MA 2102 : Mathematical Methods II

Satvik Saha, 19MS154

October 4, 2020

Fourier Series and Transforms (M.L. Boas, Chapter 7)

Section 6. Problem 14 Use the Fourier expansion of the following function (as seen in problem 5.7),

$$f(x) = \begin{cases} 0, & -\pi < x < 0, \\ x, & 0 < x < \pi. \end{cases},$$

to show that $S = \sum_{\text{odd } n} 1/n^2 = \pi^2/8$. Try $x = 0, \pi, \pi/2$.

Solution. We recall that the Fourier expansion of f is given by

$$f(x) = \frac{\pi}{4} + \sum_{n=1}^{\infty} \left[-\frac{1}{n^2 \pi} (1 - \cos n\pi) \cos nx - \frac{1}{n} \cos n\pi \sin nx \right].$$

Now, note that f satisfies the Dirichlet conditions, since it is a single-valued periodic function of period 2π , defined between $-\pi$ and $+\pi$, has a finite number of extrema, with a finite number of discontinuities (at 0 and π). Also,

$$\int_{-\pi}^{+\pi} |f(x)| \, dx = \int_{0}^{\pi} x \, dx = \frac{\pi^2}{2},$$

which is finite. Hence, our Fourier series does indeed converge to f. Furthermore, the series at the discontinuities 0 and π converges to the average of the left and right hand limits, i.e. to the midpoints of the jump discontinuities. Thus,

$$f(0) = \frac{1}{2} \left[\lim_{x \to 0^{-}} f(x) + \lim_{x \to 0^{+}} f(x) \right] = \frac{1}{2} [0+0] = 0.$$

$$f(\pi) = \frac{1}{2} \left[\lim_{x \to \pi^{-}} f(x) + \lim_{x \to \pi^{+}} f(x) \right] = \frac{1}{2} [\pi+0] = \frac{\pi}{2}.$$

Thus, we first set x = 0. Then, all sine terms vanish and all the cosines become unity. Note that $1 - \cos n\pi$ vanishes for even n and becomes 2 for odd n, so we obtain

$$f(0) = 0 = \frac{\pi}{4} - \frac{2}{\pi} \sum_{\text{odd } n} \frac{1}{n^2}$$

Rearranging, $S = (\pi/4)(\pi/2) = \pi^2/8$.

We may also try $x = \pi$, in which case the sines vanish again, and the cosines follow $\cos n\pi = (-1)^n$. Thus, $\sum_{\text{odd } n} (-1)^n / n^2 = -S$, so we have

$$f(\pi) = \frac{\pi}{2} = \frac{\pi}{4} + \frac{2}{\pi} \sum_{\text{odd } n} \frac{1}{n^2}.$$

Rearranging, we again obtain $S = (\pi/4)(\pi/2) = \pi^2/8$.

Finally, when $x = \pi/2$, the cosines vanish and the sines follow $\sin n\pi/2 = 1, 0, -1, 0, \ldots$ Thus, we get an alternating sum

$$f(\pi/2) = \frac{\pi}{2} = \frac{\pi}{4} - \sum_{\text{odd } n} (-1)^n \frac{(-1)^{(n+1)/2}}{n} = \frac{\pi}{4} + 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots$$

Thus, we obtain

$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots$$

As a side note, from $\sum_{\text{odd } n} 1/n^2 = \pi^2/8$, we see that

$$\sum_{\text{even }n} \frac{1}{n^2} = \frac{1}{4} \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{1}{4} \sum_{\text{even }n} \frac{1}{n^2} + \frac{1}{4} \sum_{\text{odd }n} \frac{1}{n^2} = \frac{1}{4} \sum_{\text{even }n} \frac{1}{n^2} + \frac{\pi^2}{32}$$

Rearranging, $\sum_{\text{even }n} 1/n^2 = (4/3)(\pi^2/32) = \pi^2/24$. Adding on the odd terms, we get

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.$$

The computation of this particular infinite sum is famously known as the Basel problem.

