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Definition 3.1 (Partition). A partition P of an interval [a, b] is a finite sequence of numbers

a = x0 < x1 < · · · < xn−1 < xn = b.

The norm of a partition is defined as

‖P‖ = max |xj+1 − xj |.

Definition 3.2 (Tagged partition). A tagged partition Ṗ (xj , ξj) is a partition P together
with a set of numbers ξj such that ξj ∈ [xj , xj+1].

Definition 3.3 (Riemann sum). The Riemann sum of a function f on an interval [a, b]
with respect to a tagged partition Ṗ is defined as

S(f, Ṗ ) =

n−1∑
j=0

f(ξj)(xj+1 − xj).

Definition 3.4 (Riemann integral). A function f is called Riemann integrable on an in-
terval [a, b] if there is some ` ∈ R where for every ε > 0, there exists δ > 0 such that all
tagged partitions Ṗ of [a, b] with ‖Ṗ‖ < δ satisfy

|S(f, Ṗ )− `| < ε.

The number ` is the value of the Riemann integral,∫ b

a
f = `.
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Theorem 3.1. If a function is Riemann integrable on an interval, then the value of the
integral is unique.

Proof. Let f be Riemann integrable on [a, b], with integral values ` and `′. Then, for every
ε > 0, we find δ > 0 such that for all tagged partitions Ṗ with ‖Ṗ‖ < δ,

|S(f, Ṗ )− `| < ε

2
, |S(f, Ṗ )− `′| < ε

2
.

Note that such a partition Ṗ always exists. Thus,

|`− `′| ≤ |S(f, Ṗ )− `|+ |S(f, Ṗ )− `′| < ε

for all ε > 0, which forces ` = `′.

Theorem 3.2. If f is Riemann integrable on [a, b], then f is bounded on that interval.
Furthermore, if M > 0 is such that |f(x)| ≤ M for all x ∈ [a, b], then

−M(b− a) ≤
∫ b

a
f ≤ M(b− a).

Proof. Suppose not. Let the Riemann integral of f on [a, b] be `. For ε = 1, we find δ > 0 such
that for all tagged partitions Ṗ of [a, b] with ‖Ṗ‖ < δ, we have |S(f, Ṗ ) − `| < 1. This means
that

S(f, Ṗ ) < |`|+ 1.

Let Q = {x0, . . . , xn} be such a partition. The unboundedness of f means that we can find a
subinterval [xk, xk+1] where f is unbounded. Now, choose tags ξj creating the tagged partition
Q̇. We choose the tag ξk ∈ [xk, xk+1] such that

|f(ξk)(xk+1 − xk)| > |`|+ 1 + |
∑
j 6=k

f(ξj)(xj+1 − xj)|.

Now, observe that the triangle inequality demands

|S(f, Q̇)| ≥ |f(ξk)(xk+1 − xk)| − |
∑
j 6=k

f(ξj)(xj+1 − xj)| > |`|+ 1,

which is a contradiction. Thus, f must be bounded on [a, b].

Next, for any tagged partition Ṗ of [a, b], we have

|S(f, Ṗ )| ≤
n−1∑
j=0

|f(ξj)|(xj+1 − xj) ≤ M(b− a).

Let the Riemann integral of f be `. Thus, for all ε > 0, we find δ > 0 such that for all tagged
partitions Ṗ with ‖Ṗ‖ < δ,

||S(f, Ṗ )| − |`|| ≤ |S(f, Ṗ )− `| < ε.

This gives
|`| < |S(f, Ṗ )|+ ε ≤ M(b− a) + ε.

Since this holds for all ε > 0, we may write

|`| ≤ M(b− a).
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Theorem 3.3. If f is Riemann integrable on [a, b], and Ṗn is any sequence of tagged
partitions of [a, b] such that ‖Ṗn‖ → 0, then∫ b

a
f = lim

n→∞
S(f, Ṗn).

Proof. Let ε > 0. We find δ > 0 such that for all tagged partitions Ṗ with ‖Ṗ‖ < δ, we have

|S(f, Ṗ )−
∫ b

a
f | < ε.

Now, since ‖Ṗn‖ → 0, we can choose N ∈ N such that for all n ≥ N , ‖Ṗn‖ < δ. Thus, for all
n ≥ N ,

|S(f, Ṗn)−
∫ b

a
f | < ε.

