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The origins of differential calculus lie in our attempts to approximate various functions using
linear ones. Suppose that we have been given a curve described by the function f , and we want
to locally approximate the function around a point x using a straight line. In other words, for
a small shift h, we want to write

f(x+ h) ≈ f(x) + kh.

Here, k is the slope of the straight line. In order to obtain k, we can rearrange the above to get

k ≈ f(x+ h)− f(x)

h
.

As we pick smaller and smaller neighbourhoods of x, we want our approximation to get better
and better. Thus, if such an approximation is possible, then the value of k must stabilize. This
means that the limit

k = lim
h→0

f(x+ h)− f(x)

h

must exist. Note that this immediately forces the continuity of f , since

lim
h→0

f(x+ h)− f(x) = lim
h→0

h · lim
h→0

f(x+ h)− f(x)

h
= 0k = 0,

whereby limx→a f(x) = f(a). Splitting the limit is justified because the individual limits exist.
If such a limit k exists, we call it the derivative of f at x, denoted f ′(x). We are now able to
write

f(x+ h) ≈ f(x) + f ′(x)h.

Definition 2.1 (Derivative). The derivative of a function f : [a, b] → R at a point x ∈ [a, b]
is defined as

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
,

if such a limit exists. Note that we only demand a one-sided limit if x is an endpoint. If
the derivative of f exists at every point in [a, b], we say that f is differentiable on [a, b].
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Example. Consider the map x 7→ xn, where n ∈ N. Using the binomial theorem, we can
write

(x+ h)n = xn + nxn−1h+ · · ·+ hn,

which means that

d

dx
xn = lim

h→0

1

h
[(x+ h)n − xn] = lim

h→0

[
nxn−1 +

(
n

2

)
xn−2h+ · · ·+ hn−1

]
= nxn−1.

Note that the process of differentiation we described can be generalised to multivariable func-
tions. The idea is to locally approximate a function with an affine function.

Theorem 2.1. If f : (a, b) → R is differentiable on (a, b), then it is also continuous on
(a, b).

Theorem 2.2. Let f : I → R be a continuous function. Then,

1. f maps compact sets to compact sets.
2. f maps connected sets to connected sets.

Corollary 2.2.1. A continuous function f : I → R maps intervals to intervals.

Corollary 2.2.2. A continuous function f : [a, b] → R attains its minimum and maximum
on [a, b].

Definition 2.2. Given f : (a, b) → R, a point c ∈ (a, b) is said to be a point of local
maximum if there exists a neighbourhood Ic of c such that

f(c) > f(x),

for all x ∈ Ic \ {c}. There is an analogous definition for a local minimum.

Theorem 2.3. If f : (a, b) → R is differentiable and c ∈ (a, b) is a point of local minimum
or maximum, then f ′(c) = 0.
Remark. The converse is not true. Note that the derivative of x 7→ x3 vanishes at x = 0,
but that is not a local minimum or maximum.

Proof. Let c be a local minimum or maximum of f , but suppose that f ′(c) 6= 0. Define the
function

g : (a, b) → R, g(x) =

{
(f(x)− f(c))/(x− c), if x 6= c

f ′(c), if x = c
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We note that g is continuous. Also, f ′(c) = g(c) 6= 0. If g(c) > 0, there exists a neighbourhood
Iδ = (c− δ, c+ δ) such that for all x ∈ Iδ, g(x) > 0, from the continuity of g. This means that
on Ic,

f(x)− f(c)

x− c
> 0,

which gives f(x) > f(c) on (c, c+ δ) and f(x) < f(c) on (c− δ, c). This means that c cannot be
a local minimum, nor a local maximum. There is an analogous case assuming g(c) < 0, which
leads to the same contradiction. Thus, we must have f ′(c) = g(c) = 0.

Theorem 2.4 (Rolle’s Theorem). Let f : [a, b] → R be continuous, and differentiable on
(a, b), with f(a) = f(b). Then, there exists c ∈ (a, b) such that f ′(c) = 0.

Proof. Set f(a) = f(b) = κ. From the continuity of f , note that the image of the closed interval
[a, b] is another closed interval [α, β]. This means that α ≤ κ ≤ β. Note that if α = β = κ,
then the function f is identically equal to the constant κ, hence f ′(x) = 0 everywhere on [a, b].
By the continuity of f , it must attain its maximum and minimum on [a, b]. If β > κ, then the
maximum is al least β and is hence not attained at the endpoints, which means that the point
of maximum lies in (a, b). If α < κ, then the same argument shows that f attains a minimum
in (a, b). Thus, in either case, we have found c ∈ (a, b) which is either a maximum or minimum
of f , i.e. f ′(c) = 0.

