MA2201: Analysis II

Integration

Spring 2021

Satvik Saha 19MS154

Indian Institute of Science Education and Research, Kolkata, Mohanpur, West Bengal, 741246, India.

Definition 3.1 (Partition). A partition P of an interval [a, b] is a finite sequence of numbers

 $a = x_0 < x_1 < \dots < x_{n-1} < x_n = b.$

The norm of a partition is defined as

 $||P|| = \max |x_{j+1} - x_j|.$

Definition 3.2 (Tagged partition). A tagged partition $\dot{P}(x_j, \xi_j)$ is a partition P together with a set of numbers ξ_j such that $\xi_j \in [x_j, x_{j+1}]$.

Definition 3.3 (Riemann sum). The Riemann sum of a function f on an interval [a, b] with respect to a tagged partition \dot{P} is defined as

$$S(f, \dot{P}) = \sum_{j=0}^{n-1} f(\xi_j) (x_{j+1} - x_j).$$

Definition 3.4 (Riemann integral). A function f is called Riemann integrable on an interval [a, b] if there is some $\ell \in \mathbb{R}$ where for every $\epsilon > 0$, there exists $\delta > 0$ such that all tagged partitions \dot{P} of [a, b] with $||\dot{P}|| < \delta$ satisfy

$$|S(f, \dot{P}) - \ell| < \epsilon.$$

The number ℓ is the value of the Riemann integral,

$$\int_{a}^{b} f = \ell.$$

Theorem 3.1. If a function is Riemann integrable on an interval, then the value of the integral is unique.

Proof. Let f be Riemann integrable on [a, b], with integral values ℓ and ℓ' . Then, for every $\epsilon > 0$, we find $\delta > 0$ such that for all tagged partitions \dot{P} with $\|\dot{P}\| < \delta$,

$$|S(f,\dot{P}) - \ell| < \frac{\epsilon}{2}, \qquad |S(f,\dot{P}) - \ell'| < \frac{\epsilon}{2}.$$

Note that such a partition \dot{P} always exists. Thus,

$$\ell - \ell' | \le |S(f, \dot{P}) - \ell| + |S(f, \dot{P}) - \ell'| < \epsilon$$

for all $\epsilon > 0$, which forces $\ell = \ell'$.

Theorem 3.2. If f is Riemann integrable on [a,b], then f is bounded on that interval. Furthermore, if M > 0 is such that $|f(x)| \leq M$ for all $x \in [a,b]$, then

$$-M(b-a) \le \int_a^b f \le M(b-a).$$

Proof. Suppose not. Let the Riemann integral of f on [a, b] be ℓ . For $\epsilon = 1$, we find $\delta > 0$ such that for all tagged partitions \dot{P} of [a, b] with $\|\dot{P}\| < \delta$, we have $|S(f, \dot{P}) - \ell| < 1$. This means that

$$S(f, P) < |\ell| + 1.$$

Let $Q = \{x_0, \ldots, x_n\}$ be such a partition. The unboundedness of f means that we can find a subinterval $[x_k, x_{k+1}]$ where f is unbounded. Now, choose tags ξ_j creating the tagged partition \dot{Q} . We choose the tag $\xi_k \in [x_k, x_{k+1}]$ such that

$$|f(\xi_k)(x_{k+1} - x_k)| > |\ell| + 1 + |\sum_{j \neq k} f(\xi_j)(x_{j+1} - x_j)|.$$

Now, observe that the triangle inequality demands

$$|S(f,\dot{Q})| \ge |f(\xi_k)(x_{k+1} - x_k)| - |\sum_{j \ne k} f(\xi_j)(x_{j+1} - x_j)| > |\ell| + 1,$$

which is a contradiction. Thus, f must be bounded on [a, b].

Next, for any tagged partition \dot{P} of [a, b], we have

$$|S(f, \dot{P})| \le \sum_{j=0}^{n-1} |f(\xi_j)| (x_{j+1} - x_j) \le M(b-a).$$

Let the Riemann integral of f be ℓ . Thus, for all $\epsilon > 0$, we find $\delta > 0$ such that for all tagged partitions \dot{P} with $\|\dot{P}\| < \delta$,

