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Definition 1.1 (Experiment). An experiment is an act which can be repeated under similar
conditions.

Example. Tossing a fair coin constitutes an experiment. Here, the possible outcomes of the
experiment are ‘heads’ or ‘tails’.

Definition 1.2 (Random experiment). A random experiment is one where there is more
than one possible outcome, and the outcome of the experiment cannot be determined be-
forehand.

Example. A coin toss, or the roll of a die is typically regarded as a random experiment.

Definition 1.3 (Sample space). A sample space Ω is the set of all outcomes of an experi-
ment.

Example. The sample space of rolls of a single die is Ω = {1, 2, 3, 4, 5, 6}. Note that this is
a finite, discrete sample space.

Example. In a game of guessing a particular natural number, the sample space is the set of
all natural numbers N. Note that this is an infinite, discrete sample space.

Example. The temperature in a room may vary continuously. Thus, the sample space of
temperatures is a continuous sample space.
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Definition 1.4 (Events). A set of events E is a collection of measurable subsets of a sample
space such that Ω ∈ E , it is closed under complementing, and it is closed under countable
unions.
Remark. Formally, the event space E ⊆ P(Ω) forms a σ-algebra. The pair (Ω, E) is called
a measurable space.

Example. We may have E = {∅, {2, 4, 6}, {1, 3, 5},Ω} as our set of events in the case of
rolling a die. Obtaining an even number is an event.

Note that the set of events is also closed under countable intersections, because for a count-
able set of events {En}n, we have

∞⋂
n=1

En =

( ∞⋃
n=1

Ec
n

)c

by De Morgan’s Law, and Ec
n ∈ E .

Definition 1.5 (Probability). A probability measure is a function P : E → [0, 1] such that
P (∅) = 0, P (Ω) = 1, and for any countable collection of pairwise disjoint events {En}n, we
have

P (E) =
∞∑
n=1

P (En), E =
∞⋃
n=1

En.

Note that we obtain the relation

P (Ac) = 1− P (A)

directly by noting that A ∪Ac = Ω and P (Ω) = 1.

Definition 1.6 (Probability space). A probability space (Ω, E , P ) consists of a sample space
Ω together with a set of events E and a probability measure P .

Example. In the context of a coin toss, set Ω = {H,T}, E = {∅, {H}, {T}, {H,T}} and
define P : E → [0, 1] such that P (H) = P (T ) = 1/2. It can be verified that E is a σ-algebra
and that P is a probability measure, so the triple (Ω, E , P ) is indeed a probability space.

Definition 1.7 (Equally likely events). Two events A,B ∈ E are said to be equally likely
if P (A) = P (B).

The classical definition of probability states that if the sample space Ω consists of N equally
likely events, then the probability of an event E ∈ E is given by

P (E) =
|E|
N

.
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Note that this assumes that the notion of equally likely events is known beforehand.

The frequency definition of probability involves performing an experiment n times, denoting
fn(E) as the frequency of the event E over these iterations, and defining

P (E) = lim
n→∞

fn(E)

n
.

Note that such a limit may not always be well defined.

Definition 1.8 (Mutually exclusive events). Two events A,B ∈ E are called mutually
exclusive if A ∩B = ∅.

Definition 1.9 (Exhaustive events). A set of events S ⊆ E is called exhaustive if

Ω =
⋃
E∈S

E.

Example. For any event A ∈ E , we see that A and Ac are mutually exclusive and exhaustive.

Theorem 1.1 (Principle of Inclusion and Exclusion). For events A1, A2, . . . , An ∈ E, we
have

P (A1 ∪ · · · ∪An) =
∑

P (Ai)−
∑
i<j

P (Ai ∩Aj)+∑
i<j<k

P (Ai ∩Aj ∩Ak)− · · ·+ (−1)n−1P (A1 ∩ . . . An).

Proof. This follows by induction. The base case of n = 2 states

P (A1 ∪A2) = P (A1) + P (A2)− P (A1 ∩A2),

which follows form the fact that the sets A1 \A2, A1 ∩A2 and A2 \A1 are pairwise disjoint.
For the induction step, assume that the expansion holds for n = m ≥ 2 and note that

P

(
Am+1 ∩

m⋃
i=1

Ai

)
= P

(
m⋃
i=1

Ai ∩Am+1

)
.

Putting the n = m+ 1 case into the n = 2 case and expanding the above n = m case, the full
expansion will follow.

Theorem 1.2 (Boole’s inequality). For events A1, A2, . . . , An ∈ E, we have

P (A1 ∪ . . . An) ≤
∑

P (Ai).
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Proof. This is clearly true for n = 2, since

P (A1 ∪A2) = P (A1) + P (A2)− P (A1 ∩A2) ≤ P (A1) + P (A2).

Define

Bi = Ai \
i−1⋃
j=1

Aj .

Note that ∪Bi = ∪Ai, and all Bi are pairwise disjoint. In addition, Bi ⊆ Ai, so P (Bi) ≤ P (Ai).
Thus,

P (A1 ∪ · · · ∪A2) =
∑

P (Bi) ≤
∑

P (Ai).

Theorem 1.3 (Bonferroni’s inequality). For events A1, A2, . . . , An ∈ E, we have

P (A1 ∩ · · · ∩An) ≥
∑

P (Ai)− (n− 1).

Proof. This holds for n = 2, since

P (A1 ∩A2) = P (A1) + P (A2)− P (A1 ∪A2) ≥ P (A1) + P (A2)− 1.

For the induction step, suppose this holds for n = m ≥ 2. Thus,

P (A1 ∩ · · · ∩Am ∩Am+1) ≥ P (A1 ∩ · · · ∩Am) + P (Am)− 1 ≥
∑

P (Ai)−m.
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