MA2201: ANALYSIS II Sequences of functions

Spring 2021

Satvik Saha 19MS154

Indian Institute of Science Education and Research, Kolkata, Mohanpur, West Bengal, 741246, India.

Pointwise convergence

Definition 1.1 (Sequences of functions). Let the functions $f_n: X \to Y$ be defined for all $n \in \mathbb{N}$ and let the sequences $\{f_n(x)\}$ converge for all $x \in X$. Define the function $f: X \to Y$ as

$$f(x) = \lim_{n \to \infty} f_n(x)$$

for all $x \in X$. We call f the limit of $\{f_n\}$, or say that $\{f_n\}$ converges to f pointwise on X.

Example. Consider the functions $f_n: [0,1] \to \mathbb{R}$, $x \mapsto x^n$. It can be shown that $x^n \to 0$ when $x \in [0,1)$ and $x^n \to 1$ when x = 1. Thus, $f = \lim_{n \to \infty} f_n$ is well defined.

$$f(x) = \begin{cases} 0, & \text{if } 0 \le x < 1\\ 1, & \text{if } x = 1 \end{cases}$$

Note that while each f_n is continuous in this example, the limit f is not.

Example. Consider the functions $f_n \colon \mathbb{R} \to \mathbb{R}, x \mapsto x/n$. We see that $f_n \to 0$. Note that 0 here denotes the zero function.

Example. Consider the functions $f_n \colon \mathbb{R} \to \mathbb{R}$,

$$f_n(x) = \begin{cases} x^2, & \text{if } |x| \le n \\ +n, & \text{if } x > +n \\ -n, & \text{if } x < -n \end{cases}$$

This converges pointwise to $f: \mathbb{R} \to \mathbb{R}, x \mapsto x^2$. Note that for any $x \in \mathbb{R}$, we can find sufficiently large $N \in \mathbb{N}$ such that $|x| \leq N$. This means that the tail of the sequence $\{f_n(x)\}$ becomes a constant sequence $\{x^2\}$ from the N^{th} term onwards, so $f_n(x) \to x^2$ for all $x \in \mathbb{R}$. *Example.* Consider the functions $f_n \colon \mathbb{R} \to \mathbb{R}$,

$$f_n(x) = \lim_{m \to \infty} (\cos n! \pi x)^{2m}.$$

We observe that $f_n(x) = 1$ only when n!x is an integer. Now, if x is rational, n!x will become an integer for sufficiently large n, whereas if x is irrational, n!x can never be an integer. Thus, we see that $f_n \to f$, where $f: \mathbb{R} \to \mathbb{R}$ is the Dirichlet function defined as

$$f(x) = \begin{cases} 1, & \text{if } x \in \mathbb{Q} \\ 0, & \text{if } x \notin \mathbb{Q} \end{cases}.$$

Note that f is discontinuous everywhere!

Exercise 1.1. Show that if a sequence of functions $\{f_n\}$ converges on X, then the sequence of functions $\{|f_n|\}$ also converges on X.

Solution. Suppose that $f_n \to f$. Then given $\epsilon > 0, x \in X$, we find $N \in \mathbb{N}$ such that for all $n \ge N$,

$$||f_n(x)| - |f(x)|| \le |f_n(x) - f(x)| < \epsilon.$$

This gives $|f_n| \to |f|$ on X.

Definition 1.2 (Series of functions). Let the functions $f_n: X \to Y$ be defined for all $n \in \mathbb{N}$ and let the series $\sum f_n(x)$ converge for all $x \in X$. Define the function $f: X \to Y$ as

$$f(x) = \sum_{n=1}^{\infty} f_n(x)$$

for all $x \in X$. We call f the sum of the series $\sum f_n$.

Example. Consider the functions $f_n: (0,1) \to \mathbb{R}, x \mapsto x^n$. Note that the sum

$$\sum_{n=1}^{\infty} x^n = x + x^2 + x^3 + \dots = \frac{x}{1-x}$$

does indeed converge for all $x \in (0, 1)$. Thus, the sum $f = \sum f_n$ is well defined.

$$f(x) = \frac{x}{1-x}.$$

Example. Consider the functions

$$f_n \colon \mathbb{R} \to \mathbb{R}, \qquad f_n(x) = \frac{x^2}{(1+x^2)^n}.$$

Note that the series $\sum f_n(x)$ is a geometric series. For $x \neq 0$, we have

$$\sum_{n=0}^{\infty} \frac{x^2}{(1+x^2)^n} = \frac{x^2}{1-1/(1+x^2)} = 1+x^2$$

and for x = 0, the sum is 0. Thus, the series converges pointwise.