$$||S(f,\dot{P})| - |\ell|| \le |S(f,\dot{P}) - \ell| < \epsilon.$$

This gives

$$|\ell| < |S(f,P)| + \epsilon \le M(b-a) + \epsilon.$$

Since this holds for all $\epsilon > 0$, we may write

$$|\ell| \le M(b-a).$$

Theorem 3.3. If f is Riemann integrable on [a,b], and \dot{P}_n is any sequence of tagged partitions of [a, b] such that $\|\dot{P}_n\| \to 0$, then

$$\int_{a}^{b} f = \lim_{n \to \infty} S(f, \dot{P}_n).$$

Proof. Let $\epsilon > 0$. We find $\delta > 0$ such that for all tagged partitions \dot{P} with $\|\dot{P}\| < \delta$, we have

$$|S(f,\dot{P}) - \int_a^b f| < \epsilon.$$

Now, since $\|\dot{P}_n\| \to 0$, we can choose $N \in \mathbb{N}$ such that for all $n \ge N$, $\|\dot{P}_n\| < \delta$. Thus, for all $n \geq N$, ah

$$|S(f, \dot{P}_n) - \int_a^b f| < \epsilon.$$

$$\int_a^b f = \lim_{n \to \infty} S(f, \dot{P}_n).$$

In other words,

Definition 3.5 (Refinement). A partition \tilde{P} is said to be a refinement of a partition P if $P \subset \tilde{P}$.

Definition 3.6 (Common refinement). Given two partitions P_1 and P_2 of an interval [a, b], we say that P is their common refinement if $P_1 \cup P_2 \subset P$.

Definition 3.7 (Darboux sums). Given a partition P of [a, b] and a bounded function f, define

$$m_j = \inf_{t \in [x_j, x_{j+1}]} f(t), \qquad M_j = \sup_{t \in [x_j, x_{j+1}]} f(t).$$

The lower and upper Darboux sums are defined as

$$L(f,P) = \sum_{j=0}^{n-1} m_j (x_{j+1} - x_j), \qquad U(f,P) = \sum_{j=0}^{n-1} M_j (x_{j+1} - x_j).$$

Lemma 3.4. If P is a partition of an interval [a, b], then

$$L(f, P) \le U(f, P).$$

Proof. This follows directly from the fact that the infimum is less than or equal to the supremum, i.e. $m_j \leq M_j$.

Theorem 3.5. Let \tilde{P} be a refinement of a partition P of an interval [a, b]. Then,

$$L(f, P) \le L(f, \tilde{P}) \le U(f, \tilde{P}) \le U(f, P)$$

Proof. Suppose that

$$P = \{x_0, \dots, x_k, x_{k+1}, \dots, x_n\},\$$
$$\tilde{P} = \{x_0, \dots, x_k, y, x_{k+1}, \dots, x_n\}.$$

 Set

$$m_1 = \inf_{t \in [x_k, y]} f(t), \qquad m_2 = \inf_{t \in [y, x_{k+1}]} f(t), \qquad m = \inf_{t \in [x_k, x_{k+1}]} f(t).$$

Then, observe that

$$L(f, \tilde{P}) - L(f, P) = m_1(y - x_k) + m_2(x_{k+1} - y) - m(x_{k+1} - x_k).$$

Now, from the properties of the infimum, $m_1 \ge m$ and $m_2 \ge m$, so

$$L(f, \tilde{P}) - L(f, P) \ge m(y - x_k + x_{k+1} - y - x_{k+1} + x_k) = 0.$$

This procedure of adding one point can be repeated finitely many times to obtain the same conclusion for any refinement of P. The case for the upper sum is analogous.

Corollary 3.5.1. For any two partitions P_1 and P_2 of [a, b],

$$L(f, P_1) \le U(f, P_2).$$

Proof. Note that $P_1 \cup P_2$ is a common refinement of P_1 and P_2 , hence

$$L(f, P_1) \le L(f, P_1 \cup P_2) \le U(f, P_1 \cup P_2) \le U(f, P_2).$$

Corollary 3.5.2. If $\{P_n\}$ is a sequence of refinements of a partition P_0 of [a,b], then the following limits exist.

$$L_{f,P_n} = \lim_{n \to \infty} L(f,P_n), \qquad U_{f,P_n} = \lim_{n \to \infty} U(f,P_n).$$

Proof. This follows from the monotone convergence theorem, together with the fact that $U(f, P_0)$ and $L(f, P_0)$ are upper and lower bounds of the two respective sequences.

