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Solution 1. We find the intervals on which the given function f : R → R is strictly increasing or
decreasing.

(i)
f(x) = (x+ a)2.

Note that f(x) is a polynomial, hence infinitely differentiable everywhere. Calculate

f ′(x) = 2(x+ a), f ′′(x) = 2, f ′′′(x) = f (4)(x) = · · · = 0.

Now, f is strictly increasing precisely when f ′(x) > 0, i.e. on the interval (−a,∞). Also, f is
strictly decreasing when f ′(x) < 0, i.e. on the interval (−∞,−a). Since −a is a point of minima,
f ′(−a) = 0 and f ′′(−a) > 0, with no other x such that f(x) = f(−a) = 0, we may also include the
endpoint.

The function f is strictly increasing on [−a,∞) and strictly decreasing on (−∞,−a].

(ii)
f(x) = ax2 + bx+ c, a, b, c 6= 0.

Again,
f ′(x) = 2ax+ b = 2a(x− α), f ′′(x) = 2a,

where α = −b/2a. If a > 0, then f is strictly increasing on [α,∞) and strictly decreasing on
(−∞, α]. If a < 0, then f is strictly decreasing on [α,∞) and strictly increasing on (−∞, α].

(iii)
f(x) = (ax+ b)3 = a3(x− α)3, a, b 6= 0

where α = −b/a. If a > 0, f is strictly increasing everywhere, and if a < 0, then f is strictly
decreasing everywhere.

This is easily seen, because s < t =⇒ s3 < t3 for all s, t ∈ R. Thus, (s− α)3 < (t− α)3 so when
a > 0, f(s) < f(t) and when a < 0, f(s) > f(t).

Solution 2. We find the Taylor expansion of order k of the following functions.

(i)
f(x) =

1

1 + x2
.

To expand about x = 0, we compute

f(x) =
1

(1 + ix)(1− ix)
=

1

2

[
1

1 + ix
+

1

1− ix

]
.

Since
dn

dxn

1

1 + ax
=

(−1)nann!

(1 + ax)n+1
,

we write
f (n)(x) =

(−1)nn!

2

[
in

(1 + ix)n+1
+

(−i)n

(1− ix)n+1

]
.

At x = 0,
f (n)(0) =

1

2
in(−1)nn! [1 + (−1)n] .
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When n is odd, f (n)(0) = 0. When n is even, we have f (n)(0) = inn!. Thus,

f(x) =

k∑
n=0

f (n)(0)xn

n!
+O(xk+1)

= 1− x2 + x4 − · · ·+ (−1)m/2xm +O(xk+1),

where m is the highest even integer less than or equal to k.

Alternatively: Write 1/(1 + x2) as a geometric power series,

f(x) = 1− x2 + x4 − · · · =
∞∑

n=0

anx
n,

where a4n = 1, a4n+1 = 0, a4n+2 = −1 and a4n+3 = 0. This converges absolutely and uniformly
on any compact subinterval of (−1,+1), simply because it is a geometric series with common ratio
−x2, whose absolute value |x2| < 1 on the interval. As a corollary of Abel’s Lemma 1, this power
series is infinitely differentiable on its interval of convergence. Recall that

f ′(x) =

∞∑
n=1

nanx
n−1.

Repeating this finitely many times,

f (m)(x) =

∞∑
n=m

n(n− 1) . . . (n−m+ 1)anx
n−m.

Thus, we have f (n)(0) = n!an, which vanishes for odd n and is alternately ±n! for even n. This
gives us back our result

f(x) = 1− x2 + x4 − · · ·+ (−1)m/2xm +O(xk+1),

where m is the highest even integer less than or equal to k.

(ii)
f(x) =

1

x
.

To expand about x = 1, we compute

f ′(x) = − 1

x2
, f ′′(x) =

2

x3
, f (n)(x) =

(−1)nn!

xn+1
.

Thus,

f(x) =

k∑
n=0

f (n)(1)(x− 1)n

n!
+O(xk+1)

= 1− (x− 1) + (x− 1)n − · · ·+ (−1)k(x− 1)k +O(xk+1).

(iii)
f(x) = ex.

To expand about x = 0, note that
f (n)(x) = f(x) = ex,

so

f(x) =

k∑
n=0

f (n)(0)xn

n!
+O(xk+1)

= 1 + x+
1

2
x2 + · · ·+ 1

k!
xk +O(xk+1).

1In notes on differentiation, Corollary 2.15.1.
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(iv)
f(x) = sinx.

To expand about x = 0, note that

f ′(x) = cosx, f ′′(x) = − sinx, f ′′′(x) = − cosx, . . .

In general,
f (4n±1)(x) = ± cosx, f (4n+1±1)(x) = ∓ sinx.