Uniform convergence

Definition 1.3 (Uniform convergence). Let the functions $f_n: X \to Y$ be defined for all $n \in \mathbb{N}$. We say that the sequence $\{f_n\}$ converges uniformly on X to f if for every $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that for all $n \geq N$ and $x \in X$, we have

$$|f_n(x) - f(x)| < \epsilon.$$

Remark. Note that for convergence $f_n \to f$, we need only find N depending on ϵ and x. Uniform convergence requires N depending on ϵ which ensures the inequality for all $x \in X$.

Example. Consider $f_n: \mathbb{R} \to \mathbb{R}, x \mapsto x + 1/n$. We see that $f_n \to f$ uniformly on \mathbb{R} , where $f: \mathbb{R} \to \mathbb{R}, x \mapsto x$. Note that given $\epsilon > 0$, we find $N \in \mathbb{N}$ such that $N\epsilon > 1$ using the Archimedean property. Thus, for all $n \ge N$ and $x \in \mathbb{R}$ we have

$$|f_n(x) - f(x)| = \frac{1}{n} \le \frac{1}{N} < \epsilon.$$

Lemma 1.1. The sequence of functions $\{f_n\}$ does not converge uniformly on X to its pointwise limit f if there exists some $\epsilon_0 > 0$, some subsequence $\{f_{n_k}\}$ and some sequence $\{x_k\}$ in X such that for all $k \in \mathbb{N}$,

$$|f_{n_k}(x_k) - f(x_k)| \ge \epsilon_0.$$

Example. The sequence of functions $\{f_n\}$ where $f_n: [0,1] \to \mathbb{R}, x \mapsto x^n$ does not converge uniformly on [0,1]. We have already described $f = \lim_{n\to\infty} f_n$. Set $\epsilon_0 = 1/2, x_k = (1/2)^{1/k}$ and $n_k = k$. Thus,

$$|f_{n_k}(x_k) - f(x_k)| = \frac{1}{2} \ge \epsilon_0.$$

Note that $x_k \to 1$, which is the point of discontinuity of f.

Example. The sequence of functions $\{f_n\}$ where $f_n \colon \mathbb{R} \to \mathbb{R}$, $x \mapsto x/n$ does not converge uniformly on \mathbb{R} . Recall that $f_n \to 0$, but when $\epsilon_0 = 1$, $n_k = x_k = k$, we have

$$|f_{n_k}(x_k) - f(x_k)| = 1 \ge \epsilon_0.$$

Theorem 1.2 (Cauchy criterion for uniform convergence). The sequence of real-valued functions $\{f_n\}$ converges uniformly on X if and only if for every $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that for all $m, n \geq N$ and $x \in X$, we have

$$|f_n(x) - f_m(x)| < \epsilon.$$

Remark. We require the functions f_n to be real or complex valued, since Cauchy sequences are precisely the convergent sequences in a complete metric space.

Proof. First suppose that $\{f_n\}$ converges uniformly on X, and $f_n \to f$. This means that given $\epsilon > 0$, we can choose $N \in \mathbb{N}$ such that

$$|f_n(x) - f(x)| < \frac{\epsilon}{2}$$

for all $n \ge N$, $x \in X$. Thus, for all $m, n \ge N$ and $x \in X$, we have

$$|f_n(x) - f_m(x)| \le |f_n(x) - f(x)| + |f_m(x) - f(x)| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon,$$

as desired.

Now suppose that the Cauchy criterion holds. Given $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that for all $m, n \ge N$ and $x \in X$,

$$|f_n(x) - f_m(x)| < \epsilon.$$

Recall that the Cauchy criterion for real sequences guarantees that the sequence $\{f_n(x)\}$ converges, thus the function $f = \lim_{n \to \infty} f_n$ is well defined. To show that the convergence of $f_n \to f$ is uniform, fix n and let $m \to \infty$, so $f_m(x) \to f(x)$. Thus for all $n \ge N$ and $x \in X$,

$$|f_n(x) - f(x)| < \epsilon_1$$

as desired.

