MA2202: PROBABILITY I **Conditional probability**

Spring 2021

Satvik Saha 19MS154

Indian Institute of Science Education and Research, Kolkata, Mohanpur, West Bengal, 741246, India.

Suppose a fair die is rolled and the outcome is even. The probability that the outcome was prime is 1/3. This is because the only even prime is 2, and we know that we have rolled one of 2, 4 or 6, all of which are equally likely.

Definition 2.1 (Conditional probability)**.** Suppose a random experiment is performed, and we know that an event B occurred. Let $A \in \mathcal{E}$. The probability of occurrence of A given B is called the conditional probability $P(A | B)$.

Remark. Note that the conditional probability A given B is equivalent to the occurrence of $A \cap B$ computed relative to the probability of the occurrence of B.

$$
P(A | B) P(B) = P(A \cap B).
$$

Lemma 2.1. If A_1, \ldots, A_n are exhaustive and pairwise mutually exclusive events such that $P(A_i) > 0$ *, and* $B \in \mathcal{E}$ *, then*

$$
P(B) = \sum_{i=1}^{n} P(A_i) P(B | A_i).
$$

Theorem 2.2 (Bayes' Theorem). *If* $A, B \in \mathcal{E}$ *with* $P(B) \neq 0$ *, we have*

$$
P(A | B) = \frac{P(A)}{P(B)} P(B | A).
$$

Proof. This follows directly from

$$
P(A \cap B) = P(A | B) P(B) = P(B | A) P(A).
$$

 \Box

Example. Suppose a fair die is rolled and the outcome is even. The probability that the outcome is prime is $1/3$. This is because the only even prime is 2, the available even numbers are 2, 4, 6, and the available primes are 2, 3, 5. Thus,

$$
P(\text{prime}|\text{even}) = \frac{P(\text{even})}{P(\text{prime})}P(\text{even}|\text{prime}) = \frac{3/6}{3/6} \cdot \frac{1}{3} = \frac{1}{3}.
$$

Corollary 2.2.1. *If* A_1, \ldots, A_n *are exhaustive and mutually exclusive with* $P(A_i) > 0$ *, and* $B \in \mathcal{E}$ *such that* $P(B) > 0$ *, then*

$$
P(A_j | B) = \frac{P(A_j) P(B | A_j)}{\sum_{i=1}^{n} P(A_i) P(B | A_i)}.
$$

Example. Suppose that a test for a certain disease has a sensitivity of 90% and a specificity of 80%. This means that it correctly identifies a positive 90% of the time, and incorrectly shows a positive for a healthy individual 20% of the time. Also suppose that 5% of the population suffer from this disease.

We note that the probability that a randomly selected person has this disease is $P(D)$ = 0.05. Now, the probability that an infected person gets a positive test result is $P(+|D) =$ 0.9. The probability that an uninfected person gets a positive test result is $P(+ | ND) = 0.2$. Thus, we use Bayes' Theorem to obtain the probability that a person has the disease, given that they test positive.

$$
P(D \mid +) = \frac{P(+ \mid D) P(D)}{P(+ \mid Infected) P(D) + P(+ \mid ND) P(ND)}
$$

=
$$
\frac{0.9 \times 0.05}{0.9 \times 0.05 + 0.2 \times 0.95}
$$

$$
\approx 19\%.
$$

This is surprisingly low. This is because of the high rate of false positives — in a population of 1000 people, there will only be 50 infected people of which $0.9 \times 50 \approx 45$ are identified, but $0.2 \times 950 \approx 200$ healthy people who incorrectly test positive. Thus, of the ≈ 245 positive results, only 45 are genuine, giving an approximate probability $1/5 \approx 20\%$ of having the disease, given a positive test.

The situation changes when we run the test again. The probability that a person has the disease given *two* positive tests is given by

$$
P(D \mid ++) = \frac{P(D)}{P(++)} P(++ \mid D)
$$

=
$$
\frac{0.9^2 \times 0.05}{0.9^2 \times 0.05 + 0.2^2 \times 0.95}
$$

\approx 52%.

Intuitively, when we look at the 245 people who tested positive the first time, around $0.2\times200 \approx 40$ people will be false positives the second time around, while around $0.9\times45 \approx$ 41 people will be true positives. Thus, the probability that a person has the disease given two positive tests is just above 50%.

Note that this gives us a quick way of estimating probabilities; after three tests, we expect around $0.2 \times 40 \approx 8$ false positives and $0.9 \times 41 \approx 37$ true positives, so 37 out of 45 people who test positive three times have the disease. This gives a probability of around 82% that a person who tests positive thrice actually has the disease.

Observe that when testing for a disease with low prevalence, the specificity becomes much more significant than the sensitivity.

Definition 2.2 (Independent events). If $A, B \in \mathcal{E}$ such that $P(A), P(B) \neq 0$, and we have

 $P(A | B) = P(A), \qquad P(B | A) = P(B),$

then we say that A and B are independent.

Equivalently, $P(A \cap B) = P(A)P(B)$.

Example. Suppose a die is rolled twice. The probability that the first roll is a 4 is $1/6$, and so is the probability that the second roll is a 2. Now, if we were given that the first roll was a 4, it wouldn't affect the likelihood of the second roll being a 2, and vice versa. Thus, the probability of obtaining a 4 and 2 in succession is simply $(1/6)^2 = 1/36$. The two rolls are independent.

Definition 2.3 (Pairwise independent events). A set of events $S \subseteq \mathcal{E}$ is called pairwise independent if the events A and B are independent for all $A, B \in S$.

Definition 2.4 (Mutually independent events). The set of events A_1, \ldots, A_n is called mutually independent if

$$
P\left(\bigcap_{i\in I} A_i\right) = \prod_{i\in I} P(A_i)
$$

for all subsets $I \subseteq \{1, \ldots, n\}.$

Remark. A set of mutually independent events is always pairwise independence, since we must have $P(A_i \cap A_j) = P(A_i) P(A_j)$ for all $1 \leq i, j \leq n$. The converse is not true.