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Exercise 1 If the probability distribution of a non-negative discrete random variable X is memoryless,
show that X ∼ Geometric(p) for some p ∈ [0, 1].

Solution Set P (X = 1) = p ∈ [0, 1] and q = 1− p. Now, the memorylessness of X means that for all
m,n ∈ N0,

P (X > m+ n |X > n) = P (X > m), P (X > m+ n) = P (X > m)P (X > n).

We claim that
P (X > n) = qn

for all n ∈ N. First, note that

1 = P (X > 0 |X > 0) = P (X > 0), P (X = 0) = 1− P (X > 0) = 0,

so
P (X > 1) = 1− (P (X = 0) + P (X = 1)) = 1− p = q1,

which establishes our base case. Now, if P (X > k) = qk for some k > 1, then

P (X > k + 1) = P (X > k)P (X > 1) = qk · q = qk+1,

which establishes P (X > n) = qn by induction. Now,

P (X = n) = P (X > n− 1)− P (X > n) = qn−1 − qn = (1− q)qn−1 = pqn−1,

which means that X ∼ Geometric(p) as desired.

Exercise 2 If the probability distribution of a non-negative continuous random variable X is memo-
ryless, show that X ∼ Exponential(λ) for some λ > 0.

Solution Choose λ ≥ 0 such that P (X > 1) = e−λ < 1. The memorylessness of X means that for all
s, t > 0,

P (X > s+ t |X > t) = P (X > s), P (X > s+ t) = P (X > s)P (X > t).

We claim that the cumulative distribution function of X must be of the form

P (X > s) = e−λs.

First, note that P (X ≥ 0) = P (X > 0) = 1 from the non-negativity of X. Also, P (X > 1) = e−λ. To
show this holds for all natural numbers, suppose that P (X > k) = e−λk for some k ∈ N. Then,

P (X > k + 1) = P (X > k)P (X > 1) = e−λk · e−λ = e−λ(k+1)

which establishes P (X > n) = e−λn for all n ∈ N0. Now, for any real number x and m ∈ N, note that

P (X > mx) = P (X > x) · P (X > (m− 1)x) = · · · = [P (X > x)]
m
.

This means that for any rational p/q where p, q ∈ N, we have

P (X > p) = [P (X > p/q)]
q
, P (X > p/q) = [P (X > p)]

1/q
=

[
e−λp

]1/q
= e−λp/q,
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so P (X > r) = e−λr for all positive rationals r ∈ Q+. Now, the rationals are dense in the reals
and the cumulative distribution function of a continuous random variable is continuous (hence so is
P (X > x) = 1− P (X ≤ x)). This means that we can find a sequence of rationals rn → x, so

P (X > x) = lim
n→∞

P (X > rn) = lim
n→∞

e−λrn = e−λx.

Thus, P (X > x) = e−λx for all non-negative real numbers x ∈ R+. Furthermore, note that

P (X ≤ x) = 1− e−λx =

∫ x

0

λe−λt dt =

∫ +∞

−∞
λe−λt u(t) dt,

where u(t) is the step function which assumes the value 0 for all x < 0 and 1 for all x ≥ 0. Thus, we
have found a probability density function

fX(x) = λe−x u(x),

which is precisely that of an exponential distribution. Hence, X ∼ Exponential(λ). Finally, we eliminate
λ = 0 since that gives an identically zero probability density function.

Exercise 3 Let X be a random variable. Find E[X] in each of the following cases.

(a) X ∼ Geometric(p).
(b) X ∼ Poisson(λ).
(c) X ∼ Exponential(λ).
(d) X ∼ Pascal(n, p).

Solution We state and prove the following lemma.

Lemma. If X is a non-negative discrete random variable with finite expectation, then

E[X] =
∞∑

n=0

P (X > n).

Proof. Note that
P (X > n− 1) = P (X = n) + P (X > n).

Thus,

E[X] =
∞∑

n=1

nP (X = n) =
∞∑

n=1

n [P (X > n− 1)− P (X > n)] =
∞∑

n=1

nP (X > n− 1)−
∞∑

n=1

nP (X > n).