Theorem 1.3. Let $f_n \colon X \to Y$ and let $f_n \to f$. Set

$$M_n = \sup_{x \in X} |f_n(x) - f(x)|.$$

Then, $\{f_n\}$ converges uniformly on X to f if and only if $M_n \to 0$.

Proof. Suppose that $f_n \to f$ uniformly on X. Let $\epsilon > 0$ be arbitrary, and let $N \in \mathbb{N}$ be such that for all $n \ge N$ and $x \in X$,

$$|f_n(x) - f(x)| < \frac{\epsilon}{2}.$$

This means that for all $n \ge N$,

$$M_n = \sup |f_n(x_n) - f(x_n)| \le \frac{\epsilon}{2} < \epsilon.$$

Also note that all $M_n \ge 0$, since they are the supremums of non-negative quantities. This means that $M_n \to 0$, as desired.

Now suppose that $M_n \to 0$. This means that for arbitrary $\epsilon > 0$, we can find $N \in \mathbb{N}$ such that for all $n \ge N$, we have

$$|M_n| = \sup |f_n(x) - f(x)| < \epsilon.$$

Now, from the properties of the supremum, we see that for all $n \ge N$ and $x \in X$,

$$|f_n(x) - f(x)| \le \sup |f_n(x) - f(x)| < \epsilon$$

This proves that $f_n \to f$ uniformly.

Example. Consider $f_n: [0, 1/2] \to \mathbb{R}, x \mapsto x^n$. We see that $f_n \to 0$, and that

$$M_n = \sup |f_n(x) - f(x)| = \frac{1}{2^n} \to 0.$$

Thus, $\{f_n\}$ converges uniformly on [0, 1/2] to 0.

Theorem 1.4 (Weierstrass M-test). Let $f_n: X \to Y$ and suppose that for all $n \in \mathbb{N}$ and $x \in X$,

$$|f_n(x)| \le M_n.$$

Then the series $\sum f_n$ converges uniformly on X if $\sum M_n$ converges.

Proof. Let $\epsilon > 0$. Since $\sum M_n$ converges, we can use the Cauchy criterion for the convergence of real series to choose $N \in \mathbb{N}$ such that for all $m \ge n \ge N$,

$$\left|\sum_{k=n}^{m} f_k(x)\right| \le \sum_{k=n}^{m} M_k \le \epsilon$$

for all $x \in X$. Note that the left hand side is simply $|s_m(x) - s_{n-1}(x)|$ where $s_k(x)$ is the k^{th} partial sum of the series $\sum f_n(x)$. Thus, the Cauchy criterion gives the uniform convergence of $\{s_n\}$, hence the uniform convergence of the series $\sum f_n$.

Remark. The converse is not true. Simply setting $f_n = 0$, we observe that the series $\sum f_n$ converges uniformly on \mathbb{R} to 0. On the other hand, $|f_n(x)| \leq 1$ for all $x \in \mathbb{R}$, and the series $\sum 1$ diverges to ∞ .

Example. Consider the functions

$$f_n \colon [-A, +A] \to \mathbb{R}, \qquad f_n(x) = \frac{x^n}{n!}$$

Note that $|f_n(x)| \leq A^n/n!$, and

$$\sum_{k=0}^{n-1} \frac{A^k}{k!} \to e^A.$$

Thus, the series

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

converges uniformly on [-A, +A].

Theorem 1.5. Let the functions $f_n: X \to Y$ be continuous, and suppose that $f_n \to f$ uniformly on X in a metric space. Then, f is continuous on X.

Proof. Let $\epsilon > 0$. We wish to show that f is continuous at arbitrary $x_0 \in X$. Since $f_n \to f$ uniformly on X, we find $N \in \mathbb{N}$ such that for all $x \in X$ and $n \ge N$, we have

$$|f_n(x) - f(x)| < \frac{\epsilon}{3}.$$

Updated on February 2, 2021

In particular, this holds for n = N, and $x = x_0$.