In other words, ∫ b

a
f = lim

n→∞
S(f, Ṗn).

Definition 3.5 (Refinement). A partition P̃ is said to be a refinement of a partition P if
P ⊂ P̃ .

Definition 3.6 (Common refinement). Given two partitions P1 and P2 of an interval [a, b],
we say that P̃ is their common refinement if P1 ∪ P2 ⊂ P̃ .

Definition 3.7 (Darboux sums). Given a partition P of [a, b] and a bounded function f ,
define

mj = inf
t∈[xj ,xj+1]

f(t), Mj = sup
t∈[xj ,xj+1]

f(t).

The lower and upper Darboux sums are defined as

L(f, P ) =

n−1∑
j=0

mj(xj+1 − xj), U(f, P ) =

n−1∑
j=0

Mj(xj+1 − xj).

Lemma 3.4. If P is a partition of an interval [a, b], then

L(f, P ) ≤ U(f, P ).

Proof. This follows directly from the fact that the infimum is less than or equal to the supremum,
i.e. mj ≤ Mj .
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Theorem 3.5. Let P̃ be a refinement of a partition P of an interval [a, b]. Then,

L(f, P ) ≤ L(f, P̃ ) ≤ U(f, P̃ ) ≤ U(f, P )

Proof. Suppose that
P = {x0, . . . , xk, xk+1, . . . , xn},

P̃ = {x0, . . . , xk, y, xk+1, . . . , xn}.

Set
m1 = inf

t∈[xk,y]
f(t), m2 = inf

t∈[y,xk+1]
f(t), m = inf

t∈[xk,xk+1]
f(t).

Then, observe that

L(f, P̃ )− L(f, P ) = m1(y − xk) +m2(xk+1 − y)−m(xk+1 − xk).

Now, from the properties of the infimum, m1 ≥ m and m2 ≥ m, so

L(f, P̃ )− L(f, P ) ≥ m(y − xk + xk+1 − y − xk+1 + xk) = 0.

This procedure of adding one point can be repeated finitely many times to obtain the same
conclusion for any refinement of P . The case for the upper sum is analogous.

Corollary 3.5.1. For any two partitions P1 and P2 of [a, b],

L(f, P1) ≤ U(f, P2).

Proof. Note that P1 ∪ P2 is a common refinement of P1 and P2, hence

L(f, P1) ≤ L(f, P1 ∪ P2) ≤ U(f, P1 ∪ P2) ≤ U(f, P2).

Corollary 3.5.2. If {Pn} is a sequence of refinements of a partition P0 of [a, b], then the
following limits exist.

Lf,Pn = lim
n→∞

L(f, Pn), Uf,Pn = lim
n→∞

U(f, Pn).

Proof. This follows from the monotone convergence theorem, together with the fact that U(f, P0)
and L(f, P0) are upper and lower bounds of the two respective sequences.

Corollary 3.5.3. The following quantities exist, where the infimum and supremum is taken
over all possible partitions P of [a, b].

Lf = supL(f, P ), Uf = inf U(f, P ).

Furthermore, for any partition P ,

L(f, P ) ≤ Lf ≤ Uf ≤ U(f, P ).
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Proof. First examine the set of all lower Darboux sums, {L(f, P )}. This set is non-empty, since
any partition of [a, b] gives a corresponding lower sum. Note that we have already demanded
that f is bounded! This set is also bounded above, by any upper sum. Thus, the complete-
ness of the reals guaranteed the existence of a supremum. The case for upper sums is analogous.

The outermost inequalities trivially follow from the definitions of the infimum and supremum.
The middle inequality follows from the fact that if A and B are two subsets of R such that
α ∈ A, β ∈ B implies α ≤ β, then supA ≤ inf B.

Definition 3.8 (Darboux integrals). The lower and upper Darboux integrals of a function
f are defined as

Lf = supL(f, P ), Uf = inf U(f, P ).

Here, the infimum and supremum is taken over all possible partitions P of [a, b].
If Lf = Uf , then the common integral is simply called the Darboux integral,∫ b

a
f = Lf = Uf .

Such a function f is called Darboux integrable.

Theorem 3.6. A function f is Darboux integrable on [a, b] if and only if for every ε > 0,
there exists a partition P such that

U(f, P )− L(f, P ) < ε.

Proof. First, assume that given ε > 0, there exists a partition P such that

U(f, P )− L(f, P ) < ε.

