MA 2201 : Analysis II

Satvik Saha, 19MS154

We state and prove the following theorems in order to simplify the problems ahead.

Lemma 1. The sequence $\{1/n\}$ converges on [0,1], and $1/n \rightarrow 0$.

Proof. Let $\epsilon > 0$ be arbitrary. Using the Archimedean property of the reals, choose $N \in \mathbb{N}$ such that $N\epsilon > 1$. One such choice is given by $N = \lfloor 1/\epsilon \rfloor + 1$. Thus, for all $n \ge N$, we have

$$\left|\frac{1}{n} - 0\right| = \frac{1}{n} \le \frac{1}{N} < \epsilon$$

This shows that $1/n \to 0$.

Theorem 2. Let $f_n: X \to Y$ and let $f_n \to f$ pointwise on X. For all $n \in \mathbb{N}$, set

$$M_n = \sup_{x \in X} |f_n(x) - f(x)|$$

Then, $\{f_n\}$ converges uniformly on X to f if and only if $M_n \to 0$.

Proof. Suppose that $f_n \to f$ uniformly on X. Let $\epsilon > 0$ be arbitrary, and let $N \in \mathbb{N}$ be such that for all $n \ge N$ and $x \in X$,

$$|f_n(x) - f(x)| < \frac{\epsilon}{2}.$$

This means that for all $n \ge N$,

$$M_n = \sup |f_n(x) - f(x)| \le \frac{\epsilon}{2} < \epsilon.$$

Also note that all $M_n \ge 0$, since they are the supremums of non-negative quantities. This means that $M_n \to 0$, as desired.

Now suppose that $M_n \to 0$. This means that for arbitrary $\epsilon > 0$, we can find $N \in \mathbb{N}$ such that for all $n \ge N$, we have

$$|M_n| = \sup |f_n(x) - f(x)| < \epsilon.$$

Now, from the properties of the supremum, we see that for all $n \ge N$ and $x \in X$,

$$|f_n(x) - f(x)| \le \sup |f_n(x) - f(x)| < \epsilon$$

This proves that $f_n \to f$ uniformly.

Theorem 3. Let the functions $f_n: X \to Y$ be continuous, and suppose that $f_n \to f$ uniformly on X. Then, f is continuous on X.

Proof. Let $\epsilon > 0$. We wish to show that f is continuous at arbitrary $x_0 \in X$. Since $f_n \to f$ uniformly on X, we find $N \in \mathbb{N}$ such that for all $x \in X$ and $n \ge N$, we have

$$|f_n(x) - f(x)| < \frac{\epsilon}{3}.$$

In particular, this holds for n = N, and $x = x_0$.

The continuity of each f_n on X means f_N is continuous on X in particular, so we can find $\delta > 0$ such that whenever $|x - x_0| < \delta$, we have

$$|f_N(x) - f_N(x_0)| < \frac{\epsilon}{3}.$$

Putting these together, for every $x \in X$ such that $|x - x_0| < \delta$, we have

$$|f(x) - f(x_0)| \le |f(x) - f_N(x)| + |f_N(x) - f_N(x_0)| + |f_N(x_0) - f(x_0)|$$

$$< \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3}$$

$$= \epsilon.$$

This means that f is continuous at x_0 for arbitrary $x_0 \in X$, i.e. f is continuous on X.

Corollary 3.1. Let the functions $f_n: X \to Y$ be continuous, and let $f_n \to f$ pointwise on $X \subseteq \mathbb{R}$. If f is not continuous on X, then the sequence of functions $\{f_n\}$ does not converge uniformly on X. *Proof.* This is simply the contrapositive of Theorem 2.

Solution 1.