Reshuffling indices,

E[X] =

∞∑
n=0

(n+ 1)P (X > n)−
∞∑

n=1

nP (X > n) = P (X > 0) +

∞∑
n=1

(n+ 1− n)P (X > n),

which gives

E[X] =

∞∑
n=0

P (X > n).

(a) We have the probability mass function

P (X = n) = pqn−1,

where q = 1− p and n = 1, 2, . . . . Now,

P (X > n) =

∞∑
k=n+1

pqk−1 = pqn · 1

1− p
= qn.

Thus,

E[X] =

∞∑
n=0

P (X > n) =

∞∑
n=0

qn =
1

1− q
=

1

p
.

Note that p > 0.
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(b) We have the probability mass function

P (X = n) =
λn

n!
e−λ.

Now,

E[X] =

∞∑
n=1

n · λ
n

n!
e−λ = λe−λ

∞∑
n=1

λn−1

(n− 1)!
= λe−λeλ = λ.

(c) We have the probability density function

fX(x) = λe−λx.

Thus,

E[X] =

∫ ∞

0

x fX(x) dx =

∫ ∞

0

λxe−λx dx = −
���

��
xe−λx

∣∣∣∞
0

+

∫ ∞

0

e−λx dx =
1

λ
e−λx

∣∣∣∞
0

=
1

λ
.

(d) We have the probability mass function

P (X = k) =

(
k − 1

n− 1

)
pnqk−n

where q = 1 − p and k ≥ n. Now, note that X ∼ Pascal(n, p) represents the number of Bernoulli
trials required for getting n successes. If Xi ∼ Geometric(p), then each Xi denotes the number of
Bernoulli trials until 1 success. Thus, we can write

X = X1 +X2 + · · ·+Xn,

since the total number of trials must add up. The set of Xi contains identical and independent
random variables. Using linearity of expectation (shown in the next problem),

E[X] =

n∑
k=1

E[Xk] =
n

p
.

Exercise 4

(a) Let X1, X2, . . . , Xn be random variables which are all defined on the same sample space Ω, each of
which has finite expectation. Show that

E[a1X1 + · · ·+ anXn] = a1E[X1] + · · ·+ anE[Xn]

for all a1, a2, . . . , an ∈ R.
(b) Deduce the expectation value of a Binomial random variable from the expectation of a Bernoulli

random variable.

Solution

(a) First, let Xi be discrete random variables. Now, for discrete variables X and Y and a ∈ R,

E[aX] =
∑
x

(ax)P (aX = ax) = a
∑
x

xP (X = x) = aE[X],

and

E[X + Y ] =
∑
x,y

(x+ y)P (X = x, Y = y)

=
∑
xy

xP (X = x, Y = y) +
∑
xy

y P (X = x, Y = y)

=
∑
x

xP (X = x) +
∑
y

y P (Y = y)

= E[X] + E[Y ].
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We have used the fact that∑
xy

xP (X = x, Y = y) =
∑
x

x
∑
y

P (X = x, Y = y) =
∑
x

xP (X = x).

Using these two rules finitely many times, we have

E[a1X1+a2X2+ · · ·+anXn] = a1E[X1]+E[a2X2+ · · ·+anXn] = · · · = a1E[X1]+ · · ·+anE[Xn].

Now, let Xi be continuous random variables. Again,

E[aX] =

∫
R
ax fX(x) dx = aE[X].

Also,

E[X + Y ] =

∫∫
R2

(x+ y) fX,Y (x, y) dx dy

=

∫∫
R2

x fX,Y (x, y) dx dy +

∫∫
R2

y fX,Y (x, y) dy dx

=

∫
R
x fX(x) dx+

∫
R
y fY (y) dy

= E[X] + E[Y ].

Here, we have used ∫
R
fX,Y (x, y) dy = fX(x).

Like before, we use these two rules finitely many times to get

E[a1X1 + a2X2 + · · ·+ anXn] = · · · = a1E[X1] + · · ·+ anE[Xn].

(b) Note that if X ∼ Binomial(n, p), we can write it as the sum of Xi ∼ Bernoulli(p) as

X = X1 + · · ·+Xn.

The expectation of a Bernoulli random variable is

E[Xi] = 0 · (1− p) + 1 · p = p.

Thus, linearity of expectation gives the expectation of the Binomial random variable as

E[X] =

n∑
k=1

E[Xk] = np.
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