By the previous corollary,
Uf − Lf ≤ U(f, P )− L(f, P ) < ε

for all > 0, so Uf = Lf giving Darboux integrability.

Now, suppose that f is Darboux integrable on [a, b]. This means that Uf = Lf . Using the
definitions of supremum and infimum, for ε > 0, there exists a partition P1 such that U(f, P1)−
Uf < ε/2 and a partition P2 such that Lf − L(f, P2) < ε/2. Adding,

U(f, P1)− L(f, P2) < ε.

Now, setting P = P1 ∪ P2 as a common refinement of P1 and P2, we have

U(f, P )− L(f, P ) < U(f, P1)− L(f, P2) < ε.

Lemma 3.7. Let f be bounded on [a, b], and let P ′ be any partition of that interval. Then
for every ε > 0, there exists a δ > 0 such that for all partitions P with ‖P‖ < δ,

U(f, P )− U(f, P ∪ P ′) < ε.
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Proof. Using the boundedness of f , choose M ∈ R such that |f(x)| < M for all x ∈ [a, b].
Suppose that P ′ = {x1, . . . , xn}. Set δ = ε/4nM . Now, let P be any partition of [a, b] with
‖P‖ < δ. Write P = {yi}, and P ∪ P ′ = {zi} where all these sets are ordered. Now, note that
if one of the subintervals [zj , zj+1] does not contain a point xi, then the term Mj(yj+1 − yj)
cancels from U(f, P ) − U(f, P ∪ P ′). Whenever there is an xi in [zj , zj+1], we have a term of
the form

Mj(yj+1 − yj)−M ′(xi − yj)−M ′′(yj+1 − xi),

where M ′,M ′′ are the supremums over the two pieces, each less than M . This means that this
term is bounded by 4Mδ. Since this can happen at most n times,

U(f, P )− U(f, P ∪ P ′) < 4nMδ = ε.

Theorem 3.8. Riemann and Darboux integrability are equivalent and assign the same value
to the integrals.

Proof. First assume that f is Riemann integrable on [a, b]. By Theorem 3.2, f is bounded so
the Darboux upper and lower sums are well defined. Given ε > 0, we seek a partition P such
that

U(f, P )− L(f, P ) < ε.

Now, Riemann integrability guarantees the existence of a δ > 0 such that for all tagged partitions
Ṗ with ‖Ṗ‖ < δ,

|S(f, P )− `| < ε

3

where ` is the value of the Riemann integral. Choose P with n subintervals. Now, let Ṗξ be
tagged with ξj and Ṗζ be tagged with ζj . From the definitions of the infimum and supremum,
we choose our tags such that

f(ξj)−mj <
ε

6(b− a)
, Mj − f(ζj) <

ε

6(b− a)
.

This gives
Mj −mj < f(ξj)− f(ζj) +

ε

3(b− a)
.

Thus,

U(f, P )− L(f, P ) <

n−1∑
j=0

(
f(ξj)− f(ζj) +

ε

3(b− a)

)
(xj+1 − xj)

< S(f, Ṗξ)− S(f, Ṗζ) +
ε

3(b− a)
· (b− a)

< |S(f, Ṗξ)− `|+ |`− S(f, Ṗζ)|+
ε

3
< ε.

This proves that f is Darboux integrable on [a, b], i.e. Uf = Lf . We now wish to show that
Uf = Lf = `. Let ε > 0. Using the properties of the infimum and supremum, we find partitions
P1, P2 and Ṗ3 such that

Lf − L(f, P1) <
ε

6
, U(f, P2)− Uf <

ε

6
, |S(f, Ṗ3)− `| < ε

3
.

Setting P = P1 ∪ P2 ∪ P3,

Lf − L(f, P ) <
ε

6
, U(f, P )− Uf <

ε

6
, |S(f, Ṗ )− `| < ε

3
.
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Now,
L(f, P ) ≤ S(f, Ṗ ) ≤ U(f, P ) < L(f, P ) +

ε

3
.

This means that S(f, Ṗ )− L(f, P ) < ε/3. Now,

|`− Lf | ≤ |`− S(f, Ṗ )|+ |S(f, Ṗ )− L(f, P )|+ |L(f, P )− Lf | < ε.

This forces Uf = Lf = `.