Corollary 3.5.3. The following quantities exist, where the infimum and supremum is taken over all possible partitions P of [a, b].

$$L_f = \sup L(f, P), \qquad U_f = \inf U(f, P).$$

Furthermore, for any partition P,

$$L(f, P) \le L_f \le U_f \le U(f, P).$$

The outermost inequalities trivially follow from the definitions of the infimum and supremum. The middle inequality follows from the fact that if A and B are two subsets of \mathbb{R} such that $\alpha \in A, \beta \in B$ implies $\alpha \leq \beta$, then $\sup A \leq \inf B$.

Definition 3.8 (Darboux integrals). The lower and upper Darboux integrals of a function f are defined as

$$L_f = \sup L(f, P), \qquad U_f = \inf U(f, P).$$

Here, the infimum and supremum is taken over all possible partitions P of [a, b].

If $L_f = U_f$, then the common integral is simply called the Darboux integral,

$$\int_{a}^{b} f = L_f = U_f.$$

Such a function f is called Darboux integrable.

Theorem 3.6. A function f is Darboux integrable on [a, b] if and only if for every $\epsilon > 0$, there exists a partition P such that

$$U(f, P) - L(f, P) < \epsilon.$$

Proof. First, assume that given $\epsilon > 0$, there exists a partition P such that

$$U(f, P) - L(f, P) < \epsilon.$$

By the previous corollary,

$$U_f - L_f \le U(f, P) - L(f, P) < \epsilon$$

for all > 0, so $U_f = L_f$ giving Darboux integrability.

Now, suppose that f is Darboux integrable on [a, b]. This means that $U_f = L_f$. Using the definitions of supremum and infimum, for $\epsilon > 0$, there exists a partition P_1 such that $U(f, P_1) - U_f < \epsilon/2$ and a partition P_2 such that $L_f - L(f, P_2) < \epsilon/2$. Adding,

$$U(f, P_1) - L(f, P_2) < \epsilon.$$

Now, setting $P = P_1 \cup P_2$ as a common refinement of P_1 and P_2 , we have

$$U(f, P) - L(f, P) < U(f, P_1) - L(f, P_2) < \epsilon.$$

Lemma 3.7. Let f be bounded on [a, b], and let P' be any partition of that interval. Then for every $\epsilon > 0$, there exists a $\delta > 0$ such that for all partitions P with $||P|| < \delta$,

$$U(f, P) - U(f, P \cup P') < \epsilon.$$

Proof. Using the boundedness of f, choose $M \in \mathbb{R}$ such that |f(x)| < M for all $x \in [a, b]$. Suppose that $P' = \{x_1, \ldots, x_n\}$. Set $\delta = \epsilon/4nM$. Now, let P be any partition of [a, b] with $||P|| < \delta$. Write $P = \{y_i\}$, and $P \cup P' = \{z_i\}$ where all these sets are ordered. Now, note that if one of the subintervals $[z_j, z_{j+1}]$ does not contain a point x_i , then the term $M_j(y_{j+1} - y_j)$ cancels from $U(f, P) - U(f, P \cup P')$. Whenever there is an x_i in $[z_j, z_{j+1}]$, we have a term of the form

$$M_j(y_{j+1} - y_j) - M'(x_i - y_j) - M''(y_{j+1} - x_i),$$

where M', M'' are the supremums over the two pieces, each less than M. This means that this term is bounded by $4M\delta$. Since this can happen at most n times,

$$U(f, P) - U(f, P \cup P') < 4nM\delta = \epsilon.$$

Theorem 3.8. Riemann and Darboux integrability are equivalent and assign the same value to the integrals.

Proof. First assume that f is Riemann integrable on [a, b]. By Theorem 3.2, f is bounded so the Darboux upper and lower sums are well defined. Given $\epsilon > 0$, we seek a partition P such that

$$U(f, P) - L(f, P) < \epsilon.$$

Now, Riemann integrability guarantees the existence of a $\delta > 0$ such that for all tagged partitions \dot{P} with $\|\dot{P}\| < \delta$,

$$|S(f,P) - \ell| < \frac{\epsilon}{3}$$

where ℓ is the value of the Riemann integral. Choose P with n subintervals. Now, let \dot{P}_{ξ} be tagged with ξ_j and \dot{P}_{ζ} be tagged with ζ_j . From the definitions of the infimum and supremum, we choose our tags such that

$$f(\xi_j) - m_j < \frac{\epsilon}{6(b-a)}, \qquad M_j - f(\zeta_j) < \frac{\epsilon}{6(b-a)}.$$

