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Solution 1. We find the intervals on which the given function f: R — R is strictly increasing or
decreasing.

(i)

(iii)

fla) = (z+a)™
Note that f(z) is a polynomial, hence infinitely differentiable everywhere. Calculate
f(x) =2(z +a), ' (x) =2, ") = fHa)=---=0.

Now, f is strictly increasing precisely when f’(x) > 0, i.e. on the interval (—a,00). Also, f is
strictly decreasing when f’(z) < 0, i.e. on the interval (—oco, —a). Since —a is a point of minima,
f'(=a) =0and f”(—a) > 0, with no other x such that f(z) = f(—a) = 0, we may also include the
endpoint.

The function f is strictly increasing on [—a, 00) and strictly decreasing on (—oo, —al.

f(z) = az® + bz + ¢, a,b,c#0.

Again,
f(x) =2ax + b= 2a(z — ), ' (x) = 2a,

where o = —b/2a. If a > 0, then f is strictly increasing on [, 00) and strictly decreasing on
(—o0,a]. If a < 0, then f is strictly decreasing on [«, 00) and strictly increasing on (—oo, a.

f(x) = (ax + b)3 = a®(x — a)?, a,b#0

where @« = —b/a. If a > 0, f is strictly increasing everywhere, and if a < 0, then f is strictly
decreasing everywhere.

This is easily seen, because s <t = s3 < t3 for all 5,¢ € R. Thus, (s — a)? < (t — a)® so when
a>0, f(s) < f(t) and when a <0, f(s) > f(¥).

Solution 2. We find the Taylor expansion of order k of the following functions.

(i)

To expand about = = 0, we compute

1 1 1 1
f(w)Zm_m)(l_m)ZQ[lJrix—i_l—im]'

Since

v 1 (=1)"a"n!
den 1+ ax (1 + ax)ntl’
we write (—1)mn! ) )
.y _ (& "n! " —)"
Fa) 2 [(1 iz T =iyt
At x =0,

7 (0) = Zin (1)t 1+ (-1)"].



When n is odd, (™ (0) = 0. When n is even, we have f(™(0) = i"n!. Thus,

k) (g)gn
n=0 .
=1- an -|—J,‘4 — 4 (_1)m/2xm +O(ij+1)’

where m is the highest even integer less than or equal to k.

Alternatively: Write 1/(1 4+ x2) as a geometric power series,

oo
flz) = 1—x2+x4—---—2an$”,
n=0
where a4y, = 1, a4n41 = 0, agnt2 = —1 and ayg,43 = 0. This converges absolutely and uniformly

on any compact subinterval of (—1,+1), simply because it is a geometric series with common ratio
—x2, whose absolute value |z2| < 1 on the interval. As a corollary of Abel’s Lemma E|, this power
series is infinitely differentiable on its interval of convergence. Recall that

oo
f(z)= Z na,z" .
n=1

Repeating this finitely many times,

o0

fm(z) = Z nn—1)...(n—m+ Dayz™™ ™

n=m

Thus, we have f(")(0) = nla,,, which vanishes for odd n and is alternately 4+n! for even n. This
gives us back our result

fl@)y=1- 24t (,l)m/zxm Jro(xkﬂ)’
where m is the highest even integer less than or equal to k.

(i)

1
flx) = -
To expand about = = 1, we compute
1 2 " —1)"n!
fla)=—5 =t o=
Thus,
k
FO ) (@ — 1)
f(z) = Z:O ( )75' ) +O(z*)

(iii)
To expand about x = 0, note that

SO

k n n
o SO0 oy

n!
n=0

f(x)

1 1
:1+x+§x2+-~-+yxk+0(xk“).

n [notes on differentiation, Corollary 2.15.1.


https://sahasatvik.me/assignments/MA2201/notes_2_diff.pdf

f(z) =sinz.