(i) We have been given the functions

$$f_n: [0,\infty) \to \mathbb{R}, \qquad f_n(x) = \frac{x}{x+n}.$$

We show that $f_n \to 0$ pointwise on $[0, \infty)$, where by 0 we mean the zero function. Let $x \in [0, \infty)$ be arbitrary, and let $\epsilon > 0$. We choose $N \in \mathbb{N}$ such that $N\epsilon > x$ using the Archimedean property of the reals. Since $x \ge 0$, whenever $n \ge N$, we have

$$\frac{x}{x+n} \le \frac{x}{n} \le \frac{x}{N} < \epsilon,$$

so $|f_n(x)| < \epsilon$. This means that $f_n(x) \to 0$ for all $x \in [0, \infty)$, hence $f_n \to 0$ pointwise on $[0, \infty)$. This also means that by restricting the domain, $f_n \to 0$ on [0, a] for a > 0.

We now show that $\{f_n\}$ does not converge uniformly on $[0, \infty)$. Suppose to the contrary that it did. Let $N \in \mathbb{N}$ be such that for all $n \geq N$ and for all $x \in [0, \infty)$, we have

$$|f_n(x) - 0| = \frac{x}{x+n} < \epsilon = \frac{1}{3}.$$

This must hold in particular for $x = N \in [0, \infty)$ and n = N. Plugging this in, we demand

$$\frac{N}{N+N} = \frac{1}{2} < \frac{1}{3},$$

which is absurd.

On the other hand, $\{f_n\}$ does converge to 0 uniformly on [0, a], where a > 0. Let $\epsilon > 0$ be arbitrary. Note that for $x \in [0, a]$, we have $x \leq a$. Now, choose $N \in \mathbb{N}$ such that $N\epsilon > a$. Thus, whenever $n \geq N$ and $x \in [0, a]$, we have

$$|f_n(x) - 0| = \frac{x}{x+n} \le \frac{x}{n} \le \frac{a}{n} \le \frac{a}{N} < \epsilon$$

This means that $f_n \to 0$ uniformly on [0, a].

Note that what we have shown is that on [0, a],

$$M_n = \sup |f_n(x) - 0| < \frac{a}{n} \to 0.$$

(ii) We have been given the functions

$$f_n \colon \mathbb{R} \to \mathbb{R}, \qquad f_n(x) = \frac{nx}{x + n^2 x^2}$$

Note that we assume $f_n(0) = n/(1 + n^2 0) = n$. We first show that the sequence of functions $\{f_n\}$ does not converge on \mathbb{R} . This is because the sequence $f_n(0) = n \to \infty$ diverges. The same argument shows why $\{f_n\}$ does not converge on $[0, \infty)$. Thus, the question of uniform convergence does not arise on these domains either.

We show that $f_n \to 0$ on $[a, \infty)$, where a > 0 by proving the even stronger statement of uniform convergence. Since $x \ge a$, we have

$$M_n = \sup |f_n(x) - 0| = \sup \frac{n}{1 + n^2 x} \le \frac{n}{1 + n^2 a} \le \frac{n}{n^2 a} \to 0.$$

Thus, $M_n \to 0$, which means that $f_n \to 0$ uniformly on $[a, \infty)$.

Formally, given $\epsilon > 0$, we choose $N \in \mathbb{N}$ such that $Na\epsilon \ge 1$, whence for all $n \ge N$ and $x \in [a, \infty)$, we have

$$|f_n(x) - 0| = \frac{nx}{x + n^2 x^2} \le \frac{nx}{n^2 x^2} \le \frac{1}{na} \le \frac{1}{Na} < \epsilon$$

This gives the uniform convergence of $f_n \to 0$ on $[a, \infty)$.

Alternate definition at the missing point We instead define $f_n(0) = 0$, in which case we observe that $f_n(0) \to 0$. When x > 0, $f_n(x) = n/(1 + n^2x) < 1/nx \to 0$. When $x \neq 0$, note that $f_n(-1/n^2)$ is undefined. Nevertheless, note that when $x \neq -1/n^2$,

$$f_n(x) = \frac{nx}{x + n^2 x^2} = \frac{1/n}{1/n^2 + x}.$$

Since $1/n^2 \to 0$, we have $1/n^2 + x \to x \neq 0$ and $1/n \to 0$, hence $f_n(x) \to 0$. This gives $f_n \to 0$ pointwise on \mathbb{R} , which in turn means that $f_n \to 0$ on $[0, \infty)$.