This gives

$$M_j - m_j < f(\xi_j) - f(\zeta_j) + \frac{\epsilon}{3(b-a)}$$

Thus,

$$U(f,P) - L(f,P) < \sum_{j=0}^{n-1} \left(f(\xi_j) - f(\zeta_j) + \frac{\epsilon}{3(b-a)} \right) (x_{j+1} - x_j) < S(f, \dot{P}_{\xi}) - S(f, \dot{P}_{\zeta}) + \frac{\epsilon}{3(b-a)} \cdot (b-a) < |S(f, \dot{P}_{\xi}) - \ell| + |\ell - S(f, \dot{P}_{\zeta})| + \frac{\epsilon}{3} < \epsilon.$$

This proves that f is Darboux integrable on [a, b], i.e. $U_f = L_f$. We now wish to show that $U_f = L_f = \ell$. Let $\epsilon > 0$. Using the properties of the infimum and supremum, we find partitions P_1, P_2 and \dot{P}_3 such that

$$L_f - L(f, P_1) < \frac{\epsilon}{6}, \qquad U(f, P_2) - U_f < \frac{\epsilon}{6}, \qquad |S(f, \dot{P}_3) - \ell| < \frac{\epsilon}{3}.$$

Setting $P = P_1 \cup P_2 \cup P_3$,

$$L_f - L(f, P) < \frac{\epsilon}{6}, \qquad U(f, P) - U_f < \frac{\epsilon}{6}, \qquad |S(f, \dot{P}) - \ell| < \frac{\epsilon}{3}.$$

Updated on April 21, 2021

Now,

$$L(f,P) \le S(f,\dot{P}) \le U(f,P) < L(f,P) + \frac{\epsilon}{3}.$$

This means that $S(f, \dot{P}) - L(f, P) < \epsilon/3$. Now,

$$|\ell - L_f| \le |\ell - S(f, \dot{P})| + |S(f, \dot{P}) - L(f, P)| + |L(f, P) - L_f| < \epsilon.$$

This forces $U_f = L_f = \ell$.

Now assume that f is Darboux integrable on [a, b]. This means that $U_f = L_f$. For $\epsilon > 0$, choose a partition P' such that

$$U(f, P') - U_f < \frac{\epsilon}{2}.$$

Set $\delta_1 = \epsilon/8nM$, and use our previous lemma to conclude that for any partition P of [a, b] with $||P|| < \delta_1$,

$$U(f,P) < U(f,P \cup P') + \frac{\epsilon}{2} \le U(f,P') + \frac{\epsilon}{2} < U_f + \epsilon.$$

Similarly, we can choose $\delta_2 > 0$ such that for all partitions P with $||P|| < \delta_2$,

$$L(f, P) > L_f - \epsilon.$$

Setting $\delta = \min{\{\delta_1, \delta_2\}}$, we have

$$L_f - \epsilon < L(f, P) < S(f, \dot{P}) < U(f, P) < U_f + \epsilon$$

Thus, for all tagged partitions \dot{P} with $\|\dot{P}\| < \delta$, we have

$$S(f, \dot{P}) - U_f | < \epsilon. \qquad \Box$$

Theorem 3.9. Any real continuous function on [a, b] is Riemann integrable.

Proof. Note that any continuous function on a compact interval is uniformly continuous. Thus, for $\epsilon > 0$, there exists $\delta > 0$ such that for all $x, y \in [a, b]$, we have

$$|f(x) - f(y)| < \frac{\epsilon}{b-a}$$

Now, construct a partition of [a, b] which divides the interval into equal subintervals of length (b-a)/n, where n is chosen such that $||P|| < \delta$. This immediately gives

$$U(f,P) - L(f,P) = \sum_{j=0}^{n-1} (M_j - m_j) \cdot \frac{1}{n} (b-a) \le n \cdot \frac{\epsilon}{b-a} \cdot \frac{b-a}{n} = \epsilon.$$

Theorem 3.10. Any bounded, monotone function on [a, b] is Riemann integrable.

