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Solution 1. Let f be monotonic on [a, b]. First, note that f must be bounded on [a, b]. If f is
monotonically increasing, then we must have

f(a) ≤ f(x) ≤ f(b)

for all a ≤ x ≤ b. Similarly, if f is monotonically decreasing, then

f(b) ≤ f(x) ≤ f(a)

for all a ≤ x ≤ b.

Without loss of generality, let f be monotonically increasing on [a, b], and let M > 0 such that |f(x)| < M
for all x ∈ [a, b]. Given ε > 0, we wish to construct a partition P of [a, b] such that

U(f, P )− L(f, P ) < ε,

where U(f, P ) and L(f, P ) are the upper and lower Darboux sums over the partition P . Now, note that
over any subinterval [xj , xj+1] of [a, b], we have

mj = inf
x∈[xj ,xj+1]

f(x) = f(xj), Mj = sup
x∈[xj ,xj+1]

f(x) = f(xj+1).

This is simply a consequence of the monotonicity of f – the maximum and minimum (which are the
same as the supremum and infimum doe to boundedness) are attained at the endpoints. With this, set
δ = (b− a)/n and let n be sufficiently large so that (f(b)− f(a))δ < ε, i.e.

nε > (f(b)− f(a))(b− a).

This can be done using the Archimedean property of the reals. Now, let the partition P be such that
[a, b] is divided into n equal subintervals, i.e. P = {x0, x1, . . . , xn} where

xj = a+
j

n
(b− a).

Now, xj − xj+1 = δ, so

U(f, P )− L(f, P ) =

n−1∑
j=0

(Mj −mj)δ = δ

n−1∑
j=0

f(xj+1)− f(xj) = δ · (f(b)− f(a)) < ε.

We have used the fact that the sum telescopes. Hence, f is Riemann integrable on [a, b]. The proof for
monotonically decreasing f is analogous, since −f will be monotonically increasing and the negative of
a Riemann integrable function is clearly Riemann integrable.

Lemma 1. Any countable set (finite or countably infinite) has Lebesgue measure zero.

Proof. Let S be countable, and let J ⊆ N be the indices of S. Create the open intervals

Oj =
(
xj −

ε

2j+1
, xj +

ε

2j+1

)
,

for all xj ∈ S, j ∈J. Thus, µ(Oj) = ε/2j , where µ is the length of the interval. Also, the union of all
such Oj , say O, forms a cover of S. The length of this cover is bounded as

µ (O) ≤
∑
j∈J

µ(Oj) ≤
∞∑
j=1

ε

2j
= ε.

Since ε was arbitrary, we conclude that S has Lebesgue measure zero.
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Solution 2. Given two continuous functions f and g on [a, b], a point c ∈ [a, b], and the function

h : [a, b] → R, h(x) =

{
f(x), if x ∈ [a, c],

g(x), if x ∈ (c, b).

Without loss of generality, define h(b) = 0 to cover the endpoint. Note that f and g are continuous, so
h is continuous on [a, c) and (c, b). This leaves potential discontinuities at the points c and b. Now, the
set of discontinuities of h, say D ⊆ {c, b}, is a finite set and hence has Lebesgue measure zero. Hence,
by the Lebesgue-Vitali Theorem, h is Riemann integrable.

Alternative Define the step function

u : [a, b] → R, u(x) =

{
0, if x ∈ [a, c],

f(c)− g(c), if x ∈ (c, b],

and define h(b) = g(b) to cover the endpoint. Now, consider the function h + u. On the interval [a, c),
h+ u = f so it is continuous. On the interval (c, b], h+ u = g − g(c) + f(c), which is again continuous.
Now,

lim
x→c−

(h+ u)(x) = lim
x→c−

f(x) = f(c),

and
lim

x→c+
(h+ u)(x) = lim

x→c+
g(x)− g(c) + f(c) = f(c),

and (h+ u)(c) = f(c), so h+ u is continuous on the entirety of [a, b], hence Riemann integrable. Thus,
it suffices to show that the step function u is Riemann integrable, which would imply that the difference
h = (h+ u)− u is Riemann integrable.

Let f(c) − g(c) = α. Given ε > 0, construct a partition P = {a, c − δ, c + δ, b} where δ > 0 is small
enough to maintain the ordering of the points (we discard the trivial case where c is one of the endpoints
a or b, which would mean that h is one of f or g). Furthermore, let δ be such that 2|α|δ < ε. Now,
U(f, P )− L(f, P ) has contributions only from the central subinterval [c− δ, c+ δ], so

U(f, P )− L(f, P ) = 2|α|δ < ε.

Note that if f and g are two Riemann integrable functions on [a, b], then it is possible to find two
partitions P1 and P2 such that

U(f, P1)− L(f, P1) <
ε

2
, U(g, P2)− L(g, P2) <

ε

2
.

For the common refinement P = P1 ∪ P2, we must have

U(f, P )− L(f, P ) <
ε

2
, U(g, P )− L(g, P ) <

ε

2
.

Adding,
U(f + g, P )− L(f + g, P ) <

ε

2
.

Also, note that
U(−f, P ) = −L(f, P ), L(−f, P ) = −U(f, P )

because on any interval [s, t],

sup−f(x) = − inf f(x), inf −f(x) = − sup f(x).

Hence,
U(−f, P )− L(−f, P ) = U(f, P )− L(f, P ) <

ε

2
.

This gives the Riemann integrability of f + g as well as −f .
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