We show that $\{f_n\}$ does not converge uniformly on $[0, \infty)$. Suppose to the contrary that $f_n \to 0$ uniformly. Pick $N \in \mathbb{N}$ such that for all $n \geq N$ and $x \in [0, \infty)$, we have

$$|f_n(x) - 0| = \frac{nx}{x + n^2 x^2} < \frac{1}{3}$$

This ought to hold for $x = 1/N \in [0, \infty)$ and n = N in particular. Thus,

$$f_N(1/N) = \frac{1}{1/N+1} < \frac{1}{3}$$

which means 1/N + 1 > 3, or 1/N > 2, or N < 1/2 which is absurd. Thus, $\{f_n\}$ cannot converge uniformly on $[0, \infty)$, nor on \mathbb{R} .

The arguments for $f_n \to 0$ uniformly on $[a, \infty)$ where a > 0 remain identical to what we've shown in the previous definition of f_n .

(iii) We have been given the functions

$$f_n \colon [0,\infty) \to \mathbb{R}, \qquad f_n(x) = \frac{nx}{1+nx}.$$

Note that for all $x \in [0, \infty)$, we have $1/n \to 0$ so $1/n + x \to x$, thus when x > 0 we can write

$$f_n(x) = \frac{nx}{1+nx} = \frac{x}{1/n+x} \to 1.$$

When x = 0, $f_n(x) = 0$ so $f_n(0) \to 0$. Thus, setting

$$f: [0,\infty) \to \mathbb{R}, \qquad f(x) = \begin{cases} 0, & \text{if } x = 0\\ 1, & \text{if } x > 0 \end{cases}$$

we have $f_n \to f$ pointwise on $[0, \infty)$. By restricting the domain of f_n , we have $f_n \to 1$ pointwise on $[a, \infty)$ where a > 0.

We see that $\{f_n\}$ does not converge uniformly on $[0, \infty)$, because each f_n is continuous, being the ratio of continuous functions with a non-zero denominator. However, the limit function f is discontinuous. To see this, note that f(1/n) = 1 for all $n \in \mathbb{N}$, yet $f(0) = 0 \neq 1 = \lim_{n \to \infty} f(1/n)$.

Another way to see this is to note that $f_n(1/n) = 1/2$ for all $n \in \mathbb{N}$. If $\{f_n\}$ did converge uniformly to 0 on $[0, \infty)$, pick $N \in \mathbb{N}$ such that for all $n \geq \mathbb{N}$ and for all $x \in [0, \infty)$,

$$|f_n(x) - f(x)| < \frac{1}{3}.$$

This must be true for $x = 1/N \in [0, \infty)$ and n = N in particular. This demands $|f_N(1/N) - f(1/N)| = 1/2 < 1/3$, which is absurd.

We show that $f_n \to 1$ uniformly on $[a, \infty)$ where a > 0. Since $x \ge a$, we have

$$M_n = \sup |f_n(x) - 1| = \sup \frac{|nx - (1 + nx)|}{1 + nx} = \sup \frac{1}{1 + nx} \le \frac{1}{1 + na} < \frac{1}{na} \to 0.$$

Thus, $M_n \to 0$ which means that $f_n \to 1$ uniformly on $[a, \infty)$.

Formally, given $\epsilon > 0$, pick $N \in \mathbb{N}$ such that $Na\epsilon > 1$. Thus, for all $n \ge N$ and $x \in [a, \infty)$,

$$|f_n(x) - 1| = \left|\frac{nx}{1 + nx} - 1\right| = \frac{1}{1 + nx} < \frac{1}{nx} \le \frac{1}{Na} < \epsilon.$$

This shows that $f_n \to 1$ uniformly on $[a, \infty)$.

