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Pointwise convergence

Definition 1.1 (Sequences of functions). Let the functions fn : X → Y be defined for all
n ∈ N and let the sequences {fn(x)} converge for all x ∈ X. Define the function f : X → Y
as

f(x) = lim
n→∞

fn(x)

for all x ∈ X. We call f the limit of {fn}, or say that {fn} converges to f pointwise on X.

Example. Consider the functions fn : [0, 1] → R, x 7→ xn. It can be shown that xn → 0
when x ∈ [0, 1) and xn → 1 when x = 1. Thus, f = limn→∞ fn is well defined.

f(x) =

{
0, if 0 ≤ x < 1

1, if x = 1
.

Note that while each fn is continuous in this example, the limit f is not.

Example. Consider the functions fn : R → R, x 7→ x/n. We see that fn → 0. Note that 0
here denotes the zero function.

Example. Consider the functions fn : R → R,

fn(x) =


x2, if |x| ≤ n

+n, if x > +n

−n, if x < −n

.

This converges pointwise to f : R → R, x 7→ x2. Note that for any x ∈ R, we can find
sufficiently large N ∈ N such that |x| ≤ N . This means that the tail of the sequence
{fn(x)} becomes a constant sequence {x2} from the N th term onwards, so fn(x) → x2 for
all x ∈ R.
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Example. Consider the functions fn : R → R,

fn(x) = lim
m→∞

(cosn!πx)2m.

We observe that fn(x) = 1 only when n!x is an integer. Now, if x is rational, n!x will
become an integer for sufficiently large n, whereas if x is irrational, n!x can never be an
integer. Thus, we see that fn → f , where f : R → R is the Dirichlet function defined as

f(x) =

{
1, if x ∈ Q
0, if x /∈ Q

.

Note that f is discontinuous everywhere!

Exercise 1.1. Show that if a sequence of functions {fn} converges on X, then the sequence
of functions {|fn|} also converges on X.
Solution. Suppose that fn → f . Then given ε > 0, x ∈ X, we find N ∈ N such that for all
n ≥ N ,

||fn(x)| − |f(x)|| ≤ |fn(x)− f(x)| < ε.

This gives |fn| → |f | on X.

Definition 1.2 (Series of functions). Let the functions fn : X → Y be defined for all n ∈ N
and let the series

∑
fn(x) converge for all x ∈ X. Define the function f : X → Y as

f(x) =

∞∑
n=1

fn(x)

for all x ∈ X. We call f the sum of the series
∑

fn.

Example. Consider the functions fn : (0, 1) → R, x 7→ xn. Note that the sum

∞∑
n=1

xn = x+ x2 + x3 + · · · = x

1− x

does indeed converge for all x ∈ (0, 1). Thus, the sum f =
∑

fn is well defined.

f(x) =
x

1− x
.
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Example. Consider the functions

fn : R → R, fn(x) =
x2

(1 + x2)n
.

Note that the series
∑

fn(x) is a geometric series. For x 6= 0, we have

∞∑
n=0

x2

(1 + x2)n
=

x2

1− 1/(1 + x2)
= 1 + x2

and for x = 0, the sum is 0. Thus, the series converges pointwise.

Uniform convergence

Definition 1.3 (Uniform convergence). Let the functions fn : X → Y be defined for all
n ∈ N. We say that the sequence {fn} converges uniformly on X to f if for every ε > 0,
there exists N ∈ N such that for all n ≥ N and x ∈ X, we have

|fn(x)− f(x)| < ε.

Remark. Note that for convergence fn → f , we need only find N depending on ε and x.
Uniform convergence requires N depending on ε which ensures the inequality for all x ∈ X.

Example. Consider fn : R → R, x 7→ x + 1/n. We see that fn → f uniformly on R, where
f : R → R, x 7→ x. Note that given ε > 0, we find N ∈ N such that Nε > 1 using the
Archimedean property. Thus, for all n ≥ N and x ∈ R we have

|fn(x)− f(x)| = 1

n
≤ 1

N
< ε.

Lemma 1.1. The sequence of functions {fn} does not converge uniformly on X to its
pointwise limit f if there exists some ε0 > 0, some subsequence {fnk

} and some sequence
{xk} in X such that for all k ∈ N,

|fnk
(xk)− f(xk)| ≥ ε0.

