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We state and prove the following theorems in order to simplify the problems ahead.
Lemma 1. The sequence {1/n} converges on [0,1], and 1/n — 0.

Proof. Let € > 0 be arbitrary. Using the Archimedean property of the reals, choose N € N such that

Ne > 1. One such choice is given by N = |1/e| + 1. Thus, for all n > N, we have
1 1 1
2 0= 2 <=
n ’ n~- N <
This shows that 1/n — 0. O

€.

Theorem 2. Let f,: X =Y and let f,, — f pointwise on X. For alln € N, set
M, = sup |fn(x) — f(z)|.
reX

Then, {fn} converges uniformly on X to f if and only if M, — 0.

Proof. Suppose that f,, — f uniformly on X. Let € > 0 be arbitrary, and let N € N be such that for all
n> N and z € X,

[Fal@) = fl@)] < 5.

This means that for all n > N,
€
M,, = sup|fn(x) — f(z)] < ) <€

Also note that all M,, > 0, since they are the supremums of non-negative quantities. This means that
M, — 0, as desired.

Now suppose that M,, — 0. This means that for arbitrary ¢ > 0, we can find N € N such that for all
n > N, we have

|Mp| = sup|fn(z) — f(z)] <e.
Now, from the properties of the supremum, we see that for all n > N and x € X,
|fo(@) = f2)] < sup|fu(z) — f(z)| <e.
This proves that f, — f uniformly. O
Theorem 3. Let the functions f,: X — Y be continuous, and suppose that f, — f uniformly on X.
Then, f is continuous on X.

Proof. Let € > 0. We wish to show that f is continuous at arbitrary zg € X.
Since f,, — f uniformly on X, we find N € N such that for all z € X and n > N, we have

[Fal@) = Fl@)] < 5.

In particular, this holds for n = N, and = = xy.
The continuity of each f,, on X means fy is continuous on X in particular, so we can find § > 0 such
that whenever |x — x¢| < §, we have

(@) = fv(wo)| < 3.

Putting these together, for every x € X such that |z — z¢| < J, we have
[f(2) = fzo)| < [f(x) = fn(2)] + [fn (@) — Fn (o) + [ fn(20) — f (o)
€ € €
< 3 + 3 + 3

= €.

This means that f is continuous at xq for arbitrary x¢ € X, i.e. f is continuous on X. O



Corollary 3.1. Let the functions f,: X — Y be continuous, and let f, — [ pointwise on X CR. If f
is not continuous on X, then the sequence of functions {f,} does not converge uniformly on X.

Proof. This is simply the contrapositive of Theorem 2. O

Solution 1.

(i)

We have been given the functions

frn:[0,00) = R, fulx) = x

r+n
We show that f,, — 0 pointwise on [0, 00), where by 0 we mean the zero function. Let z € [0, c0)
be arbitrary, and let e > 0. We choose N € N such that Ne > z using the Archimedean property
of the reals. Since x > 0, whenever n > N, we have
r T _

t+n-—n- N <&
0 |fn(x)] < €. This means that f,(z) — 0 for all x € [0,00), hence f, — 0 pointwise on [0, c0).
This also means that by restricting the domain, f,, — 0 on [0, a] for a > 0.

We now show that {f,} does not converge uniformly on [0,00). Suppose to the contrary that it
did. Let N € N be such that for all n > N and for all z € [0,00), we have

fal@) =0 = —2— < e= 1.

T+n 3
This must hold in particular for z = N € [0,00) and n = N. Plugging this in, we demand
N 1 1
=- < -,
N+N 2 3

which is absurd.

On the other hand, {f,,} does converge to 0 uniformly on [0, a], where a > 0. Let € > 0 be arbitrary.
Note that for z € [0, a], we have < a. Now, choose N € N such that Ne > a. Thus, whenever
n > N and x € [0, a], we have

x

@) =0 = == <

< - <€

S8
S8
=l =

This means that f,, — 0 uniformly on [0, a].

Note that what we have shown is that on [0, al,

Mn:sup|fn(x)70|<%%0.

We have been given the functions
nx
fnt R—=R, fn($):m-
Note that we assume f,(0) = n/(1 + n?0) = n. We first show that the sequence of functions
{fn} does not converge on R. This is because the sequence f,(0) = n — oo diverges. The same
argument shows why { f,,} does not converge on [0, 00). Thus, the question of uniform convergence
does not arise on these domains either.

We show that f,, — 0 on [a,00), where a > 0 by proving the even stronger statement of uniform
convergence. Since x > a, we have

n c_n o
1+ n?2z — 1+ n2a ~ n2a

Thus, M,, — 0, which means that f, — 0 uniformly on [a, c0).

M, = sup|fn(xz) — 0] = sup — 0.