(iv) We have been given the functions

$$f_n \colon [0,\infty) \to \mathbb{R}, \qquad f_n(x) = \frac{x^n}{1+x^n}.$$

We first note that $x^n \to 0$ when $x \in [0, 1)$ and $x^n \to 1$ when x = 1. The latter follows trivially. The former also follows trivially when x = 0. Let $t = x^{-1} - 1 > 0$ when 0 < x < 1, since $x^{-n} > 1$. Rearranging, 1/x = 1 + t, so

$$x^{-n} = (1+t)^n = 1 + nt + \dots + t^n \ge nt.$$

This means that $x^n \leq 1/nt \to 0$, which gives $x^n \to 0$ as desired.

Now, when $0 \le x < 1$, we have $x^n \to 0$ so $f_n(x) \to 0$. When x = 1, we have $f_n(x) = 1/2$ so $f_n(1) \to 1/2$. When x > 1, we have $f_n(x) = 1/(x^{-n} + 1) \to 1$ because $x^{-n} = (1/x)^n \to 0$ since 1/x < 1. Thus, we set

$$f: [0, \infty) \to \mathbb{R}, \qquad f(x) = \begin{cases} 0, & \text{if } x < 1 \\ \frac{1}{2} & \text{if } x = 1 \\ 1 & \text{if } x > 1 \end{cases}$$

and write $f_n \to f$ pointwise on $[0, \infty)$. By restricting the domain, we also say that $f_n \to f$ on [0, 1]and $f_n \to 0$ on [0, a) where 0 < a < 1.

Now, the limit function f is discontinuous at x = 1, yet the functions f_n are all continuous since they are ratios of polynomial functions with non-zero denominators. Thus, $\{f_n\}$ does not converge uniformly on $[0, \infty)$, nor on [0, 1].

Another way to see this is to see this is that if $f_n \to f$ uniformly on [0, 1], then we can pick $N \in \mathbb{N}$ such that for all $n \ge N$ and $x \in [0, \infty)$,

$$|f_n(x) - f(x)| < \frac{1}{4}$$

This must hold in particular for $x = (1/2)^{1/N} < 1$ and n = N, hence

$$\left|\frac{1/2}{1+1/2} - 0\right| = \frac{1}{3} < \frac{1}{4},$$

which is absurd. Thus, $\{f_n\}$ doesn't converge uniformly on [0, 1], nor on $[0, \infty)$.

When 0 < a < 1, we show that $f_n \to 0$ on [0, a) uniformly. Note that when 0 < x < a < 1, we have $x^n < a^n$, and when x = 0, we see $f_n(x) = 0$, so

$$M_n = \sup |f_n(x) - 0| = \sup \frac{x^n}{1 + x^n} \le \sup x^n \le a^n \to 0$$

The last limit follows since $a \in [0, 1)$. Thus, $M_n \to 0$, which means that $f_n \to 0$ uniformly on (0, a) where 0 < a < 1.

Formally, given $\epsilon > 0$, we choose $N \in \mathbb{N}$ such that $Nt\epsilon > 1$, where $t = a^{-1} - 1$. We have already shown that $a^n \leq 1/nt$. Now, for all $n \geq N$ and $x \in (0, a)$, we have

$$|f_n(x) - 0| = \frac{x^n}{1 + x^n} < x^n < a^n < \frac{1}{nt} \le \frac{1}{Nt} < \epsilon,$$

and $f_n(0) = 0 < \epsilon$. Thus, $f_n \to f$ uniformly on [0, a).

(v) We have been given the functions

$$f_n: [0,\infty) \to \mathbb{R}, \qquad f_n(x) = \frac{\sin nx}{1+nx}.$$

When x > 0, we see that $\{\sin nx\}$ is a bounded sequence, while $1/(1+nx) < 1/nx \to 0$. This gives $f_n(x) \to 0$. Also, $f_n(0) = 0$, so $f_n(0) \to 0$. Thus, $f_n \to 0$ pointwise on $[0, \infty)$. By restricting the domain, we see that $f_n \to 0$ on $[a, \infty)$, where a > 0.