Proof. Without loss of generality, suppose that f is monotonically increasing. Now, f on each interval attains its minimum and maximum at the endpoints, so

$$U(f,P) - L(f,P) = \sum_{j=0}^{n-1} (f(x_{j+1}) - f(x_j))(x_{j+1} - x_j).$$

Let $\epsilon > 0$. Choose P such that each subinterval has length (b - a)/n. Since f is bounded on [a, b], we can choose n to be sufficiently large such that

$$U(f,P) - L(f,P) = (f(b) - f(a))\frac{b-a}{n} < \epsilon.$$

Proof. Let the integral of f on [a, b] be ℓ . For $\epsilon > 0$, let $\delta > 0$ be such that for all tagged partitions \dot{P} with $\|\dot{P}\| < \delta$, we have

$$|S(f, \dot{P}) - \ell| < \frac{\epsilon}{2}.$$

Now, note that

$$|S(f, \dot{P}) - S(g, \dot{P})| \le 2\delta |f(c) - g(c)|.$$

This is because c can be a tag of at most 2 subintervals. Relabelling δ such that $2\delta |f(c) - g(c)| < \epsilon/2$, we see that for all tagged partitions \dot{P} with $||\dot{P}|| < \delta$,

$$|S(g, \dot{P}) - \ell| \le |S(g, \dot{P}) - S(f, \dot{P})| + |S(f, \dot{P}) - \ell| < \epsilon.$$

Corollary 3.11.1. Let f be Riemann integrable on [a, b], and let g be such that g(x) = f(x) on all but finitely many points in [a, b]. Then, g is also Riemann integrable on [a, b].

Theorem 3.12. Let f be a bounded function with a single point of discontinuity in [a, b]. Then, f is Riemann integrable on [a, b].

Proof. Let $c \in [a, b]$ be the point of discontinuity. From the boundedness of f, choose M such that |f(x)| < M for all $x \in [a, b]$. Now, for $\epsilon > 0$, choose a partition of [a, b] such that the subinterval containing c has length at most $\epsilon/2M$. The continuity and boundedness of f on the remaining subintervals means that it is Riemann integrable on them, so we can repartition them with P' such that $U(f, P') - L(f, P') < \epsilon/2$. Thus, the difference in the upper and lower sums for the total partition P is bounded as

$$U(f,P) - L(f,P) < \frac{\epsilon}{2} + (M_i - m_i)\frac{\epsilon}{2M} \le \epsilon.$$

Corollary 3.12.1. Let f be a bounded function with finitely many points of discontinuity in [a, b]. Then, f is Riemann integrable on [a, b].

Corollary 3.12.2. Let f be a bounded function whose points of discontinuities in [a, b] have finitely many limit points. Then, f is Riemann integrable.

Theorem 3.13. The collection of all Riemann integrable functions on [a, b] forms a vector space.

Theorem 3.14. Let f and g be Riemann integrable on [a, b], such that

$$f(x) \le g(x)$$

for all $x \in [a, b]$. Then,

$$\int_{a}^{b} f \le \int_{a}^{b} g.$$

Theorem 3.15. Let f be Riemann integrable on [a, b], and let $c \in [a, b]$. Then,

$$\int_{a}^{b} f = \int_{a}^{c} f + \int_{c}^{b} f.$$

Definition 3.9. Let f be Riemann integrable on [a, b]. We define

$$\int_{a}^{b} f = -\int_{b}^{a} f.$$

Theorem 3.16. Let f be Riemann integrable on [a, b], and let

$$m \le f(x) \le M$$

for all $x \in [a, b]$. Also let $\varphi \colon [m, M] \to \mathbb{R}$ be continuous, and define $h = \varphi \circ f$ on [a, b]. Then, h is Riemann integrable on [a, b].

Proof. Let $\epsilon > 0$. Note that φ must be uniformly continuous on [a, b], which means that there exists $\delta > 0$ such that for all $x, y \in [m, M]$ with $|x - y| < \delta$, we have

$$|\varphi(x) - \varphi(y)| < \epsilon.$$

From the Riemann integrability of f on [a, b], we find a partition $P = \{x_0, \ldots, x_n\}$ of [a, b] such that $||P|| < \delta$ and

$$U(f,P) - L(f,P) < \delta^2.$$

We define M_j and m_j in the usual way, with respect to f and P. Also define M_j^* and m_j^* with respect to $h = \varphi \circ f$ and P. Consider the sets

$$A = \{ j \in \{0, \dots, n-1\} \colon M_j - m_j < \delta \},\$$
$$B = \{ j \in \{0, \dots, n-1\} \colon M_j - m_j > \delta \}.$$