Formally, given € > 0, we choose N € N such that Nae > 1, whence for all n > N and z € [a, 00),

we have
n nT 1 1

< < —
2" na~ Na

This gives the uniform convergence of f,, — 0 on [a, c0).



(iii)

Alternate definition at the missing point We instead define f,,(0) = 0, in which case we
observe that f,,(0) — 0. When x > 0, f,(z) = n/(1 +n’z) < 1/nx — 0. When z # 0, note that
fn(=1/n?) is undefined. Nevertheless, note that when z # —1/n?,

nx  1/n
r+n222  1/n2+a’

fu(x) =

Since 1/n? — 0, we have 1/n? + 2 — x # 0 and 1/n — 0, hence f,(x) — 0. This gives f, — 0
pointwise on R | which in turn means that f,, — 0 on [0, c0).

We show that {f,} does not converge uniformly on [0,00). Suppose to the contrary that f, — 0
uniformly. Pick N € N such that for all n > N and z € [0, 00), we have

nT < 1
r+n2z2 3

‘fn(x) - O| =

This ought to hold for x = 1/N € [0,00) and n = N in particular. Thus,

which means 1/N +1 > 3, or 1/N > 2, or N < 1/2 which is absurd. Thus, {f,} cannot converge
uniformly on [0, c0), nor on R.

The arguments for f,, — 0 uniformly on [a, c0) where a > 0 remain identical to what we’ve shown
in the previous definition of f,.

We have been given the functions

nx

frn:]0,00) = R, f"(x)zl—l—na:'

Note that for all z € [0,00), we have 1/n — 0 so 1/n + 2 — x, thus when = > 0 we can write

fu(x)

__ne __ T
S l4nzr 1/n+x

When 2 =0, f,(z) =0 so f,(0) — 0. Thus, setting

0, ifz=0
: 10 R = ’
Jil0.00) SR () {17 N

we have f, — f pointwise on [0,00). By restricting the domain of f,, we have f,, — 1 pointwise
on [a,00) where a > 0.

We see that {f,} does not converge uniformly on [0,00), because each f, is continuous, being
the ratio of continuous functions with a non-zero denominator. However, the limit function f is
discontinuous. To see this, note that f(1/n) =1 forall n € N, yet f(0) =0 # 1 = lim,, o0 f(1/n).

Another way to see this is to note that f,(1/n) = 1/2 for all n € N. If { f,,} did converge uniformly
to 0 on [0,00), pick N € N such that for all n > N and for all z € [0, 00),

1

fal@) = f(@)] < 5.

This must be true for x = 1/N € [0,00) and n = N in particular. This demands |fx(1/N) —
f(1/N)| =1/2 < 1/3, which is absurd.

We show that f,, — 1 uniformly on [a,c0) where a > 0. Since z > a, we have

jne = (14 na)| 1 Lo
sup | fn(z) | = sup 1+ nz Sub 7 +nr ~ 14+na na




(iv)

Thus, M,, — 0 which means that f,, — 1 uniformly on [a, c0).

Formally, given € > 0, pick N € N such that Nae > 1. Thus, for all n > N and z € [a, c0),

nx 1 1 < 1 < 1 <
—1| = — < — <
1+nx 1+nx nz ~ Na

ole) =11 =)

This shows that f,, — 1 uniformly on [a, c0).

We have been given the functions

xn

T 1gan
We first note that 2™ — 0 when z € [0,1) and 2™ — 1 when # = 1. The latter follows trivially.

The former also follows trivially when 2 = 0. Let t =27! —1 > 0 when 0 < & < 1, since 2" > 1.
Rearranging, 1/ =1+, so

fni[0,00) = R, fn(x)

=01+ t)"=14nt+---+t" >nt.
This means that 2" < 1/nt — 0, which gives ™ — 0 as desired.
Now, when 0 < z < 1, we have 2™ — 0 so f,(x) — 0. When z = 1, we have f,(z) = 1/2 so

fn(1) = 1/2. When x > 1, we have f,(z) = 1/(27™ + 1) — 1 because =™ = (1/x)™ — 0 since
1/x < 1. Thus, we set

0, ifz<l1
f:]0,00) = R, fley=491% ifz=1,
1 ife>1

and write f, — f pointwise on [0, 00). By restricting the domain, we also say that f, — f on [0, 1]
and f, — 0 on [0,a) where 0 < a < 1.

Now, the limit function f is discontinuous at x = 1, yet the functions f,, are all continuous since
they are ratios of polynomial functions with non-zero denominators. Thus, {f,} does not converge
uniformly on [0, c0), nor on [0, 1].

Another way to see this is to see this is that if f,, — f uniformly on [0, 1], then we can pick N € N
such that for all n > N and z € [0, 00),

fal) — f@)] < 1.