To expand about x = 0, note that
f'(z) = cosz, " (x) = —sinz, " (z) = —cosw,

In general,
FUnED () = L cosw, FEntED () = rsin g,

Thus, £ (0) = 0 and f>**t1(0) = (—1)". Setting m = 2¢ 4 1 equal to the greatest odd integer
less than or equal to k, we have

¢ Fnt1) (0)z2n+1

J() = B O

n=0
¢ (_1)nm2n+1

- ; Gorr O

1 3. 15 (="

[ = . N ) m k+1
BT e oET.
flx) = a"lal.
First note that x|x| is differentiable at the origin. The limit
hlh| =0
lim hirl =0 = lim |h| =0
h—0  h h—0

is well defined and exists, equal to zero. Hence, the product with 2*~! is also differentiable. Also
note that for x > 0

h h| — h)? — 22
lim (z + h)le + h| = zla] = lim (@+h) - = lim 2z + h = 2x,
h—0 h h—0 h h—0

and for z < 0,

_ _ 24 .2
lim (x+ h)|x + h| — z|z| — lim (x+h)* 4z
h—0 h h—0 h

= lim -2z —h = -2z
h—

hence the derivative of z|z| is 2|x| everywhere. Using the product rule, compute

d

= d—(z’“*l cx|z]) = (k= Da* 2 x|z + 225 2| = (k4 1)z x|
x

f'(x)
This is of the same form as the original function, so we know that f’ is further differentiable. Each
time the differential operator acts on f, a factor is pulled in front and the power of x reduces by

1. After k such operations,
R @)= (k+1) - k---2- x|

In all cases, f(”)(O) = 0. Thus, the k£ order Taylor polynomial about x = 0 is

= S (0)a"

n! =0

n=0

However, note that Taylor’s theorem does not apply since the k + 1 order derivative does not exist
at 0.

If we’d stopped at a k — 1 order series, then we do have a remainder term of the form f*(c) =
(k + 1)!c], for some ¢ between 0 and z.



xF+1sin (%) , ifx#0,
0, if x =0.

The k order Taylor expansion about 0 does not exist, since such functions are not generally differ-
entiable k times at z = 0. As a counterexample, set k = 2. Now,

3 .
R sin(1/x) — 0 L 9 . 1 _
f(O)—qlﬂl_I}% z—0 —%11)%1‘ st x =0

Now, for z # 0, use the product rule to compute
f'(z) = 32”%sin (1> — 2 cos <1> .
x x
f//(o) = hm fl(m f/(o)

— 1 1
1 )7 = lim 3z sin <> — cos ()
x—0 xr — 0 x—0 X X

Thus, the limit
does not exist.

In general, define

For = # 0, see that
Fl(x) =nF,_1(z) — Gp_a2(x), Gl (z) = nGp_1(x) + Fr_a(x).

The fact that the minimum leading power of x drops by 2 each time means that we get at most
[k/2] derivatives.

We will instead show that the m = [k/2] Taylor polynomial about 2 = 0 is identically zero, i.e.
F™M0)=0
for n=0,1,...,m. More generally,

F(0) =G, (0) =0

forn=20,1,...,m.
We show this by induction on k. First, for k =1, m =1, F5(0) = 0 and

2 o 1 _ 1 .

x—0 x—0 z—0 T r—o00 I

Similarly, G2(0) = 0 and
) — 1 1y _
G5(0) = igmoxcos ( =0.

T

Now, suppose that our statement is true for all 1 < n <k, i.e. the 0 to m = [n/2] order derivatives
of F,,+1 and G,,41 all vanish at = 0. Now, Fj42(0) = 0 and

zF*+2gin (1/2) — 0 1 sinz
’ IRT IERT k+1 . - .
Fj . 5(0) = alznr%) 0 = $hr%1: sin <x) = zhm s 0,

and similarly, Gg42(0) = 0 and

z—0

1
lr2(0) = lim 2" cos () =0.