For each $j \in A$, we use the uniform continuity of φ to get

$$M_j^* - m_j^* < \epsilon$$

When $k \in B$, let $M' = \sup_{[a,b]} h = \sup_{[m,M]} \varphi$, so

$$M_k^* - m_k^* < 2M'.$$

Now,

$$\delta \sum_{k \in B} (x_{k+1} - x_k) \le \sum_{k \in B} (M_k - m_k)(x_{k+1} - x_k) \le \delta^2,$$

where the first inequality is because $k \in B$, and the second is because of the Riemann integrability of f. This gives

$$\sum_{k \in B} x_{k+1} - x_k < \delta$$

Thus,

$$U(h, P) - U(h, P) = \sum_{j \in A} (M_j^* - m_j^*) \Delta x + \sum_{k \in B} (M_k^* - m_k^*) \Delta x \le \epsilon(b - a) + 2M'\delta.$$

Choose $\delta < \epsilon$, whence

$$U(h, P) - L(h, P) \le \epsilon(a - b + 2M').$$

Corollary 3.16.1. Let f be Riemann integrable on [a, b]. Then, f^2 is also Riemann integrable on [a, b].

Corollary 3.16.2. Let f and g be Riemann integrable on [a, b]. Then, fg is also Riemann integrable on [a, b].

Proof. Use

$$fg = \frac{1}{4} \left[(f+g)^2 - (f-g)^2 \right].$$

Theorem 3.17 (Lebesgue-Vitali theorem). A bounded function on a compact interval [a, b] is Riemann integrable if and only if it is continuous almost everywhere, i.e. the set of its points of discontinuity has measure zero.

Remark. A set $\mathcal{D} \subset \mathbb{R}$ has Lebesgue measure zero if for every $\epsilon > 0$, there exists countable collection of open intervals $\{\mathcal{I}_n\}$ such that

$$\mathcal{D} \subseteq \bigcup_{n=1}^{\infty} \mathcal{I}_n, \qquad \sum_{n=1}^{\infty} \mu(\mathcal{I}_n) < \epsilon,$$

where $\mu(\mathcal{I}_n) = b_n - a_n$ is the length of each open interval $\mathcal{I}_n = (a_n, b_n)$.

Example. The Dirichlet function, defined as

$$f \colon [0,1] \to \mathbb{R}, \qquad f(x) = \begin{cases} 1, & \text{if } x \in \mathbb{Q}, \\ 0, & \text{if } x \notin \mathbb{Q}, \end{cases}$$

is not Riemann integrable since its set of discontinuities is the entire interval [0, 1].

Lemma 3.18. Any countable set has Lebesgue measure zero.

Proof. Enclose each element of the set with an open interval of length $\epsilon/2^n$, for $n = 1, 2, \ldots$

Theorem 3.19. Let f be Riemann integrable on [a, b] and let $g: [a, b] \to \mathbb{R}$ be defined as

$$g(x) = \int_{a}^{x} f(t) \, dt.$$

Then,

1. g is continuous on [a, b].

2. If f is continuous at some $x_0 \in (a, b)$, then g is differentiable at x_0 and $g'(x_0) = f(x_0)$.

Proof. To show that g is continuous, first note that f is Riemann integrable so it must be bounded, i.e. we find M > 0 such that |f(x)| < M on [a, b]. Now, for $x, y \in [a, b], x > y$, note that

$$|g(x) - g(y)| = |\int_{y}^{x} f(t) dt| \le M(x - y).$$

Therefore, for $\epsilon > 0$, set $\delta = \epsilon/M$ whereby for all $x, y \in [a, b]$ with $|x - y| < \delta$, we have

$$|g(x) - g(y)| \le M|x - y| < \epsilon.$$

This gives the continuity of g.

Now, suppose that f is continuous at some $x_0 \in (a, b)$. Thus, given $\epsilon > 0$, we can choose $\delta > 0$ such that $|x - x_0| < \delta$ implies that $|f(x) - f(x_0)| < \epsilon$. Choose $0 < h < \delta$, whence

$$g(x_0 + h) - g(x_0) = \int_{x_0}^{x_0 + h} f(t) dt.$$

Rearranging, we can write

$$\frac{g(x_0+h)-g(x_0)}{h} - f(x_0) = \frac{1}{h} \int_{x_0}^{x_0+h} f(t) - f(x_0) \, dt.$$

Taking absolute values, we see that

$$\left|\frac{g(x_0+h) - g(x_0)}{h} - f(x_0)\right| \le \frac{1}{h} \int_{x_0}^{x_0+h} |f(t) - f(x_0)| \, dt \le \frac{\epsilon h}{h} = \epsilon.$$