Theorem 2.5 (Mean Value Theorem). Let f : [a, b] → R be continuous, and differentiable
on (a, b). Then, there exists c ∈ (a, b) such that

f(b)− f(a) = f ′(c) (b− a).

Proof. Apply Rolle’s Theorem on the function defined as

g : [a, b] → R, g(x) = f(x)− f(a)− f(b)− f(a)

b− a
· (x− a).

Note that g is continuous on [a, b], differentiable on (a, b), and g(a) = g(b) = 0.

Theorem 2.6. Let f : R → R be differentiable, and f ′(x) > 0 for all x ∈ R. Then, f is
strictly increasing on R.

Proof. Let x2 > x1. By the mean value theorem, we pick c ∈ (x1, x2) such that

f(x2)− f(x1) = f ′(c)(x2 − x1) > 0.

Remark. The converse is not true. The map x 7→ x3 is strictly increasing, but its derivative
vanishes at 0.

Theorem 2.7 (Chain rule). Let f and g be differentiable on R. Then, f ◦ g is also differ-
entiable, with

(f ◦ g)′ = (f ′ ◦ g) · g′.
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Proof. Fix a ∈ R. Define the functions

ϕ : R → R, ϕ(x) =

{
(g(x)− g(a))/(x− a) if x 6= a

g′(a), if x = a
,

ψ : R → R, ψ(y) =

{
(f(y)− f(b))/(y − b) if y 6= b

f ′(b), if y = b
.

Note that ϕ and ψ are continuous. Also, when x 6= a, we have

g(x)− g(a) = ϕ(x)(x− a).

Set b = g(a), and write

f(g(x))− f(g(a)) = ψ(g(x))(g(x)− g(a)) = ψ(g(x))ϕ(x)(x− a).

Setting h = f ◦ g, we have
h(x)− h(a)

x− a
= ψ(g(x))ϕ(x).

Taking limits x → a, we use the continuity of ϕ, ψ and g to conclude that the derivative of h
is indeed defined at a, and

h′(a) = ψ(g(a))ϕ(a) = f ′(g(a)) g′(a).

Definition 2.3 (Intermediate Value Property). Let f : (a, b) → R be such that for all
c, d ∈ (a, b) such that f(c) < f(d) and λ ∈ (f(c), f(d)), there exists x0 ∈ (a, b) such that
f(x0) = λ. Then, we say that f has the intermediate value property.

Theorem 2.8 (Intermediate Value Theorem). All continuous functions f : (a, b) → R have
the intermediate value property.

Theorem 2.9. Let f : (a, b) → R be differentiable. Then, f ′ satisfies the intermediate value
property.

Proof. Let c, d ∈ (a, b) and let λ ∈ R such that λ ∈ (f ′(c), f ′(d)). We wish to find x0 ∈ (a, b)
such that f ′(x0) = λ. Define

g : (a, b) → R, g(x) = f(x)− λx.

Note that g′(x) = f ′(x) − λ, so g′(c) < 0 and g′(d) > 0. Thus, g is decreasing near c and
increasing near d, so we can find t1, t2 ∈ (c, d) such that g(t1) < g(c) and g(t2) < g(d). This
means that g has no local minimum at c nor d. From the continuity of g, there exists x0 ∈ [c, d]
such that g(x0) = inf [c,d] g(x). We have already shown that x0 is neither c, nor d, so x0 ∈ (c, d).
Hence, g′(x0) = 0, which gives f ′(x0) = λ.
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Lemma 2.10. If f : (a, b) → (c, d) is surjective, continuous and strictly increasing, then f
is invertible with a continuous inverse.

Theorem 2.11 (Inverse function theorem). Let f : (a, b) → (c, d) be surjective and dif-
ferentiable, with f ′(x) 6= 0 everywhere. Then, f is invertible, with a differentiable inverse
whose derivative is given by

(f−1)′(f(x)) =
1

f ′(x)
.

Proof. Given f ′(x) 6= 0 on (a, b). Then intermediate value property gives either f ′(x) > 0 for
all x ∈ (a, b), or f ′(x) < 0. Without loss of generality, assume the former. This means that f
is strictly increasing on (a, b), continuous, and surjective. Our lemma gives the existence of a
continuous inverse f−1.