Thus, f (2n)(0) = 0 and f2n+1(0) = (−1)n. Setting m = 2` + 1 equal to the greatest odd integer
less than or equal to k, we have

f(x) =
∑̀
n=0

f (2n+1)(0)x2n+1

(2n+ 1)!
+O(xk+1)

=
∑̀
n=0

(−1)nx2n+1

(2n+ 1)!
+O(xk+1)

= x− 1

3!
x3 +

1

5!
x5 − · · ·+ (−1)`

m!
xm +O(xk+1).

(v)
f(x) = xk|x|.

First note that x|x| is differentiable at the origin. The limit

lim
h→0

h|h| − 0

h
= lim

h→0
|h| = 0

is well defined and exists, equal to zero. Hence, the product with xk−1 is also differentiable. Also
note that for x > 0

lim
h→0

(x+ h)|x+ h| − x|x|
h

= lim
h→0

(x+ h)2 − x2

h
= lim

h→0
2x+ h = 2x,

and for x < 0,

lim
h→0

(x+ h)|x+ h| − x|x|
h

= lim
h→0

−(x+ h)2 + x2

h
= lim

h→0
−2x− h = −2x

hence the derivative of x|x| is 2|x| everywhere. Using the product rule, compute

f ′(x) =
d

dx
(xk−1 · x|x|) = (k − 1)xk−2 · x|x|+ 2xk−1|x| = (k + 1)xk−1|x|.

This is of the same form as the original function, so we know that f ′ is further differentiable. Each
time the differential operator acts on f , a factor is pulled in front and the power of x reduces by
1. After k such operations,

f (k)(x) = (k + 1) · k · · · 2 · |x|.

In all cases, f (n)(0) = 0. Thus, the k order Taylor polynomial about x = 0 is

k∑
n=0

f (n)(0)xn

n!
= 0.

However, note that Taylor’s theorem does not apply since the k+1 order derivative does not exist
at 0.
If we’d stopped at a k − 1 order series, then we do have a remainder term of the form f (k)(c) =
(k + 1)!|c|, for some c between 0 and x.
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(vi)

f(x) =

{
xk+1 sin

(
1
x

)
, if x 6= 0,

0, if x = 0.

The k order Taylor expansion about 0 does not exist, since such functions are not generally differ-
entiable k times at x = 0. As a counterexample, set k = 2. Now,

f ′(0) = lim
x→0

x3 sin(1/x)− 0

x− 0
= lim

x→0
x2 sin

(
1

x

)
= 0.

Now, for x 6= 0, use the product rule to compute

f ′(x) = 3x2 sin

(
1

x

)
− x cos

(
1

x

)
.

Thus, the limit

f ′′(0) := lim
x→0

f ′(x)− f ′(0)

x− 0
= lim

x→0
3x sin

(
1

x

)
− cos

(
1

x

)
does not exist.

In general, define

Fn(x) =

{
xn sin

(
1
x

)
, if x 6= 0,

0, if x = 0.
Gn(x) =

{
xn cos

(
1
x

)
, if x 6= 0,

0, if x = 0.

For x 6= 0, see that

F ′
n(x) = nFn−1(x)−Gn−2(x), G′

n(x) = nGn−1(x) + Fn−2(x).

The fact that the minimum leading power of x drops by 2 each time means that we get at most
dk/2e derivatives.

We will instead show that the m = dk/2e Taylor polynomial about x = 0 is identically zero, i.e.

f (n)(0) = 0

for n = 0, 1, . . . ,m. More generally,

F
(n)
k+1(0) = G

(n)
k+1(0) = 0

for n = 0, 1, . . . ,m.
We show this by induction on k. First, for k = 1, m = 1, F2(0) = 0 and

F ′
2(0) = lim

x→0

x2 sin (1/x)− 0

x− 0
= lim

x→0
x sin

(
1

x

)
= lim

x→∞

sinx

x
= 0.

Similarly, G2(0) = 0 and

G′
2(0) = lim

x→0
x cos

(
1

x

)
= 0.

Now, suppose that our statement is true for all 1 ≤ n ≤ k, i.e. the 0 to m = dn/2e order derivatives
of Fn+1 and Gn+1 all vanish at x = 0. Now, Fk+2(0) = 0 and

F ′
k+2(0) = lim

x→0

xk+2 sin (1/x)− 0

x− 0
= lim

x→0
xk+1 sin

(
1

x

)
= lim

x→∞

sinx

xk+1
= 0,

and similarly, Gk+2(0) = 0 and

G′
k+2(0) = lim

x→0
xk+1 cos

(
1

x

)
= 0.
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We use our recurrence relation (for x 6= 0) together with the above two facts (at x = 0) to conclude
that

F ′
k+2(x) = nFk+1(x)−Gk(x), G′

k+2(x) = nGk+1(x) + Fk(x)

everywhere. Now, F ′
k+2 and G′

k+2 are linear combinations of Fk+1, Fk, Gk+1 and Gk. Hence, we
are guaranteed d(k−1)/2e further derivatives at 0 by our induction hypothesis. Since all derivatives
(up to d(k − 1)/2e) of these four functions at x = 0 are zero, all these derivatives of the linear
combinations F ′

k+2 and G′
k+2 at x = 0 must also be zero. This gives us d(k + 1)/2e derivatives of

Fk+2 and Gk+2, all equal to zero at x = 0, which proves our statement by induction.
Hence, the dk/2e order Taylor polynomial of f around x = 0 is

dk/2e∑
n=0

f (n)(0)xn

n!
= 0.