The case for $-\delta < h < 0$ is analogous. This gives

$$g'(x_0) = \lim_{h \to 0} \frac{g(x_0 + h) - g(x_0)}{h} = f(x_0).$$

Theorem 3.20 (Fundamental Theorem of Calculus). Let f be Riemann integrable on [a, b]. Suppose that g is continuous on [a, b], differentiable on (a, b), and satisfies g'(x) = f(x) for all $x \in (a, b)$. Then,

$$g(b) - g(a) = \int_a^b f(x) \, dx.$$

Proof. Since f is Riemann integrable on [a, b], given $\epsilon > 0$, there exists a $\delta > 0$ such that for all tagged partitions \dot{P} with $\|\dot{P}\| < \delta$,

$$|S(f, \dot{P}) - \ell| < \epsilon,$$

where ℓ is the integral of f on [a, b]. Choose one such partition \dot{P} . Now, pick a subinterval $[x_j, x_{j+1}]$. Note that g is continuous on this closed interval, and differentiable on the open interval. Using the Mean Value Theorem, we choose $\xi_j \in (x_j, x_{j+1})$ such that

$$g(x_{j+1}) - g(x_j) = g'(\xi_j)(x_{j+1} - x_j) = f(\xi_j)(x_{j+1} - x_j).$$

Choosing such ξ_j for all $j = 0, \ldots, n-1$, we have

$$\sum_{j=0}^{n-1} g(x_{j+1}) - g(x_j) = \sum_{j=0}^{n-1} f(\xi_j)(x_{j+1} - x_j) = S(f, \dot{P}_{\xi}),$$

where \dot{P}_{ξ} denotes the use of the tags ξ_j . Note that $\|\dot{P}\| = \|\dot{P}_{\xi}\| < \delta$. Also, the first sum telescopes to g(b) - g(a). Thus,

$$|g(b) - g(a) - \ell| < \epsilon$$

for all $\epsilon > 0$, which gives the desired equality.

Theorem 3.21 (Integration by parts). Let f and g be continuous on [a, b] and differentiable on (a, b). Also let f' and g' be Riemann integrable on [a, b]. Then,

$$\int_{a}^{b} f(x)g'(x) \, dx = f(b)g(b) - f(a)g(a) - \int_{a}^{b} f'(x)g(x) \, dx.$$

Proof. The proof involves defining $h = f \cdot g$, and using the Fundamental Theorem of Calculus on

$$h' = f'g + fg'.$$

Theorem 3.22 (Substitution of variables). Let f be Riemann integrable on [a, b] and let $\varphi: [c, d] \rightarrow [a, b]$ be a surjective, strictly increasing map such that φ is differentiable on (c, d). Then,

$$\int_{a}^{b} f(x) \, dx = \int_{c}^{d} (f \circ \varphi)(x) \, \varphi'(x) \, dx$$

Theorem 3.23 (Uniform convergence theorem). Let $\{f_n\}$ be a sequence of Riemann integrable functions on [a, b] such that $f_n \to f$ uniformly on [a, b]. Then, f is also Riemann integrable on [a, b], and

$$\int_{a}^{b} f(x) \, dx = \lim_{n \to \infty} \int_{a}^{b} f_n(x) \, dx.$$

Proof. Without loss of generality, we may only consider continuous functions on [0, 1] such that f(0) = f(1) = 0. Also define f(x) = 0 outside [0, 1]. Thus, f is uniformly continuous on \mathbb{R} . Define the polynomials

$$q_n(x) = c_n(1-x^2)^n$$
,

where we choose c_n such that

$$\int_{-1}^{+1} q_n(x) \, dx = 1.$$

Since Q_n is even, compute

$$\int_{-1}^{+1} (1-x^2)^n \, dx = 2 \int_0^1 (1-x^2)^n \, dx$$

This can be split into

$$2\left[\int_0^{1/\sqrt{n}} (1-x^2)^n \, dx + \int_{1/\sqrt{n}}^1 (1-x^2)^n \, dx\right] \ge 2\int_0^{1/\sqrt{n}} (1-x^2)^n \, dx$$

Using Bernoulli's inequality,

$$\int_{-1}^{+1} (1-x^2)^n \, dx \ge 2 \int_0^{1/\sqrt{n}} (1-nx^2) \, dx = \frac{4}{3\sqrt{n}} \ge \frac{1}{\sqrt{n}}.$$

