Example. The nth moment of a discrete random variable E [Xn] is defined as

E [Xn] =
∑
x∈S

xn pX(x),

if the series converges absolutely.
The first moment µ = E [X] is called the mean. The second moment σ2 = E

[
(X − µ)2

]
is called the variance. Note that

σ2 =
∑

(x− µ)2 p(x) =
∑

x2 p(x)− 2µx p(x) + µ2p(x).

Simplifying,
σ2 = E

[
X2

]
− E [X]2 .

Definition 3.6 (Cumulative distribution function). The cumulative distribution function
of a random variable X is defined as the function FX : R → [0, 1],

FX(α) = P (X ≤ α).

Definition 3.7 (Continuous random variable). A continuous random variable X is such
that its cumulative distribution function FX is continuous.

Definition 3.8 (Probability density function). Let X be a continuous random variable
with a cumulative distribution function FX . If we write

FX(α) =

∫ α

−∞
fX(x) dx

for all α ∈ R, then fX is a probability density function. If fX is continuous, then the
Fundamental Theorem of Calculus guarantees that fX(x) = F ′

X(x).
Remark. Note that we can write

P (α ≤ X ≤ β) =

∫ β

α
fX(x) dx.

We also demand ∫ +∞

−∞
fX(x) dx = 1.
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Example. The uniform distribution on an interval [a, b] ⊂ R is defined using the probability
density function

fX(x) =

{
1

b−a , if a ≤ x ≤ b

0, otherwise

Definition 3.9 (Expectation). The expectation of g(X), for g : R → R and a continuous
random variable X is defined as

E [g(X)] =

∫ +∞

−∞
g(X) fX(x) dx

if the integral converges absolutely.

Definition 3.10 (Mixed random variable). A random variable whose cumulative distribu-
tion function FX is discontinuous at countably many points, with FX being continuous and
strictly increasing in at least one interval is called a mixed random variable.

Definition 3.11 (Conditional probability distributions). Let X and Y be two random
variables, and let A,B ⊆ R. If P (Y ∈ B) > 0, then

P (X ∈ A |Y ∈ B)P (Y ∈ B) = P (X ∈ A, Y ∈ B).

Definition 3.12 (Independent random variables). We say that X and Y are independent
if

P (X ∈ A, Y ∈ B) = P (X ∈ A)P (Y ∈ B)

for all A,B ⊆ R.

Example. Consider an experiment where a fair die is rolled until a 6 is obtained, and let X
be the random variable denoting the number of throws. Also, let Y be a random variable
which is 1 if the first even outcome is a 6, and 0 otherwise. Observe that P (X = 1) = 1/6
and P (Y = 1) = 1/3. Also, P (X = 1, Y = 1) = 1/6 6= P (X = 1)P (Y = 1), hence X and
Y are not independent random variables.

It can be shown that
P (X = n |Y = 1) =

1

2n
.

Bernoulli distribution
Consider an experiment with one trial, which has two possible outcomes; the probability of a
success is given by p and the probability of a failure is q = 1− p. The discrete random variable
such that X = 1 on success and X = 0 on failure is said to follow the Bernoulli distribution.
Note that the expectation value is simply

E [X] = p.
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Binomial distribution
Consider an experiment with n Bernoulli trials. We could let Xi be a random variable denoting
the outcome of the ith trial, so we demand that {Xi} are independent and identically distributed.
The distribution of the sum X = X1+ · · ·+Xn follows the Binomial distribution B(n, p), where

P (X = k) =

(
n

k

)
pkqn−k.

The expectation value is given by

E [X] =
n∑

k=0

k

(
n

k

)
pkqn−k = np.

This is more easily seen from the linearity of expectation,

E [X] =

n∑
i=1

E [Xi] = np.

Geometric distribution
Consider an experiment where Bernoulli trials are repeated until success. The random variable
denoting the number of trials required is said to follow the geometric distribution, where the
probability that n trials were required is given by

P (X = n) = pqn−1.

Pascal distribution
Consider an experiment where Bernoulli trials are repeated until k successes. The random vari-
able denoting the number of trials required follows the Pascal, or negative binomial distribution.
The probability that n ≥ k trials were required is given by

P (X = n) =

(
n− 1

k − 1

)
pkqn−k.

Note that we choose k − 1 successes from n − 1 trials, since the last trial is by definition a
success.
Remark. This can be derived by noting that if Xi ∼ Geometric(p), then the random variable
X ∼ Pascal(k, p) is simply

X = X1 +X2 + · · ·+Xk,

so for success in n trials, we find P (X = n). This means that we need to sum the probabilities
for all possible Xi = ni, where n =

∑
ni. There are

(
n−1
k−1

)
such solutions, and each of these

solutions must occur with probability pkqn−k, denoting k successes and the remaining n − k
failures.