(vii)

We use our recurrence relation (for x # 0) together with the above two facts (at = 0) to conclude
that

Fipo(@) = nFisi(2) = Giul@),  Ghon(a) = nGiot (z) + Frla)

everywhere. Now, FI;+2 and G;<:+2 are linear combinations of Fjy1, F, Gr+1 and Gi. Hence, we
are guaranteed [(k—1)/2] further derivatives at 0 by our induction hypothesis. Since all derivatives
(up to [(k — 1)/2]) of these four functions at = 0 are zero, all these derivatives of the linear
combinations Iy, and G}, at * = 0 must also be zero. This gives us [(k + 1)/2] derivatives of
Fi1o and Gj4o, all equal to zero at x = 0, which proves our statement by induction.

Hence, the [k/2] order Taylor polynomial of f around z =0 is
[k/21 . n

Z Fm(0)z -0

n=0

n!

We cannot write a remainder term in the form of Lagrange or Cauchy, since the subsequent deriva-
tive does not exist.

61/952, if z #0,
f(x)_{o, itz = 0.

Again, the k order Taylor expansion about 0 does not exist, since f is not differentiable at x = 0.
Note that f is unbounded on any d neighbourhood of 0, since there will always be a point 1/N < 4,
hence for all n < N, 1/n € (=6, +6) and f(1/n) = e — co. Thus, the limit

does not exist.

Consider instead the function

e’l/$2, ifx#0,
flx) = :
0, if z =0.
Now, we compute
2
a4 L Dce Ve L _©
€ +x2’ ¢ 1+1/22 1422

Dividing by = and taking limits as * — 0, the squeeze theorem gives

£(0) = Tim ~ . -1/ — g,

x—0

Elsewhere, the chain rule gives

For the second derivative,

11 /a2 1 _ 6a®
274

1
et > 14—
T

Using the squeeze theorem again,

Now, we differentiate



which when rearranged gives

P (@) = 23 f(2),  2°f"(x) = 202 - 3%) (=),

Thus,
1 . 2-32% 2
f///(o) — i%;f//(x) — Ihirb xS . ; . f(x)
Using
2n
I Sijet T
¢ >1+n!aﬂ"7 O<e 1+ nlz2n’
for n =4,
2(2—=322) _ .2 2(2 —22) 4lad
" _ 7 —1/z < 3 . —
F7(0) %IH%) 6 ¢ - i% 26 1+ 4128 0,

hence the squeeze theorem again gives f"/(0) = 0.

In general, when we differentiate our functional equation, we get the form

2 f ) (2) = pa (@) f (2),

where p,,(2) is a polynomial of degree at most 2n. To show this by induction, note that po(x) = 1,
p1(x) = 2, pa(z) = 2(2 — 322). If this holds for all n < m, then

2% {1 (2) = pm (@) f (),
which when differentiated gives
3ma®™ L (@) + 2% D (2) = pi, (2) f (@) + pn (@) (2).
Substituting the formulae for (™ (z) and f’(x),

() £(2) 27 F P ) = 90, () 2) + () ),

which when multiplied by 23 and rearranged gives
20 (0D (1) = [(2 = 3ma?)pm (2) + 2®pr, (2)] f(2).

The polynomial in brackets has degree at most 2m + 2. This proves the desired statement by
induction, and also gives us a recurrence relation for p,,(z).

Now we show that f(™) (0) = 0. Suppose that this is true for all n < m, hence

f(m+1)(0) = lim 1f(m)(sc) = lim Pm(2) e~1/e*,

z—0 z—0 g3m+1

Using our inequality,

16m 3m)lz3m 1p,,. (z)
(m41) < 1 pm(z) (3m) < 1 ( Pm _
! 0) < ili% 3m+L 1 4+ (3m)!xbm ilg%) 1+ (3m)lzbm 0

Hence, f(™*1(0) = 0, which proves that f(")(0) = 0 for all n € N.

This means that the Taylor polynomial of any degree about = 0 is just the zero polynomial. The
remainder term is of course the function itself, f(z).



