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Lemma 1. The series
∑∞

n=1 1/n
2 converges to a real number between 1 and 2.

Proof. Note that the partial sums of the given series are monotonically increasing, since all terms are
positive. Also,

Sn =

n∑
k=1

1

k2
= 1 +

n∑
k=2

1

k2

< 1 +

n∑
k=2

1

k(k − 1)

= 1 +

n∑
k=2

[
1

k − 1
− 1

k

]
= 1 + 1− 1

n
< 2.

Thus, the sequence of partial sums of the given series is bounded above, which means that it must
converge by the monotone convergence theorem.

Lemma 2. If a series
∑∞

n=1 αn converges absolutely, then it also converges ordinarily.

Proof. Let ε > 0. From the Cauchy criterion and the absolute convergence of
∑∞

n=1 αn, we can choose
N ∈ N such that for all m,n ≥ N ,∣∣∣∣∣

m∑
k=1

|αk| −
n∑

k=1

|αk|

∣∣∣∣∣ =
m∑

k=n+1

|αk| < ε.

Using the triangle inequality, we have∣∣∣∣∣
m∑

k=n+1

αk

∣∣∣∣∣ ≤
m∑

k=n+1

|αk| < ε,

which proves that
∑∞

n=1 αn converges by the Cauchy criterion.

Solution 1. We have been given the functions

fn : R \ {−1/n2} → R, fn(x) =
1

1 + n2x
,

and we wish to examine the convergence of the series of functions
∑∞

n=1 fn.

Pointwise and absolute convergence : Note that when x = 0, the pointwise sum is
∑∞

n=1 1, which
clearly diverges. When x > 0, note that fn(x) > 0 for all n ∈ N so the sequence of partial sums is
monotonically increasing. Also, the series is bounded above since

n∑
k=1

fk(x) =

n∑
k=1

1

1 + k2x
<

n∑
k=1

1

k2x
≤ 2

x
,

so
∑∞

n=1 fn(x) converges by the monotone convergence theorem. Note that this convergence is absolute,
since all terms are positive in any case.
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Similarly, when x < −1, 1 + n2x < 0 which means that all fn(x) are negative, so the sequence of partial
sums is monotonically decreasing. Now, the series is bounded below since

n∑
k=1

fk(x) =

n∑
k=1

1

1 + k2x
≥

n∑
k=1

1

k2 + k2x
≥ 2

1 + x
,

so
∑∞

n=1 fn(x) converges by the monotone convergence theorem. Note that this convergence is absolute,
since all terms are negative in any case, hence the absolute sum is simply the negative of the ordinary sum.

Note that the sum
∑∞

n=1 fn(x) is not defined when x ∈ S = {−1,−1/22,−1/32, . . . }. Suppose that
−1 < x < 0 and x /∈ S. Using the Archimedean property, choose N ∈ N such that N2|x| > 2, which
means that 1 + n2x < n2x/2 < 0 for all n ≥ N . Now for all n ≥ N , we have the tail of the series

n∑
k=N

fk(x) =

n∑
k=N

1

1 + k2x
≥

n∑
k=N

1

k2x/2
≥ 4

x
,

so the tail
∑∞

n=N fn(x) converges by the monotone convergence theorem. Thus, the complete series∑∞
n=1 fn(x) must also converge, since the sum of the first N − 1 terms is just a finite number. Note that

we have shown that the tail of the series from the N th term onwards converges absolutely, since all those
terms are negative, hence the absolute sum is the negative of the ordinary sum. The first N − 1 terms
are positive, so the complete absolute series including them is also convergent.

Thus, setting S0 = S ∪ {0} = {0,−1,−1/22,−1/32, . . . }, we have shown that
∑∞

n=1 fn is convergent
pointwise and absolutely on R \ S0.

Uniform convergence : We show that
∑∞

n=1 converges uniformly on any subset of R \S0 which does
not have 0 as a limit point, i.e. the series converges uniformly on (−∞, a]∪[b,∞)\S0, where a < −1, b > 0.