Let y ∈ (c, d), and let x = f−1(y). From the continuity of f−1, we can always write
f−1(y + κ) = x+ h. Thus,

lim
κ→0

f−1(y + κ)− f−1(y)

κ
= lim

κ→0

x+ h− x

κ
= lim

κ→0

h

κ
.

Note that h→ 0 as κ→ 0. Thus, this limit can be written as

(f−1)′(y) = lim
h→0

h

f(x+ h)− f(x)
=

1

f ′(x)
.

Corollary 2.11.1. Let f be continuously differentiable on R, with f ′(x0) 6= 0 for some
x0 ∈ R. Then, there exists some neighbourhood of x0 on which f is invertible, with a
continuously differentiable inverse.

Theorem 2.12. Let fn → f pointwise and {f ′n} converge uniformly on some interval (a, b).
Then, fn → f uniformly.

Proof. We show that {fn} is uniformly Cauchy on E. Note that for some fixed t, we can write

|fn(x)− fm(x)| ≤ |(fn(x)− fm(x))− (fn(t)− fm(t))|+ |fn(t)− fm(t)|.

Using the Mean Value Theorem, the first term can be bounded as

|(fn(x)− fm(x))− (fn(t)− fm(t))| = (f ′n − f ′m)(x0)|x− t|,

where x0 is between x and t. From the pointwise convergence of fn → f , we have

|fn(t)− fm(t)| < ε

2

for all n,m ≥ Nt. The uniform convergence of {f ′n} means that we can find N0 such that

|f ′n(x0)− f ′m(x0)| <
ε

2(b− a)
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for all n,m > N0. Thus, for all x ∈ [a, b], and n,m ≥ Nt +N0, we have

|fn(x)− fm(x)| < ε

2(b− a)
· (b− a) +

ε

2
= ε.

This means that {fn} is uniformly Cauchy on [a, b], which gives the uniform convergence of
{fn}.

Remark. We only needed to use the pointwise convergence of {fn} at one point t. By using
pointwise convergence everywhere, we can allow for unbounded intervals, or the entirety of R.

Theorem 2.13. Let {fn} be a sequence of differentiable functions on some bounded interval
(a, b) such that fn → f pointwise and {f ′n} converges uniformly on every [α, β] ⊂ (a, b).
Then, f is differentiable and f ′n → f ′.
Remark. We allow a, b to be ±∞.

Proof. Let x0 ∈ (a, b). We wish to show that the following limit exists.

lim
x→x0

f(x)− f(x0)

x− x0
.

Define ϕ : (a, b) \ {x0} → R,

ϕ(x) =
f(x)− f(x0)

x− x0
.

Also define the functions ϕn : (a, b) → R,

ϕn(x) =

{
(fn(x)− fn(x0))/(x− x0) if x 6= x0,

f ′n(x0) if x = x0.

Note that ϕn are continuous, from the continuity of each fn. When x 6= x0, we see that
ϕn(x) → ϕ(x). For x = x0, we know that f ′n converges hence ϕn(x0) also converges. This gives
us pointwise convergence.

We want to show that {ϕn} converges uniformly. Fix [α, β] ⊂ (a, b) such that x0 ∈ (α, β).
For x 6= x0, we have

|ϕn(x)− ϕm(x)| =
∣∣∣∣(fn(x)− fm(x))− (fn(x0)− fm(x0))

x− x0

∣∣∣∣ .
Using the Mean Value Theorem on g = fn − fm , we choose c between x and x0 such that
(x− x0)g

′(c) = g(x)− g(x0). Thus,

|ϕn(x)− ϕm(x)| = |f ′n(c)− f ′m(c)| < ε

for all m,n ≥ N for some N , given by the uniform convergence of {f ′n}. This shows that
{ϕn} also converges uniformly on [α, β]. Note that when x = x0, |f ′n(x0)− f ′m(x0)| is similarly
bounded.

Now that {ϕn} converges uniformly, we know that the limit function is continuous. Since
it converges pointwise to ϕ on x 6= x0 and to limn→∞ f ′n(x0) when x = x0, continuity gives the
existence of the desired limit and

lim
n→∞

f ′n(x0) = lim
x→x0

f(x)− f(x0)

x− x0
= f ′(x0),

which gives the differentiability of f . Also note that f ′n → f ′.
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Lemma 2.14 (Abel’s Lemma). Let

∞∑
x=0

an(x− a)n

be a convergent power series on (a−R, a+R). If the series converges absolutely for some
x = a + c within that interval, then it must converge uniformly on any closed interval
[α, β] ⊂ (a− c, a+ c).