We cannot write a remainder term in the form of Lagrange or Cauchy, since the subsequent deriva-
tive does not exist.

(vii)

f(x) =

{
e1/x

2

, if x 6= 0,

0, if x = 0.

Again, the k order Taylor expansion about 0 does not exist, since f is not differentiable at x = 0.
Note that f is unbounded on any δ neighbourhood of 0, since there will always be a point 1/N < δ,
hence for all n ≤ N , 1/n ∈ (−δ,+δ) and f(1/n) = en

2 → ∞. Thus, the limit

lim
x→0

f(x)− f(0)

x− 0
= lim

x→0

1

x
e1/x

2

does not exist.

Consider instead the function

f(x) =

{
e−1/x2

, if x 6= 0,

0, if x = 0.

Now, we compute

e1/x
2

> 1 +
1

x2
, 0 < e−1/x2

<
1

1 + 1/x2
=

x2

1 + x2
.

Dividing by x and taking limits as x → 0, the squeeze theorem gives

f ′(0) = lim
x→0

1

x
· e−1/x2

= 0.

Elsewhere, the chain rule gives

f ′(x) = e−1/x2

· 2

x3
, x3f ′(x) = 2f(x).

For the second derivative,

e1/x
2

> 1 +
1

x2
+

1

2x4
+

1

6x6
, 0 < e−1/x2

<
1

1 + 1/6x6
=

6x6

1 + 6x6
.

Using the squeeze theorem again,

f ′′(0) = lim
x→0

1

x
· 2

x3
e−1/x2

= 0.

Now, we differentiate

d

dx
x3f ′(x) = 2f ′(x), 3x2f ′(x) + x3f ′′(x) = 2f ′(x),
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which when rearranged gives

x3f ′′(x) = (2− 3x2)f ′(x), x6f ′′(x) = 2(2− 3x2)f(x).

Thus,

f ′′′(0) = lim
x→0

1

x
f ′′(x) = lim

x→0

2− 3x2

x3
· 2

x3
· f(x).

Using

e1/x
2

> 1 +
1

n!x2n
, 0 < e−1/x2

<
n!x2n

1 + n!x2n
,

for n = 4,

f ′′′(0) = lim
x→0

2(2− 3x2)

x6
e−1/x2

≤ lim
x→0

2(2− x2)

x6
· 4!x8

1 + 4!x8
= 0,

hence the squeeze theorem again gives f ′′′(0) = 0.

In general, when we differentiate our functional equation, we get the form

x3nf (n)(x) = pn(x)f(x),

where pn(x) is a polynomial of degree at most 2n. To show this by induction, note that p0(x) = 1,
p1(x) = 2, p2(x) = 2(2− 3x2). If this holds for all n ≤ m, then

x3mf (m)(x) = pm(x)f(x),

which when differentiated gives

3mx3m−1f (m)(x) + x3mf (m+1)(x) = p′m(x)f(x) + pm(x)f ′(x).

Substituting the formulae for f (m)(x) and f ′(x),

3m

x
pm(x)f(x) + x3mf (m+1)(x) = p′m(x)f(x) +

2

x3
pm(x)f(x),

which when multiplied by x3 and rearranged gives

x3(m+1)f (m+1)(x) =
[
(2− 3mx2)pm(x) + x3p′m(x)

]
f(x).

The polynomial in brackets has degree at most 2m + 2. This proves the desired statement by
induction, and also gives us a recurrence relation for pm(x).

Now we show that f (n)(0) = 0. Suppose that this is true for all n ≤ m, hence

f (m+1)(0) = lim
x→0

1

x
f (m)(x) = lim

x→0

pm(x)

x3m+1
e−1/x2

.

Using our inequality,

f (m+1)(0) ≤ lim
x→0

pm(x)

x3m+1

(3m)!x6m

1 + (3m)!x6m
= lim

x→0

(3m)!x3m−1pm(x)

1 + (3m)!x6m
= 0.

Hence, f (m+1)(0) = 0, which proves that f (n)(0) = 0 for all n ∈ N.

This means that the Taylor polynomial of any degree about x = 0 is just the zero polynomial. The
remainder term is of course the function itself, f(x).
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