Section 7. Problem 2. Expand the following periodic function as a Fourier series.

$$f(x) = \begin{cases} 0, & -\pi < x < 0, \\ 1, & 0 < x < \pi/2, \\ 0, & \pi/2 < x < \pi. \end{cases}$$

Solution. We write

$$f(x) = \sum_{n = -\infty}^{+\infty} c_n e^{inx}.$$

The coefficients for $n \neq 0$ are calculated as

$$c_n = \frac{1}{2\pi} \int_{-\pi}^{+\pi} f(x) e^{-inx} \, dx = \frac{1}{2\pi i n} \left[1 - e^{-in\pi/2} \right].$$

When n = 0,

$$c_0 = \frac{1}{2\pi} \int_{-\pi}^{+\pi} f(x) \, dx = \frac{1}{2\pi} \cdot \frac{\pi}{2} = \frac{1}{4}.$$

Thus,

$$f(x) = \frac{1}{4} + \frac{1}{2\pi i} \sum_{\substack{n = -\infty \\ n \neq 0}}^{+\infty} \frac{1}{n} \left[1 - e^{-in\pi/2} \right] e^{inx}.$$

We can rewrite this as

$$\begin{split} f(x) &= \frac{1}{4} + \frac{1}{2\pi i} \sum_{n=1}^{\infty} \frac{1}{n} \left[1 - e^{-in\pi/2} \right] e^{inx} - \frac{1}{n} \left[1 - e^{in\pi/2} \right] e^{-inx} \\ &= \frac{1}{4} + \frac{1}{2\pi i} \sum_{n=1}^{\infty} \frac{1}{n} \left[e^{inx} - e^{-inx} \right] - \frac{1}{n} \left[e^{in(x-\pi/2)} - e^{-in(x-\pi/2)} \right] \\ &= \frac{1}{4} + \sum_{n=1}^{\infty} \left[\frac{1}{n\pi} \sin nx - \frac{1}{n\pi} \sin(nx - n\pi/2) \right] \\ &= \frac{1}{4} + \sum_{n=1}^{\infty} \left[\frac{1}{n\pi} \sin nx - \frac{1}{n\pi} \cos \frac{n\pi}{2} \sin nx + \frac{1}{n\pi} \sin \frac{n\pi}{2} \cos nx \right] \\ &= \frac{1}{4} + \sum_{n=1}^{\infty} \left[\frac{1}{n\pi} \sin \frac{n\pi}{2} \cos nx + \frac{1}{n\pi} \left(1 - \cos \frac{n\pi}{2} \right) \sin nx \right]. \end{split}$$

This is precisely what we obtained earlier in (5.2).

Problem 7. Expand the following periodic function as a Fourier series.