Example. The sequence of functions {fn} where fn : [0, 1] → R, x 7→ xn does not converge
uniformly on [0, 1]. We have already described f = limn→∞ fn. Set ε0 = 1/2, xk = (1/2)1/k

and nk = k. Thus,
|fnk

(xk)− f(xk)| =
1

2
≥ ε0.

Note that xk → 1, which is the point of discontinuity of f .

Example. The sequence of functions {fn} where fn : R → R, x 7→ x/n does not converge
uniformly on R. Recall that fn → 0, but when ε0 = 1, nk = xk = k, we have

|fnk
(xk)− f(xk)| = 1 ≥ ε0.
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Theorem 1.2 (Cauchy criterion for uniform convergence). The sequence of real-valued
functions {fn} converges uniformly on X if and only if for every ε > 0, there exists N ∈ N
such that for all m,n ≥ N and x ∈ X, we have

|fn(x)− fm(x)| < ε.

Remark. We require the functions fn to be real or complex valued, since Cauchy sequences
are precisely the convergent sequences in a complete metric space.

Proof. First suppose that {fn} converges uniformly on X, and fn → f . This means that given
ε > 0, we can choose N ∈ N such that

|fn(x)− f(x)| < ε

2

for all n ≥ N , x ∈ X. Thus, for all m,n ≥ N and x ∈ X, we have

|fn(x)− fm(x)| ≤ |fn(x)− f(x)|+ |fm(x)− f(x)| < ε

2
+

ε

2
= ε,

as desired.
Now suppose that the Cauchy criterion holds. Given ε > 0, there exists N ∈ N such that

for all m,n ≥ N and x ∈ X,
|fn(x)− fm(x)| < ε.

Recall that the Cauchy criterion for real sequences guarantees that the sequence {fn(x)} con-
verges, thus the function f = limn→∞ fn is well defined. To show that the convergence of
fn → f is uniform, fix n and let m → ∞, so fm(x) → f(x). Thus for all n ≥ N and x ∈ X,

|fn(x)− f(x)| < ε,

as desired.

Theorem 1.3. Let fn : X → Y and let fn → f . Set

Mn = sup
x∈X

|fn(x)− f(x)|.

Then, {fn} converges uniformly on X to f if and only if Mn → 0.

Proof. Suppose that fn → f uniformly on X. Let ε > 0 be arbitrary, and let N ∈ N be such
that for all n ≥ N and x ∈ X,

|fn(x)− f(x)| < ε

2
.

This means that for all n ≥ N ,

Mn = sup |fn(xn)− f(xn)| ≤
ε

2
< ε.

Also note that all Mn ≥ 0, since they are the supremums of non-negative quantities. This
means that Mn → 0, as desired.

Now suppose that Mn → 0. This means that for arbitrary ε > 0, we can find N ∈ N such
that for all n ≥ N , we have

|Mn| = sup |fn(x)− f(x)| < ε.

Now, from the properties of the supremum, we see that for all n ≥ N and x ∈ X,

|fn(x)− f(x)| ≤ sup |fn(x)− f(x)| < ε.

This proves that fn → f uniformly.
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Example. Consider fn : [0, 1/2] → R, x 7→ xn. We see that fn → 0, and that

Mn = sup |fn(x)− f(x)| = 1

2n
→ 0.

Thus, {fn} converges uniformly on [0, 1/2] to 0.

Theorem 1.4 (Weierstrass M-test). Let fn : X → Y and suppose that for all n ∈ N and
x ∈ X,

|fn(x)| ≤ Mn.

Then the series
∑

fn converges uniformly on X if
∑

Mn converges.

Proof. Let ε > 0. Since
∑

Mn converges, we can use the Cauchy criterion for the convergence
of real series to choose N ∈ N such that for all m ≥ n ≥ N ,∣∣∣∣∣

m∑
k=n

fk(x)

∣∣∣∣∣ ≤
m∑

k=n

Mk ≤ ε

for all x ∈ X. Note that the left hand side is simply |sm(x) − sn−1(x)| where sk(x) is the kth

partial sum of the series
∑

fn(x). Thus, the Cauchy criterion gives the uniform convergence of
{sn}, hence the uniform convergence of the series

∑
fn.

Remark. The converse is not true. Simply setting fn = 0, we observe that the series
∑

fn
converges uniformly on R to 0. On the other hand, |fn(x)| ≤ 1 for all x ∈ R, and the series

∑
1

diverges to ∞.