We show that $\{f_n\}$ does not converge uniformly on $[0, \infty)$. Note that $f_n(1/n) = \sin(1)/2 > 0.4$, which means

$$M_n = \sup |f_n(x) - 0| \ge |f_n(1/n)| > 0.4$$

for all $n \in \mathbb{N}$. Thus, M_n does not converge to 0, so $\{f_n\}$ cannot converge uniformly on $[0, \infty)$.

Another way to see this is that if $f_n \to 0$ uniformly on $[0, \infty)$, then we could choose $N \in \mathbb{N}$ such that for all $n \ge N$ and $x \in [0, \infty)$,

$$|f_n(x) - 0| < 0.4.$$

This should hold for $x = 1/N \in [0, \infty)$ and n = N in particular. This demands $|f_N(1/N)| = \sin(1)/2 < 0.4$, which is absurd.

We show that $f_n \to 0$ uniformly on $[a, \infty)$, where a > 0. Since $x \ge a$ and $|\sin x| \le 1$, we can write

$$M_n = \sup |f_n(x) - 0| = \sup \frac{|\sin nx|}{1 + nx} \le \frac{1}{1 + na} \to 0.$$

This means that $M_n \to 0$, so $f_n \to 0$ uniformly on $[a, \infty)$ where a > 0.

Formally, given $\epsilon > 0$, we choose $N \in \mathbb{N}$ such that $Na\epsilon > 1$. Thus, for all $n \ge N$ and $x \in [a, \infty)$, we have

$$|f_n(x) - 0| = \frac{|\sin nx|}{1 + nx} \le \frac{1}{1 + nx} \le \frac{1}{na} \le \frac{1}{Na} < \epsilon.$$

This means that $f_n \to 0$ uniformly on $[a, \infty)$.

(vi) We have been given the functions

$$f_n \colon \mathbb{R} \to \mathbb{R}, \qquad f_n(x) = e^{-nx}.$$

Note that whenever x < 0, we have $e^{-x} > 1$ because

$$e^y = 1 + y + \frac{y^2}{2} + \dots > 1$$

when -x = y > 0. Thus, $(e^{-x})^n = e^{-nx} \to \infty$, so $\{f_n\}$ does not converge on the entirety of \mathbb{R} . When x = 0, $e^{-n0} = 1$ so $f_n(0) \to 1$. When x > 0, $e^{-x} = 1/e^x < 1$, so $f_n(x) = e^{-nx} \to 0$. Thus, setting

$$f: [0,\infty) \to \mathbb{R}, \qquad f(x) = \begin{cases} 1, & \text{if } x = 0\\ 0, & \text{if } x > 0 \end{cases},$$

we have $f_n \to f$ pointwise on $[0, \infty)$.

Note that $\{f_n\}$ does not converge uniformly to f on $[0, \infty)$ since each f_n is continuous, but the limit function f is discontinuous at 0.

Alternatively, examine $f_n(1/n) = e^{-1} > 0$, which means that

$$M_n = \sup |f_n(x) - f(x)| \ge |f_n(1/n) - f(1/n)| = e^{-1},$$

so M_n cannot converge to 0.

Formally, if $f_n \to f$ uniformly on $[0, \infty)$, then we could choose $N \in \mathbb{N}$ such that for all $n \ge N$ and $x \in [0, \infty)$,

$$|f_n(x) - f(x)| < e^{-1}$$

This should hold in particular for x = 1/N and n = N. This demands

$$|f_N(1/N) - f(1/N)| = e^{-1} < e^{-1},$$

which is absurd.

(vii) We have been given the functions

$$f_n \colon \mathbb{R} \to \mathbb{R}, \qquad f_n(x) = x^2 e^{-nx}.$$

We have already seen that $e^{-nx} \to \infty$ when x < 0, $e^{-nx} \to 0$ when x > 0. Thus, $x^2 e^{-nx} \to \infty$ when x < 0 and $x^2 e^{-nx} \to 0$ when $x \ge 0$. This means that $\{f_n\}$ does not converge on \mathbb{R} , but $f_n \to 0$ pointwise on $[0, \infty)$.