Proof. Note that for all x ∈ [α, β],

|an(x− a)n| ≤ |an||c|n

which gives the uniform convergence of
∑∞

n=1 an(x−a)n on [α, β] by the Weierstrass M-test.

Lemma 2.15. If a power series converges absolutely on (a−R, a+R), then it is differen-
tiable, with the derivative being

∞∑
n=1

nan(x− a)n−1.

Proof. The absolute convergence of the power series gives its uniform convergence on every
compact subset of (a−R, a+R). Note that this gives the continuity of the power series. Now,
note that

lim sup
n→∞

|nan|1/n = lim
n→∞

n1/n · lim sup
n→∞

|an|1/n = lim sup
n→∞

|an|1/n,

so the series of derivatives of terms of the power series converges absolutely on the same domain.
This again gives the uniform convergence of this series of derivatives of terms. Abel’s Lemma
gives uniform convergence on all compact subsets. Thus, by the previous theorem, our power
series is differentiable, with the derivative equal to the series of derivatives of terms.

Corollary 2.15.1. A power series is infinitely differentiable on its interval of convergence.

Example. Consider f : R → R, x 7→ sinx. We want to show that f ′(x) = cosx. Write f as
a power series,

f(x) =

∞∑
n=0

(−1)2nx2n+1

(2n+ 1)!
.

This converges absolutely on R. Our lemma gives

f ′(x) =

∞∑
n=0

(−1)2nx2n

(2n)!
= cosx.
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Example. Consider the function

f : R → R, f(x) =

{
e−1/x, if x > 0,

0, if x ≤ 0.

This function is differentiable everywhere. This is easily seen when x 6= 0. For x = 0, the
left hand limit is simply

lim
x→0−

f(x)− f(0)

x
= 0,

and from the positive side,

lim
x→0+

f(x)− f(0)

x
= lim

x→0+

e−1/x

x
= 0.

Hence, f ′(0) = 0. Indeed,

lim
x→0+

e−1/x

p(x)
= 0

for any polynomial p(x), which means that f is infinitely differentiable, with f (n)(0) = 0.
This means that if f has a power series centred at x = 0, all its coefficients must be
identically zero. Thus, f has no power series around x = 0.

Definition 2.4. We notate the nth derivative of a function f as

f (n) =
dnf

dxn
=

d

dx

(
d

dx

(
. . .

df

dx
. . .

))
︸ ︷︷ ︸

n times

.

Example. Consider
f : R → R, x 7→ xm.

Differentiating n times, we write

f (n)(x) =
dn

dxn
xm =

{
m(m− 1) . . . (m− n+ 1)xm−n if n ≤ m,

0 if n > m.

Example. Consider
f : R → R, x 7→ sinx.

Differentiating n times, we write

f (n)(x) =
dn

dxn
sinx = sin

(
x+

nπ

2

)
.
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Theorem 2.16. Let f be differentiable n times at x, and let it be of the form

f = g · h

where g and h are also differentiable n times at x. Then,

f (n)(x) =

n∑
k=0

(
n

k

)
g(k)(x)h(n−k)(x).

Proof. For n = 1, this is simply the product rule. Suppose that this is true for some n ≥ 1.
Then,

f (n+1)(x) =
d

dx
f (n)(x) =

n∑
k=0

(
n

k

)
d

dx

[
g(k)(x)h(n−k)(x)

]
.

Now,
d

dx

[
g(k)(x)h(n−k)(x)

]
= g(k+1)(x)h(n−k)(x) + g(k)(x)h(n−k+1)(x).

Plugging this back in and shifting indices,

f (n+1)(x) =

n+1∑
k=1

(
n

k − 1

)
g(k)(x)h(n−k+1)(x) +

n∑
k=0

(
n

k

)
g(k)(x)h(n−k+1)(x).

Separating the first and last terms and using(
n

k − 1

)
+

(
n

k

)
=

(
n+ 1

k

)
completes the proof by induction.