Example. Consider the functions

fn : [−A,+A] → R, fn(x) =
xn

n!
.

Note that |fn(x)| ≤ An/n!, and
n−1∑
k=0

Ak

k!
→ eA.

Thus, the series

ex =
∞∑
n=0

xn

n!

converges uniformly on [−A,+A].

Theorem 1.5. Let the functions fn : X → Y be continuous, and suppose that fn → f
uniformly on X in a metric space. Then, f is continuous on X.

Proof. Let ε > 0. We wish to show that f is continuous at arbitrary x0 ∈ X.
Since fn → f uniformly on X, we find N ∈ N such that for all x ∈ X and n ≥ N , we have

|fn(x)− f(x)| < ε

3
.

5 Updated on February 2, 2021



MA2201: Analysis II Sequences of functions

In particular, this holds for n = N , and x = x0.
The continuity of each fn on X means fN is continuous on X in particular, so we can find

δ > 0 such that whenever |x− x0| < δ, we have

|fN (x)− fN (x0)| <
ε

3
.

Putting these together, for every x ∈ X such that |x− x0| < δ, we have

|f(x)− f(x0)| ≤ |f(x)− fN (x)|+ |fN (x)− fN (x0)|+ |fN (x0)− f(x0)|

<
ε

3
+

ε

3
+

ε

3
= ε.

This means that f is continuous at x0 for arbitrary x0 ∈ X, i.e. f is continuous on X.

Corollary 1.5.1. Let the functions fn : X → Y be continuous, and let fn → f pointwise
on X. If f is not continuous on X, then the sequence of functions {fn} does not converge
uniformly on X.

Proof. This is simply the contrapositive of the given theorem.

Example. The functions fn : [0, 1] → R, x 7→ xn do not converge uniformly on [0, 1] because
each fn is continuous, but their limit limn→∞ fn is discontinuous at x = 1.

Theorem 1.6. Let K be compact, and suppose that

1. {fn} is a sequence of continuous functions on K.
2. {fn} converges pointwise to a continuous function f on K.
3. fn ≥ fn+1 for all n ∈ N.

The, fn → f uniformly on K.

Proof. Set gn = fn − f , and note that each gn is also decreasing and continuous, with gn → 0.
Also note that gn ≥ 0. We claim that gn → 0 uniformly on K.

Let ε > 0. Set
Kn = {x ∈ K : gn(x) ≥ ε}.

Now, note that Kn ⊇ Kn+1 since gn is decreasing, Kn = g−1
n [ε,∞) is closed since gn is contin-

uous, and thus Kn ⊆ K is compact. If Kn 6= ∅ for all n ∈ N, recall that

K =
⋂
n∈N

Kn 6= ∅.

Selecting x0 ∈ K, we have gn(x0) ≥ ε for all n ∈ N. This contradicts the fact that gn → 0
pointwise on K. Thus, there must exist N ∈ N such that Kn≥N = ∅. Thus, we have

0 ≤ gn(x) < ε

for all n ≥ N , all x ∈ K, as desired.
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Definition 1.4. Let X be a metric space and denote C(X) as the set of all complex-
valued, continuous, bounded functions with domain X. Define the supremum norm on
each f ∈ C(X) as

‖f‖ = sup
x∈X

|f(x)|.

Then, C(X) is a metric space.
Remark. Note that the supremum norm ‖·‖ satisfies symmetry, positivity, and the triangle
inequality

‖f + g‖ ≤ ‖f‖+ ‖g‖

for all f, g ∈ C(X).

Theorem 1.7. The metric space C(X) is complete.

Proof. Suppose that {fn} is a Cauchy sequence in C(X). This means that given ε > 0, there
exists N ∈ N such that for all m,n ≥ N , we have ‖fn − fm‖ < ε. Theorem 1.2 shows that {fn}
converges uniformly to some function f on X. Theorem 1.5 guarantees that f is continuous.
Note that f is bounded, since there exists n ∈ N such that ‖f − fn‖ < 1 and fn is bounded.

Thus, f ∈ C(X), where fn → f uniformly on X. It follows from Theorem 1.3 that
‖f − fn‖ → 0.

Definition 1.5 (Equicontinuity). A sequence of functions {fn} on a set X is called equicon-
tinuous if for every ε > 0, there exists δ > 0 such that whenever |x− y| < δ, we have

|fn(x)− fn(y)| < ε.
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