First, let x ∈ [b,∞) with b > 0. Then,

|fn(x)| =
1

1 + n2x
<

1

n2x
≤ 1

n2b
,

hence
∑∞

n=1 fn converges uniformly on [b,∞) by the Weierstrass M-test.

Again, if x ∈ (∞, a] with a < 0, for all n ≥ N such that N2|a| > 2, we have 1 + n2x < n2x/2 ≤ n2a/2,
so

|fn(x)| =
1

|1 + n2x|
≤ 2

n2|a|
hence the series converges uniformly by the Weierstrass M-test again.

Disproof of uniform convergence : Suppose that the series converges uniformly on x ∈ (0,∞).
This means that for ε = 1/3, we can choose N ∈ N such that for all n ≥ N , we have∣∣∣∣∣

N+1∑
n=1

fn(x)−
N∑

n=1

fn(x)

∣∣∣∣∣ = |fN+1(x)| < ε =
1

3

for all x ∈ (0,∞) by the Cauchy criterion. On the other hand,

|fN+1(1/(N + 1)2)| = 1

2
>

1

3
,

which is a contradiction.

More broadly, suppose that
∑

fn converges uniformly on any set J0 which has 0 as a limit point. Note
that J0 cannot contain 0. This means that we can choose x0 ∈ J0 such that |x0| < 1/(N + 1)2. Now,

|fN+1(x0)| =
1

|1 + (N + 1)2x0|
≥ 1

1 + (N + 1)2|x0|
>

1

2
>

1

3
,

which is again a contradiction.
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Solution 2. We have been given functions fn such that for some M > 0,

|fn(x)| ≤ M |x|n

for all n ∈ N. We wish to examine the convergence of the series
∑∞

n=1 fn.

The series need not converge at all when |x| ≥ 1. We supply the example fn(x) = xn, M = 1. Note
that when |x| ≥ 1, the series

∑∞
n=1 x

n does not converge because it fails the Cauchy criterion (nth term
test). We have |x|n → ∞ when |x| > 1 and |x|n → 1 when |x| = 1, whereas we demand fn(x) → 0 for
the series to converge. Thus, we need only look at the interval (−1,+1).

Note that this same counterexample shows that
∑∞

n=1 fn need not converge uniformly on (−1,+1). If∑∞
n=1 x

n converged uniformly on (−1,+1), then for ε = 1/2, we could choose N ∈ N such that for
n = N , m = N + 1, ∣∣∣∣∣

N+1∑
n=1

fn(x)−
N∑

n=1

fn(x)

∣∣∣∣∣ = |fN+1(x)| = |x|N+1 < ε =
1

2

by the Cauchy criterion. On the other hand, note that x0 = (1/2)1/(N+1) ∈ (−1,+1), so we demand

|fN+1(x0)| =
1

2
<

1

2
,

which is absurd.

The series does converge absolutely, hence pointwise on (−1,+1). For fixed x ∈ (−1,+1), the geometric
series

∞∑
n=1

M |x|n =
M |x|
1− |x|

converges. Since 0 ≤ |fn(x)| ≤ M |x|n, the series
∑∞

n=1 |fn(x)| must converge by the comparison test.
This means that

∑∞
n=1 fn converges absolutely on (−1,+1), which in turn means that it converges ordi-

narily (pointwise) on the same.

The series converges pointwise, absolutely, and uniformly on the compact interval [−a,+a] where 0 <
a < 1. This is because for |x| < a < 1,

|fn(x)| ≤ M |x|n ≤ Man,

so setting Mn = Man, the series
∞∑

n=1

Mn =

∞∑
n=1

Man =
Ma

1− a

is convergent, which gives the uniform convergence of both
∑∞

n=1 fn and
∑∞

n=1 |fn| by the Weierstrass
M-test. This of course implies the pointwise convergence of the same.
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