4
This must hold in particular for z = (1/2)'/N < 1 and n = N, hence
1/2 11
_ =-< -,
1+1/2 351

which is absurd. Thus, {f,} doesn’t converge uniformly on [0, 1], nor on [0, o).

When 0 < a < 1, we show that f,, — 0 on [0,a) uniformly. Note that when 0 < z < a < 1, we
have ™ < ", and when x = 0, we see f,(z) =0, so

n

T <supz" <a" — 0.
T

The last limit follows since a € [0,1). Thus, M,, — 0, which means that f,, — 0 uniformly on (0, a)
where 0 < a < 1.

M,, = sup |fn(x) — 0| = sup

Formally, given € > 0, we choose N € N such that Nte > 1, where t = a~! — 1. We have already
shown that a™ < 1/nt. Now, for all n > N and x € (0,a), we have

n 1 1
—-0| = <z"<a'"< — < — <g
[ fn(2) | 14 zm v @ nt — Nt ¢

and f,(0) =0 < e. Thus, f,, — f uniformly on [0, a).




(v)

We have been given the functions

sin nx
n |0, R, n = .
furl0,00) 2B fale) = S
When x > 0, we see that {sinnz} is a bounded sequence, while 1/(1+nxz) < 1/nax — 0. This gives
fn(x) = 0. Also, f,(0) =0, so f,(0) — 0. Thus, f, — 0 pointwise on [0,00). By restricting the
domain, we see that f, — 0 on [a,c0), where a > 0.

We show that {f,} does not converge uniformly on [0,00). Note that f,(1/n) = sin(1)/2 > 0.4,
which means
My = sup | () — 0] > |fu(1/m)] > 0.4

for all n € N. Thus, M,, does not converge to 0, so {f,} cannot converge uniformly on [0, 00).

Another way to see this is that if f,, — 0 uniformly on [0, 00), then we could choose N € N such
that for all n > N and z € [0, 00),
|fn(z) — 0] < 04.

This should hold for z = 1/N € [0,00) and n = N in particular. This demands |fy(1/N)| =
sin(1)/2 < 0.4, which is absurd.

We show that f,, — 0 uniformly on [a, 00), where @ > 0. Since > a and |sinz| < 1, we can write

__|sinnz| 1

M, = sup |f,(x) — 0| = < 0.
sup | fn(z) Ibup1+m Trra

This means that M,, — 0, so f, — 0 uniformly on [a,c0) where a > 0.

Formally, given € > 0, we choose N € N such that Nae > 1. Thus, for all n > N and « € [a, 00),

we have
| sin nz| 1 1 1
< —<

w(w) = 0] = -
| fn () | l1+nz — 14+nzx — na~ Na

< €.

This means that f,, — 0 uniformly on [a, 00).

We have been given the functions
fn: R =R, fo(z) =",

Note that whenever z < 0, we have e™® > 1 because

y2
e =1ty+ Gt >1

when —x = y > 0. Thus, (e7*)" = e ™ — 00, so {f,} does not converge on the entirety of R.
When z =0, e =150 f,(0) = 1. When z > 0, e™® = 1/e® < 1, so f,(z) = ¢ " — 0. Thus,
setting

1, ifx=0

£:0.00) > B, f(m)={0 M

we have f,, — f pointwise on [0, 00).

Note that {f,} does not converge uniformly to f on [0,00) since each f, is continuous, but the
limit function f is discontinuous at 0.

Alternatively, examine f,,(1/n) = e~! > 0, which means that

My, = sup | fu(z) = f(2)| = [fu(1/n) = f(1/n)] = 7",

so M, cannot converge to 0.



(vii)

(viii)

Formally, if f,, — f uniformly on [0, c0), then we could choose N € N such that for all n > N and
x € [0,00),
|fu(2) = f(2)] < e .
This should hold in particular for x = 1/N and n = N. This demands
[fN(L/N) = f(1/N)| =€t <e7!,
which is absurd.

We have been given the functions
fn: R—=R, fn(z) = 2%,

We have already seen that e™"% — oo when z < 0, e ™ — 0 when = > 0. Thus, 2% — oo
when z < 0 and 2%e™™* — 0 when x > 0. This means that {f,} does not converge on R, but
fn — 0 pointwise on [0, 00).

We show that f, — 0 uniformly on [0, 00). Note that f,(0) =0 and when = > 0, we have

1 1
e =14+nx+ §n2x2—|—-~- > 57121‘2,

so e " < 2/n%z?. Thus, f,(z) = r%e™"® < 2/n? so
2 _—nx 2
M, = sup |fn(x) — 0] =supz~e <— —0.
n

This means that M,, — 0, so f, — 0 uniformly on [0, c0).