Lemma 2.17. Suppose that p(x) is a polynomial of degree n, and we have been given the
values

bi =
p(n)(a)

n!

for all i = 0, . . . , n. Then, the polynomial is uniquely determined, as

p(x) = b0 + b1(x− a) + · · ·+ bn(x− a)n.

Definition 2.5 (Taylor polynomial). Let f : [a, b] → R be a continuous function such that
f ′, f ′′, . . . , f (n) are also continuous. Then, for x0 ∈ (a, b), the polynomial

p(x) =
n∑

k=0

f (k)(x0)(x− x0)
k

k!

is called the Taylor polynomial of f of degree n about the point x0.
Remark. Note that

p(x0) = f(x0), p′(x0) = f ′(x0), p′′(x0) = f ′′(x0), . . . p(n)(x0) = f (n)(x0).
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Example. Consider f : (−1,∞) → R, x 7→ log (1 + x). In order to expand this as a Taylor
series about x0 = 0, we calculate

f ′(x) =
1

1 + x
, f ′′(x) = − 1

(1 + x)2
, . . . , f (n)(x) =

(−1)n−1(n− 1)!

(1 + x)n
.

This gives
f (n)(0)

n!
=

(−1)n−1

n
.

Thus, the Taylor polynomial of degree n is given by

p(x) = x− 1

2
x2 +

1

3
x3 − · · ·+ (−1)n−1 1

n
xn.

Definition 2.6. A polynomial p is said to approximate a function f up to the order n near
a point x0 if for every ε > 0, there exists a δ neighbourhood of x0 where for all k = 0, . . . , n,

|f (k)(x)− p(k)(x)| < ε

Lemma 2.18. The Taylor polynomial of degree n of a function f approximates it up to
order n.

Proof. Note that

|f (k)(x)− p(k)(x)| ≤ |f (k)(x)− f (k)(x0)|+ |f (k)(x0)− p(k)(x0)|+ |p(k)(x0)− p(k)(x)|.

For the Taylor polynomial, the central term is zero. The continuity of f (k) and p(k) allow us to
control the remaining terms, giving the desired result.

Definition 2.7 (Remainder). Let p approximate f up to order n. Then, the remainder
term is defined on the interval of approximation as

Rn+1(x) = f(x)− p(x).

Definition 2.8 (Big O and small o notation). Let f and g be two functions on a neigh-
bourhood of x0. We say that f ∼ O(g) near x0 if there exists M > 0 such that

|f(x)|
|g(x)|

≤M

for all points x near x0.
We say that f ∼ o(g) near x0 if

lim
x→x0

|f(x)|
|g(x)|

= 0.
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Theorem 2.19 (Taylor’s theorem). Let f : [a, b] → R be such that f, f ′, . . . , f (n+1) are
continuous. Then,

f(x) = p(x) +Rn+1(x)

where p is the Taylor polynomial of degree n of f around some point x0 ∈ (a, b), and Rn+1

is defined as

Rn+1(x) =
f (n+1)(c)(x− x0)

n+1

(n+ 1)!

for some c between x and x0.
Remark. The former form of Rn+1 is called Lagrange’s form. The following is Cauchy’s
form; for 0 < θ < 1,

Rn+1(x) =
f (n+1)(x0 + θ(x− x0))(x− x0)

n+1(1− θ)n

n!

Proof. Recall that

p(x) = f(x0) + f ′(x0)(x− x0) +
1

2
f ′′(x0)(x− x0)

2 + · · ·+ 1

n!
f (n)(x0)(x− x0)

n.

Write Rn+1(x) = (x − x0)
mH(x), for m ≤ n + 1 and some function H. Note that H(x) =

(f(x)− p(x))/(x− x0)
m on x 6= x0. Now, fix x ∈ (a, b) and define ϕ : [a, b] → R,

ϕ(t) = f(t) + f ′(t)(x− t) +
1

2
f ′′(t)(x− t)2 + · · ·+ 1

n!
f (n)(t)(x− t)n + (x− t)mH(x).

Note that ϕ is continuous on [a, b]. Also, ϕ is differentiable on (a, b). Now, ϕ(x) = f(x), and

ϕ(x0) = f(x0) + f ′(x0)(x− x0) + · · ·+ 1

n!
f (n)(x0)(x− x0)

n + (x− x0)
mH(x) = f(x).