$$f(x) = \begin{cases} 0, & -\pi < x < 0, \\ x, & 0 < x < \pi. \end{cases}$$

Solution. We write

$$f(x) = \sum_{n = -\infty}^{+\infty} c_n e^{inx}.$$

The coefficients for $n \neq 0$ are calculated as

$$c_n = \frac{1}{2\pi} \int_{-\pi}^{+\pi} f(x) e^{-inx} \, dx = -\frac{1}{2\pi i n} \pi e^{-in\pi} + \frac{1}{2\pi i n} \int_0^{\pi} e^{-inx} \, dx = -\frac{1}{2in} e^{-in\pi} + \frac{1}{2\pi n^2} \left[e^{-in\pi} - 1 \right] \, dx = -\frac{1}{2in} e^{-in\pi} + \frac{1}{2\pi n^2} \left[e^{-in\pi} - 1 \right] \, dx = -\frac{1}{2in} e^{-in\pi} + \frac{1}{2\pi n^2} \left[e^{-in\pi} - 1 \right] \, dx = -\frac{1}{2in} e^{-in\pi} + \frac{1}{2\pi n^2} \left[e^{-in\pi} - 1 \right] \, dx = -\frac{1}{2in} e^{-in\pi} + \frac{1}{2\pi n^2} \left[e^{-in\pi} - 1 \right] \, dx = -\frac{1}{2in} e^{-in\pi} + \frac{1}{2\pi n^2} \left[e^{-in\pi} - 1 \right] \, dx = -\frac{1}{2in} e^{-in\pi} + \frac{1}{2\pi n^2} \left[e^{-in\pi} - 1 \right] \, dx = -\frac{1}{2in} e^{-in\pi} + \frac{1}{2\pi n^2} \left[e^{-in\pi} - 1 \right] \, dx = -\frac{1}{2in} e^{-in\pi} + \frac{1}{2\pi n^2} \left[e^{-in\pi} - 1 \right] \, dx = -\frac{1}{2in} e^{-in\pi} + \frac{1}{2\pi n^2} \left[e^{-in\pi} - 1 \right] \, dx = -\frac{1}{2in} e^{-in\pi} + \frac{1}{2\pi n^2} \left[e^{-in\pi} - 1 \right] \, dx = -\frac{1}{2in} e^{-in\pi} + \frac{1}{2\pi n^2} \left[e^{-in\pi} - 1 \right] \, dx = -\frac{1}{2in} e^{-in\pi} + \frac{1}{2\pi n^2} \left[e^{-in\pi} - 1 \right] \, dx = -\frac{1}{2in} e^{-in\pi} + \frac{1}{2\pi n^2} \left[e^{-in\pi} - 1 \right] \, dx = -\frac{1}{2in} e^{-in\pi} + \frac{1}{2\pi n^2} \left[e^{-in\pi} - 1 \right] \, dx = -\frac{1}{2in} e^{-in\pi} + \frac{1}{2\pi n^2} \left[e^{-in\pi} - 1 \right] \, dx = -\frac{1}{2in} e^{-in\pi} + \frac{1}{2\pi n^2} \left[e^{-in\pi} - 1 \right] \, dx = -\frac{1}{2in} e^{-in\pi} + \frac{1}{2\pi n^2} \left[e^{-in\pi} - 1 \right] \, dx = -\frac{1}{2in} e^{-in\pi} + \frac{1}{2\pi n^2} \left[e^{-in\pi} - 1 \right] \, dx = -\frac{1}{2in} e^{-in\pi} + \frac{1}{2\pi n^2} \left[e^{-in\pi} - 1 \right] \, dx = -\frac{1}{2in} e^{-in\pi} + \frac{1}{2\pi n^2} \left[e^{-in\pi} - 1 \right] \, dx = -\frac{1}{2in} e^{-in\pi} + \frac{1}{2\pi n^2} \left[e^{-in\pi} - 1 \right] \, dx = -\frac{1}{2in} e^{-in\pi} + \frac{1}{2\pi n^2} \left[e^{-in\pi} - 1 \right] \, dx = -\frac{1}{2in} e^{-in\pi} + \frac{1}{2\pi n^2} \left[e^{-in\pi} - 1 \right] \, dx = -\frac{1}{2in} e^{-in\pi} + \frac{1}{2\pi n^2} \left[e^{-in\pi} - 1 \right] \, dx = -\frac{1}{2in} e^{-in\pi} + \frac{1}{2\pi n^2} \left[e^{-in\pi} - 1 \right] \, dx = -\frac{1}{2in} e^{-in\pi} + \frac{1}{2\pi n^2} \left[e^{-in\pi} - 1 \right] \, dx = -\frac{1}{2in} e^{-in\pi} + \frac{1}{2\pi n^2} \left[e^{-in\pi} - 1 \right] \, dx = -\frac{1}{2in} e^{-in\pi} + \frac{1}{2\pi n^2} \left[e^{-in\pi} - 1 \right] \, dx = -\frac{1}{2in} e^{-in\pi} + \frac{1}{2\pi n^2} \left[e^{-in\pi} - 1 \right] \, dx = -\frac{1}{2in} e^{-in\pi} + \frac{1}{2\pi n^2} \left[e^{-in\pi} - 1 \right] \, dx = -\frac{1}{2in} e^{-in\pi} + \frac{1}{2\pi n^2} \left[e^{$$

When n = 0,

$$c_0 = \frac{1}{2\pi} \int_{-\pi}^{+\pi} f(x) \, dx = \frac{1}{2\pi} \cdot \frac{\pi^2}{2} = \frac{\pi}{4}.$$

Thus,

$$f(x) = \frac{\pi}{4} - \sum_{\substack{n = -\infty \\ n \neq 0}}^{+\infty} \left[\frac{1}{2in} e^{-in\pi} - \frac{1}{2\pi n^2} e^{-in\pi} + \frac{1}{2\pi n^2} \right] e^{inx}.$$

We can rewrite this as

$$\begin{split} f(x) &= \frac{\pi}{4} - \sum_{n=1}^{\infty} \frac{1}{2in} \left[e^{in(x-\pi)} - e^{-in(x-\pi)} \right] - \frac{1}{2\pi n^2} \left[e^{in(x-\pi)} + e^{-in(x-\pi)} \right] + \frac{1}{2\pi n^2} \left[e^{inx} - e^{-inx} \right] \\ &= \frac{\pi}{4} - \sum_{n=1}^{\infty} \frac{1}{n} \sin(nx - n\pi) - \frac{1}{\pi n^2} \cos(nx - n\pi) + \frac{1}{\pi n^2} \cos nx \\ &= \frac{\pi}{4} - \sum_{n=1}^{\infty} \frac{1}{n} \cos n\pi \sin nx - \frac{1}{\pi n^2} \cos n\pi \cos nx + \frac{1}{\pi n^2} \cos nx \\ &= \frac{\pi}{4} - \sum_{n=1}^{\infty} \left[\frac{1}{\pi n^2} (1 - \cos n\pi) \cos nx + \frac{1}{n} \cos n\pi \sin nx \right]. \end{split}$$

This is precisely what we obtained earlier in (5.7).