Hypergeometric distribution
Consider an experiment where we choose n balls randomly from a population of N distinct
balls, of which m are red. The random variable denoting the number of red balls follows the
hypergeometric distribution. The probability of obtaining k ≤ m red balls is given by

P (X = k) =

(
m
k

)(
N−m
n−k

)(
N
n

) .
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Poisson distribution
The probability mass function of the Poisson distribution is given by

P (X = k) =
λk

k!
e−λ,

where k ∈ N. This is generally used to model the number of times an event occurs in a given
interval. This is a limiting form of the binomial distribution. Note that the expectation value
is given by

E [X] =

∞∑
k=0

k · λ
k

k!
e−λ = λ.

In addition, the variance is also given by σ2 = λ.

Exponential distribution
The probability density function of the exponential distribution is given by

fX(x) = λe−λx,

where x ≥ 0 and 0 elsewhere. This is generally used to model the waiting time between
successive events. Note that the expectation value is given by

E [X] =

∫ ∞

0
λxe−λx dx =

1

λ
,

In addition, the variance is given by σ2 = 1/λ2.

Definition 3.13 (Memorylessness). The probability distribution of a non-negative discrete
random variable X is called memoryless if for all m,n ∈ Z≥0,

P (X > m+ n |X > n) = P (X > m).

Remark. This can be written as

P (X > m+ n) = P (X > m)P (X > n).

Again, a continuous random variable Y is called memoryless if for all s, t ≥ 0,

P (X > s+ t |X > t) = P (X > s).

Example. Suppose that X ∼ Geometric(p). Then,

P (X > n) =
∞∑

k=n+1

pqk−1 = qn,

where q = 1− p. Also,

P (X > m+ n,X > n) = P (X > m+ n) = qm+n,

which gives
P (X > m+ n,X > n) = qm · qn = P (X > m)P (X > n).
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Example. Suppose that Y ∼ Exponential(λ). Then,

P (Y > s) =

∫ ∞

s
λe−λt dt = e−λs.

Thus,
P (Y > s+ t) = P (Y > s)P (Y > t).

Normal distribution
The probability density function of the normal distribution is given by

fX(x) =
1

σ
√
2π

e−(x−µ)2/2σ2
.

Exercise 3.1. Consider a continuous random variable with probability density function

f(x) = ce−x2/2.

Determine the constant c.
Solution. Define

I =

∫ +∞

−∞
e−x2/2 dx.

By using two dummy variables x and y, we can write

I2 =

∫ +∞

−∞

∫ +∞

−∞
e−(x2+y2)/2 dx dy.

We can shift to polar coordinates by using the transformations

x = r cos θ, y = r sin θ, dx dy = r dθ dr.

Thus,

I2 =

∫ ∞

0

∫ 2π

0
re−r2/2 dθ dr =

∫ 2π

0
dθ

∫ ∞

0
re−r2/2 dr.

Now, the second integral can be computed as∫ ∞

0
re−r2/2 dr =

∫ ∞

0
e−r2/2 d(r2/2) = −e−r2/2

∣∣∣∞
0

= 1.

Thus, we have

I =

∫ +∞

−∞
e−x2/2 dx =

√
2π.

This is called a Gaussian integral. We must thus have c = 1/
√
2π.
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Exercise 3.2. Find the moments of the standard normal distribution.
Solution. Note that E

[
X2n−1

]
= 0, because the integral

1√
2π

∫ +∞

−∞
x2n−1e−x2/2 dx = 0.

The function we are integrating over is an odd function. Now, we consider the second
moment. Compute∫ +∞

−∞
x2e−x2/2 dx = 2

∫ ∞

0
x2e−x2/2 dx = −2xe−x2/2

∣∣∣∞
0

+ 2

∫ ∞

0
e−x2/2 dx =

√
2π.

Thus, E
[
X2

]
= 1, which means that the variance is also 1. For higher moments, note that∫

x2ne−x2/2 = −x2n−1e−x2/2 + (2n− 1)

∫
x2n−2e−x2/2 dx,

which gives the recurrence

E
[
X2n

]
= (2n− 1)E

[
X2n−2

]
= (2n− 1)!!.

Suppose that Z ∼ Normal(µ, σ2), note that (Z − µ)/σ is a standard normal variable. The
cumulative distribution function of a standard normal variable is

Φ(x) =
1√
2π

∫ x

∞
e−t2/2 dt.

Thus,

P (Z ≤ z) = P

(
Z − µ

σ
≤ z − µ

σ

)
= Φ

(
z − µ

σ

)
.

Thus, we see that

E [(Z − µ)n] =

{
0, if n is odd
σn(n− 1)!!, if n is even

.

Theorem 3.1 (Markov’s inequality). Let X be a non-negative random variable. Then for
all a > 0,

P (X ≥ a) ≤ E [X]

a
.

Proof. Let ua : R≥0 → {0, 1} be a step function where ua(x) = 1 when x ≥ a and 0 otherwise.
Note that

ua(x) ≤
x

a
.