On the compact interval with endpoints x and x0, we now have a continuous and differentiable
function ϕ with ϕ(x) = ϕ(x0), so the Rolle’s Theorem gives the existence of c between x and
x0 such that ϕ′(c) = 0. This means that the following is zero.

f ′(c)− f ′(c) + f ′′(c)(x− c)− f ′′(c)(x− x0) + · · ·+ 1

n!
f (n+1)(c)(x− c)n −m(x− c)m−1H(x).

Cancelling terms,
m(x− c)m−1H(x) =

1

n!
f (n+1)(c)(x− c)n.

Putting m = n+ 1, we have

(n+ 1)H(x) =
1

n!
f (n+1)(c), Rn+1(x) =

1

(n+ 1)!
f (n+1)(c)(x− x0)

n+1.

This is Lagrange’s form of the remainder. Putting m = 1, we have

H(x) =
1

n!
f (n+1)(c)(x− c)n.

Setting c = x0 + θ(x− x0), we have (x− c) = (x− x0)(1− θ), so

H(x) =
1

n!
f (n+1)(x0 + θ(x− x0))(x− x0)

n(1− θ)n.

Thus,
Rn+1(x) =

1

n!
f (n+1)(x0 + θ(x− x0))(x− x0)

n+1(1− θ)n.

This is Cauchy’s form of the remainder.
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Definition 2.9 (Convexity). The graph of a function f on R is said to be convex downwards
at a point x0 if there exists an non-empty open neighbourhood of x0 such that the tangent
to the graph at x0 lies below the graph on that neighbourhood (excluding the point x0).
Similarly, it is said to be convex upwards if the tangent lies above the graph on that deleted
neighbourhood.
Remark. If the tangent line lies on opposite sides of the graph on the left and right sides of
x0, then it is called a point of inflection.

Theorem 2.20. Let f : (a, b) → R be such that f ′′ is continuous and f ′′(x0) > 0 for some
x0 ∈ (a, b). Then, the graph of f is convex downwards at x0.

Proof. Using Taylor’s formula, write

f(x) = f(x0) + f ′(x0)(x− x0) +
1

2
f ′′(c)(x− x0)

2,

for some c between x and x0. Note that f(x0)+f ′(x0)(x−x0) is the equation of the tangent line
to f at x0. Since f ′′(x0) > 0 and f ′′ is continuous, we find a non-empty open neighbourhood of
x0 on which f ′′(x) > 0. On this neighbourhood (excluding the point x0),

1

2
f ′′(c)(x− x0)

2 > 0.

This immediately gives
f(x) > f(x0) + f ′(x0)(x− x0)

on the deleted neighbourhood of x0.

Corollary 2.20.1. If f : (a, b) → R is twice differentiable with continuous f ′′, and x0 ∈
(a, b) is such that f ′(x0) = 0 and f ′′(x0) > 0, then x0 is a point of local minimum.

Proof. Note that f is convex downwards on some neighbourhood (c, d) of x0, which means that

f(x) > f(x0) + f ′(x0)(x− x0) = f(x0).

on (c, d) \ {x0}.

Theorem 2.21. If f : (a, b) → R is thrice differentiable with continuous f ′′′, and x0 ∈ (a, b)
is such that f ′′(x0) = 0 and f ′′′(x0) 6= 0, then x0 is a point of inflection.

Proof. Use Taylor’s formula to write

f(x) = f(x0) + f ′(x0)(x− x0) +
1

6
f ′′′(c)(x− x0)

3,

for some c between x and x0. First suppose that f ′′′(x0) > 0, which means that there is a
non-empty neighbourhood of x0 on which f ′′′(x) > 0. Also, (x − x0)

3 changes sign as we pass
through x0 from left to right. Thus,

f(x) < f(x0) + f ′(x0)(x− x0)
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on some (x0 − δ, x0) and
f(x) > f(x0) + f ′(x0)(x− x0)

on some (x0, x0 + δ). In other words, f changes sign on either side of the tangent at x0. The
case where f ′′′(x0) < 0 is similar.

Theorem 2.22. Let f : (a, b) → R be n times differentiable with continuous f (n), and
x0 ∈ (a, b) is such that f ′′(x0) = f ′′′(x0) = · · · = f (n−1)(x0) = 0 and f (n)(x0) 6= 0.

1. If n is even and f (n)(x0) > 0, then f is convex downwards at x0. Furthermore, if
f ′(x0) = 0, then x0 is a point of local minimum.