Hence, $c_n < \sqrt{n}$. This means that $q_n \to 0$ uniformly on any $[\delta, 1] \subset [0, 1]$.

$$q_n(x) < \sqrt{n}(1-\delta^2)^n \to 0.$$

Now define

$$p_n(x) = \int_{-1}^{+1} f(x+t)q_n(t) dt.$$

Again, split this integral apart on the intervals [-1, -x], [-x, 1-x], and [1-x, 1]. The integrals on the outermost intervals vanish simply because f(x) = 0 on them. Hence,

$$p_n(x) = \int_{-x}^{1-x} f(x+t)q_n(t) \, dx.$$

Changing variables,

$$p_n(x) = \int_0^1 f(t)q_n(t-x) \, dt.$$

Now, note that p_n is a polynomial in x. This is because $q_n(t-x)$ is a polynomial in x, and our integral is over t. We claim that $p_n \to f$ uniformly on [0, 1]. To show this, let $\epsilon > 1$, and use the uniform continuity of f to find $\delta > 0$ such that for all $|x - y| < \delta$, we have

$$|f(x) - f(y)| < \frac{\epsilon}{2}.$$

Now, compute

$$|p_n(x) - f(x)| = |\int_{-1}^{+1} f(x+t)q_n(t) \, dt - \int_{-1}^{+1} f(x)q_n(t) \, dt| \le \int_{-1}^{+1} |f(x+t) - f(x)|q_n(t) \, dt.$$

Updated on April 21, 2021

$$I_2 \leq \frac{\epsilon}{2} \int_{-\delta}^{+\delta} q_n(t) \, dt < \frac{\epsilon}{2}.$$

Set $M = \sup |f(x)|$. Then, the outermost integrals are bounded as

$$I_1 \le 2M \int_{-1}^{-\delta} q_n(t) dt, \qquad I_3 \le 2M \int_{+\delta}^{+1} q_n(t) dt.$$

Use the fact that $q_n(x) < \sqrt{n}(1-\delta^2)^n$ and take sufficiently large n to conclude

$$|p_n(x) - f(x)| < 4M\sqrt{n}(1-\delta^2)^n + \frac{\epsilon}{2} < \epsilon.$$

Definition 3.10 (Improper integrals). Let f be Riemann integrable on all [a, c] such that c < b, where we allow $b = \infty$. Define

$$\int_0^b f(x) \, dx = \lim_{c \to b} \int_a^c f(x) \, dx,$$

provided that the limit exists and is finite. We say that the integral is convergent. Similarly, if

$$\lim_{c \to b} \int_{a}^{c} |f(x)| \, dx$$

exists and is finite, we say that the integral is absolutely convergent.

Theorem 3.25. Let f be Riemann integrable on [a, t] for every $t \ge a$. Assume that there is a positive constant M such that

$$\int_{a}^{t} |f(x)| \, dx < M$$

for every $t \geq a$. Then, both of the following improper integrals exist

$$\int_{a}^{\infty} f(x) \, dx, \qquad \int_{a}^{\infty} |f(x)| \, dx$$

Proof. Define

$$F: [a, \infty) \to \mathbb{R}, \qquad F(t) = \int_a^t |f(x)| \, dx.$$

Note that F is an increasing function, and |F(t)| < M for all $t \ge a$. Hence, $\lim_{t\to\infty} F(t)$ exists, which gives the absolute convergence of the improper integral. This in turn gives the convergence of the improper integral.

Theorem 3.26. Let f be continuous, monotonically decreasing on $[0, \infty)$, and non-negative. Then, the improper integral

 $\int_0^\infty f(x) \, dx$ $\sum_{n=0}^\infty f(n)$

converges if and only if the series

converges.

Theorem 3.27. Let f and g be positive functions and Riemann integrable on [a, n] for all $n \in \mathbb{N}$, and let

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = A > 0.$$

Then, the improper integral

$$\int_{a}^{\infty} f(x) \, dx$$

converges if the improper integral

$$\int_{a}^{\infty} g(x) \, dx$$

converges.

Theorem 3.28. Let G be bounded, and f be such that $f(x) \to 0$ as $x \to \infty$, and

$$\int_0^\infty |f'(x)|\,dx<\infty.$$

Then, the improper integral

$$\int_0^\infty f'(x)G(x)\,dx$$

converges.