Now assume that f is Darboux integrable on [a, b]. This means that Uf = Lf . For ε > 0, choose
a partition P ′ such that

U(f, P ′)− Uf <
ε

2
.

Set δ1 = ε/8nM , and use our previous lemma to conclude that for any partition P of [a, b] with
‖P‖ < δ1,

U(f, P ) < U(f, P ∪ P ′) +
ε

2
≤ U(f, P ′) +

ε

2
< Uf + ε.

Similarly, we can choose δ2 > 0 such that for all partitions P with ‖P‖ < δ2,

L(f, P ) > Lf − ε.

Setting δ = min{δ1, δ2}, we have

Lf − ε < L(f, P ) < S(f, Ṗ ) < U(f, P ) < Uf + ε.

Thus, for all tagged partitions Ṗ with ‖Ṗ‖ < δ, we have

|S(f, Ṗ )− Uf | < ε.

Theorem 3.9. Any real continuous function on [a, b] is Riemann integrable.

Proof. Note that any continuous function on a compact interval is uniformly continuous. Thus,
for ε > 0, there exists δ > 0 such that for all x, y ∈ [a, b], we have

|f(x)− f(y)| < ε

b− a
.

Now, construct a partition of [a, b] which divides the interval into equal subintervals of length
(b− a)/n, where n is chosen such that ‖P‖ < δ. This immediately gives

U(f, P )− L(f, P ) =

n−1∑
j=0

(Mj −mj) ·
1

n
(b− a) ≤ n · ε

b− a
· b− a

n
= ε.

Theorem 3.10. Any bounded, monotone function on [a, b] is Riemann integrable.

Proof. Without loss of generality, suppose that f is monotonically increasing. Now, f on each
interval attains its minimum and maximum at the endpoints, so

U(f, P )− L(f, P ) =

n−1∑
j=0

(f(xj+1)− f(xj))(xj+1 − xj).

Let ε > 0. Choose P such that each subinterval has length (b − a)/n. Since f is bounded on
[a, b], we can choose n to be sufficiently large such that

U(f, P )− L(f, P ) = (f(b)− f(a))
b− a

n
< ε.
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Theorem 3.11. Let f be Riemann integrable on [a, b], and let g be such that g(x) = f(x)
for all x ∈ [a, b] \ {c}, and f(c) 6= g(c) for some c ∈ [a, b]. Then, g is also Riemann
integrable on [a, b].

Proof. Let the integral of f on [a, b] be `. For ε > 0, let δ > 0 be such that for all tagged
partitions Ṗ with ‖Ṗ‖ < δ, we have

|S(f, Ṗ )− `| < ε

2
.

Now, note that
|S(f, Ṗ )− S(g, Ṗ )| ≤ 2δ|f(c)− g(c)|.

This is because c can be a tag of at most 2 subintervals. Relabelling δ such that 2δ|f(c)−g(c)| <
ε/2, we see that for all tagged partitions Ṗ with ‖Ṗ‖ < δ,

|S(g, Ṗ )− `| ≤ |S(g, Ṗ )− S(f, Ṗ )|+ |S(f, Ṗ )− `| < ε.

Corollary 3.11.1. Let f be Riemann integrable on [a, b], and let g be such that g(x) = f(x)
on all but finitely many points in [a, b]. Then, g is also Riemann integrable on [a, b].

Theorem 3.12. Let f be a bounded function with a single point of discontinuity in [a, b].
Then, f is Riemann integrable on [a, b].

Proof. Let c ∈ [a, b] be the point of discontinuity. From the boundedness of f , choose M such
that |f(x)| < M for all x ∈ [a, b]. Now, for ε > 0, choose a partition of [a, b] such that the
subinterval containing c has length at most ε/2M . The continuity and boundedness of f on
the remaining subintervals means that it is Riemann integrable on them, so we can repartition
them with P ′ such that U(f, P ′)− L(f, P ′) < ε/2. Thus, the difference in the upper and lower
sums for the total partition P is bounded as

U(f, P )− L(f, P ) <
ε

2
+ (Mi −mi)

ε

2M
≤ ε.

Corollary 3.12.1. Let f be a bounded function with finitely many points of discontinuity
in [a, b]. Then, f is Riemann integrable on [a, b].

Corollary 3.12.2. Let f be a bounded function whose points of discontinuities in [a, b] have
finitely many limit points. Then, f is Riemann integrable.