We show that $f_n \to 0$ uniformly on $[0,\infty)$. Note that $f_n(0) = 0$ and when x > 0, we have

$$e^{nx} = 1 + nx + \frac{1}{2}n^2x^2 + \dots > \frac{1}{2}n^2x^2,$$

so $e^{-nx} < 2/n^2 x^2$. Thus, $f_n(x) = x^2 e^{-nx} < 2/n^2$, so

$$M_n = \sup |f_n(x) - 0| = \sup x^2 e^{-nx} \le \frac{2}{n^2} \to 0.$$

This means that $M_n \to 0$, so $f_n \to 0$ uniformly on $[0, \infty)$.

Formally, given $\epsilon > 0$, choose $N \in \mathbb{N}$ such that $N^2 \epsilon > 2$. Thus, for all $n \ge N$ and $x \in [0, \infty)$, we have

$$|f_n(x) - 0| = x^2 e^{-nx} < \frac{2}{n^2} \le \frac{2}{N^2} < \epsilon$$

This shows that $f_n \to 0$ uniformly on $[0, \infty)$.

(viii) We have been given the functions

$$f_n \colon \mathbb{R} \to \mathbb{R}, \qquad f_n(x) = n^2 x^2 e^{-nx}.$$

Again, recall that when x < 0, we have $x^2 e^{-nx} \to \infty$, so $f_n(x) = n^2 x^2 e^{-nx} \to \infty$. This means that $\{f_n\}$ does not converge on \mathbb{R} . When x = 0, we have $f_n(0) = 0$ and when x > 0, we see that

$$e^{nx} = 1 + nx + \frac{1}{2}n^2x^2 + \frac{1}{6}n^3x^3 + \dots > \frac{1}{6}n^3x^3$$

so $f_n(x) = n^2 x^2 e^{-nx} < n^2 x^2 \cdot 6/n^3 x^3 = 6/nx \to 0$. Also, $f_n(x) \ge 0$, so $f_n \to 0$ pointwise on $[0, \infty)$.

We show that $\{f_n\}$ does not converge uniformly on $[0,\infty)$ by noting that $f_n(1/n) = e^{-1} > 0$, so

$$M_n = \sup |f_n(x) - 0| \ge |f_n(1/n) - 0| = e^{-1}$$

This means that M_n cannot converge to 0, so $\{f_n\}$ cannot converge uniformly on $[0, \infty)$.

Alternatively, if $f_n \to 0$ uniformly on $[0, \infty)$, we could choose $N \in \mathbb{N}$ such that for all $n \ge N$ and $x \in [0, \infty)$, we have

$$|f_n(x) - 0| < e^{-1}.$$

This should hold in particular for x = 1/N and n = N. This demands

$$|f_N(1/N) - 0| = e^{-1} < e^{-1},$$

which is absurd.

(ix) We have been given the functions

$$f_n: [0,2] \to \mathbb{R}, \qquad f_n(x) = \frac{x^n}{1+x^n}.$$

Recall that we've already shown that $f_n \to f$ pointwise where

$$f: [0,2] \to \mathbb{R}, \qquad f(x) = \begin{cases} 0, & \text{if } x < 1\\ \frac{1}{2} & \text{if } x = 1\\ 1 & \text{if } x > 1 \end{cases}$$

Again, this convergence is not uniform since each f_n is continuous on [0, 2], but the limiting function f is discontinuous at 1.

(x) We have been given the functions

$$f_n: [0,1] \to \mathbb{R}, \qquad f_n(x) = \frac{1}{(1+x)^n}.$$

Recall that we've shown that when 0 < x < 1, we have $x^n \to 0$. Thus, when $0 < x \le 1$, we have $1 < 1 + x \le 2$ hence $1/2 \le 1/(1+x) < 1$, so $1/(1+x)^n \to 0$. When x = 0, we have $1/(1+x)^n = 1$. Thus, setting

$$f \colon [0,1] \to \mathbb{R}, \qquad f(x) = \begin{cases} 1, & \text{if } x = 0\\ 0, & \text{if } x > 0 \end{cases}$$

we have $f_n \to f$ pointwise on [0, 1].