Formally, given ¢ > 0, choose N € N such that N2e > 2. Thus, for all n > N and x € [0,0), we
have

—nx 2 2
This shows that f,, — 0 uniformly on [0, 00).
We have been given the functions

fn: R =R, fn(z) = n?z2e™"",

Again, recall that when z < 0, we have z2e™"% — oo, so f,(z) = n?z%e™™* — oo. This means

that {f,} does not converge on R. When z = 0, we have f,,(0) = 0 and when x > 0, we see that

1 1 1
e =14+nx+ §n2m2 + 6n3x3 +--> 6n3x3,

80 fn(z) = n2x2e™"® < n?2%.6/n%z3 = 6/nx — 0. Also, f.(x) >0, so f, — 0 pointwise on [0, c0).

We show that {f,} does not converge uniformly on [0,00) by noting that f,(1/n) =e~! >0, so
My, = sup |fo(x) = 0] > |fu(1/n) — 0] = e

This means that M,, cannot converge to 0, so {f,} cannot converge uniformly on [0, c0).

Alternatively, if f,, — 0 uniformly on [0, 00), we could choose N € N such that for all n > N and
x € [0,00), we have
|fu(x) — 0] < et

This should hold in particular for x = 1/N and n = N. This demands
Fn(1/N) = 0] = et < e,

which is absurd.



(ix) We have been given the functions

x’ﬂ

fn: [072}‘)]1& fn(‘r): 1+a2m

Recall that we’ve already shown that f, — f pointwise where

, ifx<l1
ifz=1,
ifz>1

f00,2] =R, f(x) =

— o= O

Again, this convergence is not uniform since each f,, is continuous on [0, 2], but the limiting function
f is discontinuous at 1.

(x) We have been given the functions
1

(1+a)"

Recall that we’ve shown that when 0 < & < 1, we have ™ — 0. Thus, when 0 < x < 1, we have
l1<l+z<2hencel/2<1/(1+2x)<1,s01/(1+x)" — 0. When x = 0, we have 1/(1+z)" = 1.

Thus, setting
1, ifxz=0
. [0,1] — R, = ,
f10.1) f@) {0, if £ >0

fni[0,1] = R, fn(z) =

we have f,, — f pointwise on [0, 1].

We see that {f,} does not converge uniformly on [0, 1] because each of the functions f,, is contin-
uous, being the ratio of polynomials with a non-zero denominator, but the limiting function f is
discontinuous at 0.

Alternatively, if f, — f uniformly on [0, 1], then we could choose N € N such that for all n > N
and z € [0, 1], we have

ale) = F(@)| < 5.

This should hold in particular for z = 21/~ —1 € [0,1] and n = N. Since z > 0, this demands

<73
3

Y S
—

which is absurd.

Solution 2. We have been given the sequences of functions {f,} and {g,} such that f, — f and
gn — g uniformly on some domain X. We claim that f,, + g, — f + ¢ uniformly on X.

To show this, let € > 0 be arbitrary. From the uniform convergence of f, — f and g, — ¢, we choose
N1, Ny € N such that for all x € X,

Fale) = fl@)| < 5

whenever n > N; and

90 (@) — g(@)] < 3

whenever n > N». Thus, whenever x € X and n > N = Ny + Ny, we have

(@) + gn()) = (f@) + 9(2))] = |(fa(2) = (@) + (gn() — g(@))]
< | ful@) = f(@)] + |gn(@) = g(a)|
5*5

The second line follows by the triangle inequality. Thus, f, + g, — f + g uniformly, as desired.



Solution 3. We have been given the functions
1
fai R—=R, fvz(x):x+ﬁ'

We first show that f,, — f where f: R — R, f(z) = z is the identity function. Moreover, this convergence
is uniform because

1 1
M, =sup |fu(z) — f(z)| =sup|z+ — —a| = — = 0.
n n

The last limit follows from the Archimedean property of the reals: given any € > 0, we can choose N € N
such that Ne > 1, s0 1/n < € for all n > N. Thus, M,, — 0 so f, — f uniformly on R.

Now, we examine {f2}. Note that
1

2z
2 _ .2
fn(.’lﬁ)—.’IJ +n+n2’

and we have the limits 2> — 22, 2z/n — 0 and 1/n? — 0. The last two follow from 1/n — 0, since
x € R is fixed. Thus, f2 — f? pointwise, where f?(z) = x2. Now,

2 1 2
@)= Py ==+ > =
This means that f2(n) — f2(n) > 2, so
M, = sup |f3(z) — f*(2)] = |f3(n) = f2(n)] > 2.

Thus, M,, cannot converge to 0, so {2} cannot converge uniformly on R.