Theorem 3.13. The collection of all Riemann integrable functions on [a, b] forms a vector
space.
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Theorem 3.14. Let f and g be Riemann integrable on [a, b], such that

f(x) ≤ g(x)

for all x ∈ [a, b]. Then, ∫ b

a
f ≤

∫ b

a
g.

Theorem 3.15. Let f be Riemann integrable on [a, b], and let c ∈ [a, b]. Then,∫ b

a
f =

∫ c

a
f +

∫ b

c
f.

Definition 3.9. Let f be Riemann integrable on [a, b]. We define∫ b

a
f = −

∫ a

b
f.

Theorem 3.16. Let f be Riemann integrable on [a, b], and let

m ≤ f(x) ≤ M

for all x ∈ [a, b]. Also let ϕ : [m,M ] → R be continuous, and define h = ϕ ◦ f on [a, b].
Then, h is Riemann integrable on [a, b].

Proof. Let ε > 0. Note that ϕ must be uniformly continuous on [a, b], which means that there
exists δ > 0 such that for all x, y ∈ [m,M ] with |x− y| < δ, we have

|ϕ(x)− ϕ(y)| < ε.

From the Riemann integrability of f on [a, b], we find a partition P = {x0, . . . , xn} of [a, b] such
that ‖P‖ < δ and

U(f, P )− L(f, P ) < δ2.

We define Mj and mj in the usual way, with respect to f and P . Also define M∗
j and m∗

j with
respect to h = ϕ ◦ f and P . Consider the sets

A = {j ∈ {0, . . . , n− 1} : Mj −mj < δ},

B = {j ∈ {0, . . . , n− 1} : Mj −mj ≥ δ}.

For each j ∈ A, we use the uniform continuity of ϕ to get

M∗
j −m∗

j < ε.

When k ∈ B, let M ′ = sup[a,b] h = sup[m,M ] ϕ, so

M∗
k −m∗

k < 2M ′.
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Now,
δ
∑
k∈B

(xk+1 − xk) ≤
∑
k∈B

(Mk −mk)(xk+1 − xk) ≤ δ2,

where the first inequality is because k ∈ B, and the second is because of the Riemann integra-
bility of f . This gives ∑

k∈B
xk+1 − xk < δ.

Thus,

U(h, P )− U(h, P ) =
∑
j∈A

(M∗
j −m∗

j )∆x+
∑
k∈B

(M∗
k −m∗

k)∆x ≤ ε(b− a) + 2M ′δ.

Choose δ < ε, whence
U(h, P )− L(h, P ) ≤ ε(a− b+ 2M ′).

Corollary 3.16.1. Let f be Riemann integrable on [a, b]. Then, f2 is also Riemann inte-
grable on [a, b].

Corollary 3.16.2. Let f and g be Riemann integrable on [a, b]. Then, fg is also Riemann
integrable on [a, b].

Proof. Use
fg =

1

4

[
(f + g)2 − (f − g)2

]
.

Theorem 3.17 (Lebesgue-Vitali theorem). A bounded function on a compact interval [a, b]
is Riemann integrable if and only if it is continuous almost everywhere, i.e. the set of its
points of discontinuity has measure zero.
Remark. A set D ⊂ R has Lebesgue measure zero if for every ε > 0, there exists countable
collection of open intervals {In} such that

D ⊆
∞⋃
n=1

In,
∞∑
n=1

µ(In) < ε,

where µ(In) = bn − an is the length of each open interval In = (an, bn).

Example. The Dirichlet function, defined as

f : [0, 1] → R, f(x) =

{
1, if x ∈ Q,

0, if x /∈ Q,

is not Riemann integrable since its set of discontinuities is the entire interval [0, 1].
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Lemma 3.18. Any countable set has Lebesgue measure zero.

Proof. Enclose each element of the set with an open interval of length ε/2n, for n = 1, 2, . . . .

Theorem 3.19. Let f be Riemann integrable on [a, b] and let g : [a, b] → R be defined as

g(x) =

∫ x

a
f(t) dt.

Then,

1. g is continuous on [a, b].
2. If f is continuous at some x0 ∈ (a, b), then g is differentiable at x0 and g′(x0) = f(x0).

Proof. To show that g is continuous, first note that f is Riemann integrable so it must be
bounded, i.e. we find M > 0 such that |f(x)| < M on [a, b]. Now, for x, y ∈ [a, b], x > y, note
that

|g(x)− g(y)| = |
∫ x

y
f(t) dt| ≤ M(x− y).