Then,

P (X ≥ a) = E [ua(X)] ≤ E

[
X

a

]
=

E [X]

a
.

The first step follows since

P (X ≥ a) =

∞∑
n=a

P (X = n) =

∞∑
n=0

ua(x)P (X = n) = E [ua(X)]
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for discrete random variables and

P (X ≥ a) =

∫ ∞

a
fX(x) dx =

∫ ∞

0
ua(x)fX(x) dx = E [ua(X)]

for continuous random variables. The second step followed since E [Y ] ≥ 0 for non-negative
random variables Y .

Corollary 3.1.1 (Chebyshev’s inequality). If X is a random variable, then for all a > 0,

P (|X − µ| ≥ a) ≤ σ2

a2
.

Proof. Use Markov’s inequality on the non-negative random variable (X − µ)2.

Definition 3.14 (Covariance). Let X, Y be two random variables. The covariance of X
and Y is defined as

Cov[X,Y ] = E [(X − E [X])(Y − E [Y ])] .

Remark. This can be simplified as

Cov[X,Y ] = E [XY ]− E [X]E [Y ] .

Definition 3.15 (Correlation coefficient). The correlation coefficient is defined as

ρX,Y =
Cov[X,Y ]

σX σY
.

Theorem 3.2 (Weak Law of Large Numbers). Suppose that X1, . . . , Xn are identical and
independent random variables, with mean µ and variance σ2. Define

Xn =
1

n

n∑
i=1

Xi.

Then, E
[
Xn

]
= µ, and Var[Xn] = σ2/n. From Chebyshev,

lim
n→∞

P (|Xn − µ| ≥ ε) = 0.
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Definition 3.16 (Moment generating function). Let X be a random variable such that
E
[
e|tX|] is finite for all t in a neighbourhood of the origin. Then, the moment generating

function for X is defined in this neighbourhood as

MX(t) = E
[
etX

]
= 1 + tE [X] +

1

2
t2E

[
X2

]
+ . . .

Remark. By writing the moment generating function as a Maclaurin series, we see that

dn

dtn
MX(t)

∣∣∣
t=0

= E [Xn] .

Also note that for independent random variables,

MX+Y = MX ·MY .

Example. Consider a Bernoulli random variable X. Its moment generating function is given
by

MX(t) = pet + q.

If Y is a binomial random variable, then its moment generating function is simply

MY (t) = (pet + q)n.

If Z is a Poisson random variable, then

MZ(t) = eλ(e
t−1).

If W is a unit normal random variable, then

MW (t) = et
2/2.

Theorem 3.3. A moment generating function determines its corresponding random vari-
able completely. They are related via the Laplace transform and its inverse.

MX(t) = L{fX}(−t).

Example. Suppose that Xi ∼ Poission(λi), and let X = X1 + · · ·+Xn. Then, the moment
generating function of X must be the product of the moment generating functions of Xi,
so

MX(t) =
∏

eλi(e
t−1) = eλ(e

t−1)

where λ = λ1 + · · · + λn. This is the moment generating function of a Poisson random
variable as well, so X ∼ Poisson(λ).
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Example. Let Xi ∼ Normal(µi, σ
2
i ), and let X = X1 + · · ·+Xn. Note that

MXi(t) = etµi+t2σ2
i /2.

Hence, the moment generating function of the sum is simply

MX(t) = etµ+t2σ2/2,

where µ = µ1 + · · ·+ µn and σ2 = σ2
1 + · · ·+ σ2

n. Thus, X ∼ Normal(µ, σ2).

Theorem 3.4 (Central Limit Theorem). Let X1, . . . , Xn be identical and independent ran-
dom variables with mean µ and variance σ2. Then, the distribution of (X − µ)/(σ/

√
n)

tends to the standard normal distribution as n → ∞.

lim
n→∞

P

(
X − µ

σ/
√
n

≤ a

)
= Φ(a).

Proof. Note that
X − µ

σ/
√
n

=
1√
n

n∑
i=1

Yi,

where Yi = (Xi − µ)/σ. Let M(t) be the moment generating function of Yi, so the correspond-
ing moment generating function for Yi/

√
n is given as M(t/

√
n). Since Yi are identical and

independent, this means that the moment generating function of the sum must be (M(t/
√
n))n.

Setting L(t) = logM(t), we have L(0) = 0. Also, E [Yi] = 0 and Var[Yi] = 1, so L′(0) = 0 and
L′′(0) = 1. We wish to show that the moment generating function ((M(t/

√
n)))n tends to et

2/2

as n → ∞, i.e.
lim
n→∞

nL(t/
√
n) = t2/2.

Setting x = 1/
√
n and applying L’Hôpital’s rule twice,

lim
n→∞

nL(t/
√
n) = lim

x→0

L(tx)

x2
= lim

x→0

tL′(tx)

2x
= lim

x→0

t2L′′(tx)

2
= t2/2.
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