The continuity of each f_n on X means f_N is continuous on X in particular, so we can find $\delta > 0$ such that whenever $|x - x_0| < \delta$, we have

$$|f_N(x) - f_N(x_0)| < \frac{\epsilon}{3}.$$

Putting these together, for every $x \in X$ such that $|x - x_0| < \delta$, we have

$$|f(x) - f(x_0)| \le |f(x) - f_N(x)| + |f_N(x) - f_N(x_0)| + |f_N(x_0) - f(x_0)| < \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon.$$

This means that f is continuous at x_0 for arbitrary $x_0 \in X$, i.e. f is continuous on X.

Corollary 1.5.1. Let the functions $f_n: X \to Y$ be continuous, and let $f_n \to f$ pointwise on X. If f is not continuous on X, then the sequence of functions $\{f_n\}$ does not converge uniformly on X.

Proof. This is simply the contrapositive of the given theorem.

Example. The functions $f_n: [0,1] \to \mathbb{R}$, $x \mapsto x^n$ do not converge uniformly on [0,1] because each f_n is continuous, but their limit $\lim_{n\to\infty} f_n$ is discontinuous at x = 1.

Theorem 1.6. Let K be compact, and suppose that

- 1. $\{f_n\}$ is a sequence of continuous functions on K.
- 2. $\{f_n\}$ converges pointwise to a continuous function f on K.
- 3. $f_n \ge f_{n+1}$ for all $n \in \mathbb{N}$.

The, $f_n \to f$ uniformly on K.

Proof. Set $g_n = f_n - f$, and note that each g_n is also decreasing and continuous, with $g_n \to 0$. Also note that $g_n \ge 0$. We claim that $g_n \to 0$ uniformly on K.

Let $\epsilon > 0$. Set

$$K_n = \{ x \in K \colon g_n(x) \ge \epsilon \}.$$

Now, note that $K_n \supseteq K_{n+1}$ since g_n is decreasing, $K_n = g_n^{-1}[\epsilon, \infty)$ is closed since g_n is continuous, and thus $K_n \subseteq K$ is compact. If $K_n \neq \emptyset$ for all $n \in \mathbb{N}$, recall that

$$\mathcal{K} = \bigcap_{n \in \mathbb{N}} K_n \neq \emptyset.$$

Selecting $x_0 \in \mathcal{K}$, we have $g_n(x_0) \geq \epsilon$ for all $n \in \mathbb{N}$. This contradicts the fact that $g_n \to 0$ pointwise on K. Thus, there must exist $N \in \mathbb{N}$ such that $K_{n \geq N} = \emptyset$. Thus, we have

$$0 \le g_n(x) < \epsilon$$

for all $n \ge N$, all $x \in K$, as desired.

Definition 1.4. Let X be a metric space and denote $\mathscr{C}(X)$ as the set of all complexvalued, continuous, bounded functions with domain X. Define the supremum norm on each $f \in \mathscr{C}(X)$ as

$$|f|| = \sup_{x \in X} |f(x)|.$$

Then, $\mathscr{C}(X)$ is a metric space.

Remark. Note that the supremum norm $\|\cdot\|$ satisfies symmetry, positivity, and the triangle inequality

$$||f + g|| \le ||f|| + ||g||$$

for all $f, g \in \mathscr{C}(X)$.

Theorem 1.7. The metric space $\mathscr{C}(X)$ is complete.

Proof. Suppose that $\{f_n\}$ is a Cauchy sequence in $\mathscr{C}(X)$. This means that given $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that for all $m, n \ge N$, we have $||f_n - f_m|| < \epsilon$. Theorem 1.2 shows that $\{f_n\}$ converges uniformly to some function f on X. Theorem 1.5 guarantees that f is continuous. Note that f is bounded, since there exists $n \in \mathbb{N}$ such that $||f - f_n|| < 1$ and f_n is bounded.

Thus, $f \in \mathscr{C}(X)$, where $f_n \to f$ uniformly on X. It follows from Theorem 1.3 that $||f - f_n|| \to 0$.

Definition 1.5 (Equicontinuity). A sequence of functions $\{f_n\}$ on a set X is called equicontinuous if for every $\epsilon > 0$, there exists $\delta > 0$ such that whenever $|x - y| < \delta$, we have

 $|f_n(x) - f_n(y)| < \epsilon.$