Therefore, for ε > 0, set δ = ε/M whereby for all x, y ∈ [a, b] with |x− y| < δ, we have

|g(x)− g(y)| ≤ M |x− y| < ε.

This gives the continuity of g.
Now, suppose that f is continuous at some x0 ∈ (a, b). Thus, given ε > 0, we can choose δ > 0
such that |x− x0| < δ implies that |f(x)− f(x0)| < ε. Choose 0 < h < δ, whence

g(x0 + h)− g(x0) =

∫ x0+h

x0

f(t) dt.

Rearranging, we can write

g(x0 + h)− g(x0)

h
− f(x0) =

1

h

∫ x0+h

x0

f(t)− f(x0) dt.

Taking absolute values, we see that∣∣∣∣g(x0 + h)− g(x0)

h
− f(x0)

∣∣∣∣ ≤ 1

h

∫ x0+h

x0

|f(t)− f(x0)| dt ≤
εh

h
= ε.

The case for −δ < h < 0 is analogous. This gives

g′(x0) = lim
h→0

g(x0 + h)− g(x0)

h
= f(x0).

Theorem 3.20 (Fundamental Theorem of Calculus). Let f be Riemann integrable on [a, b].
Suppose that g is continuous on [a, b], differentiable on (a, b), and satisfies g′(x) = f(x) for
all x ∈ (a, b). Then,

g(b)− g(a) =

∫ b

a
f(x) dx.
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Proof. Since f is Riemann integrable on [a, b], given ε > 0, there exists a δ > 0 such that for all
tagged partitions Ṗ with ‖Ṗ‖ < δ,

|S(f, Ṗ )− `| < ε,

where ` is the integral of f on [a, b]. Choose one such partition Ṗ . Now, pick a subinterval
[xj , xj+1]. Note that g is continuous on this closed interval, and differentiable on the open
interval. Using the Mean Value Theorem, we choose ξj ∈ (xj , xj+1) such that

g(xj+1)− g(xj) = g′(ξj)(xj+1 − xj) = f(ξj)(xj+1 − xj).

Choosing such ξj for all j = 0, . . . , n− 1, we have

n−1∑
j=0

g(xj+1)− g(xj) =

n−1∑
j=0

f(ξj)(xj+1 − xj) = S(f, Ṗξ),

where Ṗξ denotes the use of the tags ξj . Note that ‖Ṗ‖ = ‖Ṗξ‖ < δ. Also, the first sum
telescopes to g(b)− g(a). Thus,

|g(b)− g(a)− `| < ε

for all ε > 0, which gives the desired equality.

Theorem 3.21 (Integration by parts). Let f and g be continuous on [a, b] and differentiable
on (a, b). Also let f ′ and g′ be Riemann integrable on [a, b]. Then,∫ b

a
f(x)g′(x) dx = f(b)g(b)− f(a)g(a)−

∫ b

a
f ′(x)g(x) dx.

Proof. The proof involves defining h = f · g, and using the Fundamental Theorem of Calculus
on

h′ = f ′g + fg′.

Theorem 3.22 (Substitution of variables). Let f be Riemann integrable on [a, b] and let
ϕ : [c, d] → [a, b] be a surjective, strictly increasing map such that ϕ is differentiable on
(c, d). Then, ∫ b

a
f(x) dx =

∫ d

c
(f ◦ ϕ)(x)ϕ′(x) dx.

Theorem 3.23 (Uniform convergence theorem). Let {fn} be a sequence of Riemann inte-
grable functions on [a, b] such that fn → f uniformly on [a, b]. Then, f is also Riemann
integrable on [a, b], and ∫ b

a
f(x) dx = lim

n→∞

∫ b

a
fn(x) dx.
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Theorem 3.24 (Weierstrass approximation theorem). Let f : [a, b] → R be continuous.
Then, there exists a sequence of polynomials {pn} such that pn → f uniformly on [a, b].

Proof. Without loss of generality, we may only consider continuous functions on [0, 1] such that
f(0) = f(1) = 0. Also define f(x) = 0 outside [0, 1]. Thus, f is uniformly continuous on R.
Define the polynomials

qn(x) = cn(1− x2)n,

where we choose cn such that ∫ +1

−1
qn(x) dx = 1.