2. If n is odd, then x0 is a point of inflection.

Proof. Use Taylor’s formula to write

f(x) = f(x0) + f ′(x0)(x− x0) +
1

n!
f (n)(c)(x− x0)

n

for some c between x and x0, and proceed exactly as in the previous two theorems.

Theorem 2.23. Let f : [a, b] → R be continuous and twice differentiable. Then, f is convex
on [a, b] if and only if f ′′(x) ≥ 0 for all x ∈ (a, b).

Proof. First suppose that f is convex on [a, b]. This means that for every x1, x2 ∈ [a, b] and
t ∈ [0, 1],

f(tx1 + (1− t)x2) ≤ tf(x1) + (1− t)f(x2).

Let x ∈ (a, b), and h sufficiently small such that x+ 2h ∈ (a, b). Thus,

f(x+ h) ≤ 1

2
f(x) +

1

2
f(x+ 2h),

so
f(x+ h)− f(x) ≤ f(x+ 2h)− f(x+ h).

Following the same procedure, if x+ 3h ∈ (a, b),

f(x+ h)− f(x) ≤ f(x+ 2h)− f(x+ h) ≤ f(x+ 3h)− f(x+ 2h).

Now, choose x1, x2 ∈ (a, b), x1 < x2. Set nh = x1−x2 for some n. We get a chain of inequalities
as above. This will give

f(x1 + h)− f(x1)

h
≤ f(x2 + h)− f(x2)

h
.

Taking limits h→ 0, we find f ′(x1) ≤ f ′(x2), hence f ′ is monotonically increasing. This in turn
gives f ′′(x) ≥ 0.

Next, suppose that f ′′(x) ≥ 0 on [a, b]. Define

α(x) = f(x1) +
f(x2)− f(x1)

x2 − x1
(x− x1).

We wish to show that
f(x) ≤ α(x), F (x) = f(x)− α(x) ≤ 0
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for all x ∈ [x1, x2]. Suppose not, i.e. there is a point x0 ∈ [x2, x2] such that F (x0) > 0. This
means that the supremum of F is attained at some point in (x1, x2), because F (x1) = F (x2) = 0.
Without loss of generality, let F (x0) be the supremum. Since F is differentiable on (x1, x2) and
x0 is a point of local maximum, we must have F ′(x0) = 0. Using Taylor’s formula,

F (x) = F (x0) + F ′(x0)(x− x0) + F ′′(c)(x− x0)
2

for some c between x and x0. Since F ′(x0) = 0 and F ′′(c) = f ′′(c) ≥ 0, we must have
F (x) ≥ F (x0). Specifically, F (x2) ≥ F (x0), so 0 ≥ F (x0) which is a contradiction.

Theorem 2.24. There exists a continuous, nowhere differentiable function.

Proof. Let ϕ(x) = |x| on [−1,+1], which is continuous but not differentiable at 0. Extend ϕ
continuously to the entirety of R continuously, as ϕ(x) = ϕ(x+ 2), which means that ϕ is not
differentiable at the integers. Define f : R → R,

f(x) =

∞∑
n=0

(
3

4

)n

ϕ(4nx).

Since ϕ(x) ∈ [0, 1], the series converges uniformly on R. This in turn gives the continuity of R.
To show that f is not differentiable at every point x ∈ R, construct a sequence such that

hn → 0 but limn→∞(f(x+ hn)− f(x))/hn does not exist. We fix x and m, and set

hn = ±1

2
4−m,

where the sign is chosen such that there is no integer between 4mx and 4m(x+ hn). Now, set

γn =
ϕ(4n(x+ hn))− ϕ(4nx)

hn
.

Note that when n > m, 4nhn is an even integer, so γn = 0. When 0 ≤ n ≤ m, we have |γn| ≤ 4n

since |ϕ(s)− ϕ(t)| ≤ |s− t|. For n = m, γm = 4m, so we now evaluate∣∣∣∣f(x+ hn)− f(x)

hn

∣∣∣∣ =
∣∣∣∣∣
m∑

n=0

(
3

4

)n

γn

∣∣∣∣∣ ≥ 1

2
(3m + 1).

However, hn → 0, which means that the desired limit does not exist.

Example. Weierstrass gave the example

f(x) =

∞∑
n=0

an cos(bnπx),

where 0 < a < 1 and b is a positive odd integer such that ab > 1 + 3π/2.

Example. Hardy gave the example

f(x) =

∞∑
n=1

sin(n2πx)

n2
.
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