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Solution 1. Let f be monotonic on [a,b]. First, note that f must be bounded on [a,b]. If f is
monotonically increasing, then we must have

fla) < f(z) < f(b)

for all @ < a < b. Similarly, if f is monotonically decreasing, then
f(0) < f(z) < f(a)
for all a < x < b.

Without loss of generality, let f be monotonically increasing on [a, b], and let M > 0 such that |f(x)| < M
for all z € [a,b]. Given € > 0, we wish to construct a partition P of [a,b] such that

U(f,P)*L(f,P)<€,

where U(f, P) and L(f, P) are the upper and lower Darboux sums over the partition P. Now, note that
over any subinterval [z;,z;41] of [a,b], we have

m; = inf  f(x) = f(z;), M= sup f(z)= f(zj41).

T€[T),7541] T€lzj,xj41)

This is simply a consequence of the monotonicity of f — the maximum and minimum (which are the
same as the supremum and infimum doe to boundedness) are attained at the endpoints. With this, set
d = (b—a)/n and let n be sufficiently large so that (f(b) — f(a))d <, i.e.

ne > (f(b) = f(a))(b - a).

This can be done using the Archimedean property of the reals. Now, let the partition P be such that
[a,b] is divided into n equal subintervals, i.e. P = {zg, 21,...,Z,} where

J
xj:a—l—g(b—a).

NOW, Tj—Tjy1 = 5, SO

U(f,P) — LU P) = S (M —my) =65 flajn) — Flag) = 8- (F(5) — fla)) <
=0 )

We have used the fact that the sum telescopes. Hence, f is Riemann integrable on [a,b]. The proof for
monotonically decreasing f is analogous, since —f will be monotonically increasing and the negative of
a Riemann integrable function is clearly Riemann integrable.

Lemma 1. Any countable set (finite or countably infinite) has Lebesque measure zero.

Proof. Let S be countable, and let ¥ C N be the indices of S. Create the open intervals

6 € €
= (o= g )

forall z; € S, j € ¢. Thus, u(0;) = €/27, where p is the length of the interval. Also, the union of all
such 0, say 0, forms a cover of S. The length of this cover is bounded as

o0

€
pO) <y wO;) <y o5 =e
Jje¥ j=1
Since € was arbitrary, we conclude that S has Lebesgue measure zero. O



Solution 2. Given two continuous functions f and g on [a,b], a point ¢ € [a,b], and the function

hifa,b) R, hiz) = {f(‘””)’ ifoelad,

g(z), ifze(b).
Without loss of generality, define h(b) = 0 to cover the endpoint. Note that f and g are continuous, so
h is continuous on [a,c) and (¢, b). This leaves potential discontinuities at the points ¢ and b. Now, the
set of discontinuities of h, say 9 C {¢,b}, is a finite set and hence has Lebesgue measure zero. Hence,
by the Lebesgue-Vitali Theorem, h is Riemann integrable.

Alternative Define the step function

0, if € [a, ],

u: la,b] — R, u(x) = )
2.4 @) {f<c>g<c>, itz € (c, ),
and define h(b) = g(b) to cover the endpoint. Now, consider the function h + u. On the interval [a, ¢),
h+wu = f so it is continuous. On the interval (¢,b], h +u = g — g(¢) + f(c¢), which is again continuous.
Now,

lim (h+w)(z) = lim f(x)= f(c),

Tr—Cc™ T—Cc™

and
lim (h+u)(z) = lim g(z) — g(c) + f(c) = f(c),

r—ct r—ct

and (h + u)(c) = f(c), so h + u is continuous on the entirety of [a, b], hence Riemann integrable. Thus,
it suffices to show that the step function u is Riemann integrable, which would imply that the difference
h = (h+ u) — u is Riemann integrable.

Let f(c) — g(¢) = a. Given € > 0, construct a partition P = {a,c — J,c + 0,b} where § > 0 is small
enough to maintain the ordering of the points (we discard the trivial case where ¢ is one of the endpoints
a or b, which would mean that h is one of f or g). Furthermore, let § be such that 2|a|d < e. Now,
U(f,P) — L(f, P) has contributions only from the central subinterval [c — §, ¢ + J], so

U(f, P) — L(f,P) = 2|a|s < .

Note that if f and g are two Riemann integrable functions on [a,b], then it is possible to find two
partitions P; and P, such that

U(f,P1) = L(f, P1) < 5, Ul(g, P2) — L(g, P2) <

[NCR e
[ NN e

For the common refinement P = P; U P», we must have

U(f>P)_L(f7P)< U(g’P)_L<gaP)<

DO

€
2’
Adding,

DO | ™

Also, note that
U(_f7P):_L(f7P)7 L(_f7P):_U(f?P)

because on any interval [s, t],
sup—f(z) = —inf f(z),  inf—f(z) = —sup f(z).

Hence,

U(*f,P)*L(*f,P):U(f,P)fL(f,P)<

N

This gives the Riemann integrability of f 4 g as well as —f.