Since Qn is even, compute ∫ +1

−1
(1− x2)n dx = 2

∫ 1

0
(1− x2)n dx

This can be split into

2

[∫ 1/
√
n

0
(1− x2)n dx+

∫ 1

1/
√
n
(1− x2)n dx

]
≥ 2

∫ 1/
√
n

0
(1− x2)n dx.

Using Bernoulli’s inequality,∫ +1

−1
(1− x2)n dx ≥ 2

∫ 1/
√
n

0
(1− nx2) dx =

4

3
√
n
≥ 1√

n
.

Hence, cn <
√
n. This means that qn → 0 uniformly on any [δ, 1] ⊂ [0, 1].

qn(x) <
√
n(1− δ2)n → 0.

Now define
pn(x) =

∫ +1

−1
f(x+ t)qn(t) dt.

Again, split this integral apart on the intervals [−1,−x], [−x, 1−x], and [1−x, 1]. The integrals
on the outermost intervals vanish simply because f(x) = 0 on them. Hence,

pn(x) =

∫ 1−x

−x
f(x+ t)qn(t) dx.

Changing variables,

pn(x) =

∫ 1

0
f(t)qn(t− x) dt.

Now, note that pn is a polynomial in x. This is because qn(t− x) is a polynomial in x, and our
integral is over t. We claim that pn → f uniformly on [0, 1]. To show this, let ε > 1, and use
the uniform continuity of f to find δ > 0 such that for all |x− y| < δ, we have

|f(x)− f(y)| < ε

2
.

Now, compute

|pn(x)− f(x)| = |
∫ +1

−1
f(x+ t)qn(t) dt−

∫ +1

−1
f(x)qn(t) dt| ≤

∫ +1

−1
|f(x+ t)− f(x)|qn(t) dt.
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Again, split this integral on the intervals [−1,−δ], [−δ,+δ], and [+δ, 1]. For the central integral,
apply the uniform continuity argument to get the bound

I2 ≤
ε

2

∫ +δ

−δ
qn(t) dt <

ε

2
.

Set M = sup |f(x)|. Then, the outermost integrals are bounded as

I1 ≤ 2M

∫ −δ

−1
qn(t) dt, I3 ≤ 2M

∫ +1

+δ
qn(t) dt.

Use the fact that qn(x) <
√
n(1− δ2)n and take sufficiently large n to conclude

|pn(x)− f(x)| < 4M
√
n(1− δ2)n +

ε

2
< ε.

Definition 3.10 (Improper integrals). Let f be Riemann integrable on all [a, c] such that
c < b, where we allow b = ∞. Define∫ b

0
f(x) dx = lim

c→b

∫ c

a
f(x) dx,

provided that the limit exists and is finite. We say that the integral is convergent. Similarly,
if

lim
c→b

∫ c

a
|f(x)| dx

exists and is finite, we say that the integral is absolutely convergent.

Theorem 3.25. Let f be Riemann integrable on [a, t] for every t ≥ a. Assume that there
is a positive constant M such that ∫ t

a
|f(x)| dx < M

for every t ≥ a. Then, both of the following improper integrals exist∫ ∞

a
f(x) dx,

∫ ∞

a
|f(x)| dx.

Proof. Define

F : [a,∞) → R, F (t) =

∫ t

a
|f(x)| dx.

Note that F is an increasing function, and |F (t)| < M for all t ≥ a. Hence, limt→∞ F (t)
exists, which gives the absolute convergence of the improper integral. This in turn gives the
convergence of the improper integral.
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Theorem 3.26. Let f be continuous, monotonically decreasing on [0,∞), and non-negative.
Then, the improper integral ∫ ∞

0
f(x) dx

converges if and only if the series
∞∑
n=0

f(n)

converges.

Theorem 3.27. Let f and g be positive functions and Riemann integrable on [a, n] for all
n ∈ N, and let

lim
x→∞

f(x)

g(x)
= A > 0.

Then, the improper integral ∫ ∞

a
f(x) dx

converges if the improper integral ∫ ∞

a
g(x) dx

converges.

Theorem 3.28. Let G be bounded, and f be such that f(x) → 0 as x → ∞, and∫ ∞

0
|f ′(x)| dx < ∞.

Then, the improper integral ∫ ∞

0
f ′(x)G(x) dx

converges.
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