We see that $\{f_n\}$ does not converge uniformly on [0, 1] because each of the functions f_n is continuous, being the ratio of polynomials with a non-zero denominator, but the limiting function f is discontinuous at 0.

Alternatively, if $f_n \to f$ uniformly on [0, 1], then we could choose $N \in \mathbb{N}$ such that for all $n \ge N$ and $x \in [0, 1]$, we have

$$|f_n(x) - f(x)| < \frac{1}{3}$$

This should hold in particular for $x = 2^{1/N} - 1 \in [0, 1]$ and n = N. Since x > 0, this demands

$$f_N(2^{1/N} - 1) = \frac{1}{2} < \frac{1}{3}$$

which is absurd.

Solution 2. We have been given the sequences of functions $\{f_n\}$ and $\{g_n\}$ such that $f_n \to f$ and $g_n \to g$ uniformly on some domain X. We claim that $f_n + g_n \to f + g$ uniformly on X.

To show this, let $\epsilon > 0$ be arbitrary. From the uniform convergence of $f_n \to f$ and $g_n \to g$, we choose $N_1, N_2 \in \mathbb{N}$ such that for all $x \in X$,

$$|f_n(x) - f(x)| < \frac{\epsilon}{2}$$

whenever $n \ge N_1$ and

$$|g_n(x) - g(x)| < \frac{\epsilon}{2}$$

whenever $n \ge N_2$. Thus, whenever $x \in X$ and $n \ge N = N_1 + N_2$, we have

$$\begin{aligned} |(f_n(x) + g_n(x)) - (f(x) + g(x))| &= |(f_n(x) - f(x)) + (g_n(x) - g(x))| \\ &\leq |f_n(x) - f(x)| + |g_n(x) - g(x)| \\ &< \frac{\epsilon}{2} + \frac{\epsilon}{2} \\ &= \epsilon. \end{aligned}$$

The second line follows by the triangle inequality. Thus, $f_n + g_n \rightarrow f + g$ uniformly, as desired.

Solution 3. We have been given the functions

$$f_n \colon \mathbb{R} \to \mathbb{R}, \qquad f_n(x) = x + \frac{1}{n}.$$

We first show that $f_n \to f$ where $f \colon \mathbb{R} \to \mathbb{R}$, f(x) = x is the identity function. Moreover, this convergence is uniform because

$$M_n = \sup |f_n(x) - f(x)| = \sup \left| x + \frac{1}{n} - x \right| = \frac{1}{n} \to 0.$$

The last limit follows from the Archimedean property of the reals: given any $\epsilon > 0$, we can choose $N \in \mathbb{N}$ such that $N\epsilon > 1$, so $1/n < \epsilon$ for all $n \ge N$. Thus, $M_n \to 0$ so $f_n \to f$ uniformly on \mathbb{R} .

Now, we examine $\{f^2\}$. Note that

$$f_n^2(x) = x^2 + \frac{2x}{n} + \frac{1}{n^2},$$

and we have the limits $x^2 \to x^2$, $2x/n \to 0$ and $1/n^2 \to 0$. The last two follow from $1/n \to 0$, since $x \in \mathbb{R}$ is fixed. Thus, $f_n^2 \to f^2$ pointwise, where $f^2(x) = x^2$. Now,

$$f_n^2(x) - f^2(x) = \frac{2x}{n} + \frac{1}{n^2} > \frac{2x}{n}$$

This means that $f_n^2(n) - f^2(n) > 2$, so

$$M_n = \sup |f_n^2(x) - f^2(x)| \ge |f_n^2(n) - f^2(n)| > 2.$$

Thus, M_n cannot converge to 0, so $\{f_n^2\}$ cannot converge uniformly on \mathbb{R} .