Problem 11. Expand the following periodic function as a Fourier series.

$$f(x) = \begin{cases} 0, & -\pi < x < 0, \\ \sin x, & 0 < x < \pi. \end{cases}$$

Solution. We write

$$f(x) = \sum_{n = -\infty}^{+\infty} c_n e^{inx}.$$

The coefficients for $n \neq 0, \pm 1$ are calculated as

$$c_n = \frac{1}{2\pi} \int_{-\pi}^{+\pi} f(x) e^{-inx} \, dx = \frac{1}{4\pi i} \int_0^{\pi} (e^{ix} - e^{-ix}) e^{-inx} \, dx = -\frac{1}{4\pi} \left[\frac{e^{i\pi(1-n)} - 1}{1-n} + \frac{e^{-i\pi(1+n)} - 1}{1+n} \right].$$

For odd n, note that $c_n = 0$. Thus,

$$c_{2n} = \frac{1}{2\pi} \left[\frac{1}{1-2n} + \frac{1}{1+2n} \right] = -\frac{1}{\pi} \cdot \frac{1}{4n^2 - 1}.$$

When n = 0,

$$c_0 = \frac{1}{2\pi} \int_{-\pi}^{+\pi} f(x) \, dx = \frac{1}{2\pi} \cdot 2 = \frac{1}{\pi}.$$

When n = 1,

$$c_1 = \frac{1}{4\pi i} \int_0^\pi (e^{ix} - e^{-ix}) e^{-ix} \, dx = \frac{1}{4\pi i} \left[\pi - \frac{1}{2i} e^{-2\pi i} + \frac{1}{2i} \right] = \frac{1}{4i}$$

When n = -1,

$$c_{-1} = \frac{1}{4\pi i} \int_0^\pi (e^{ix} - e^{-ix}) e^{ix} \, dx = \frac{1}{4\pi i} \left[-\pi + \frac{1}{2i} e^{-2\pi i} - \frac{1}{2i} \right] = -\frac{1}{4i}.$$

Thus,

$$f(x) = \frac{1}{\pi} + \frac{1}{4i}e^{ix} - \frac{1}{4i}e^{-ix} - \frac{1}{\pi}\sum_{\substack{n=-\infty\\n\neq 0}}^{+\infty}\frac{1}{4n^2 - 1}e^{2inx}$$

We can rewrite this as

$$f(x) = \frac{1}{\pi} + \frac{1}{2} \cdot \frac{1}{2i} (e^{ix} - e^{-ix}) - \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{1}{2} \cdot \frac{1}{4n^2 - 1} (e^{2inx} + e^{-2inx})$$
$$= \frac{1}{\pi} + \frac{1}{2} \sin x - \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{1}{4n^2 - 1} \cos 2nx.$$

This is precisely what we obtained earlier in (5.11).

Section 8. Problem 7. Expand the following periodic function as a Fourier series.

$$f(x) = \begin{cases} 0, & -\ell < x < 0, \\ x, & 0 < x < \ell. \end{cases}$$

Solution. We write

$$f(x) = \sum_{n = -\infty}^{+\infty} c_n e^{inx/\ell} = a_0 + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi x}{\ell} + b_n \sin \frac{n\pi x}{\ell}.$$

The coefficients c_n for $n \neq 0$ are calculated as

$$c_n = \frac{1}{2\ell} \int_{-\ell}^{+\ell} f(x) e^{-in\pi x/\ell} dx = -\frac{1}{2\pi i n} \ell e^{-in\pi} + \frac{1}{2\pi i n} \int_0^{\ell} e^{-in\pi x/\ell} dx = -\frac{\ell}{2\pi i n} e^{-in\pi} + \frac{\ell}{2\pi^2 n^2} \left[e^{-in\pi} - 1 \right].$$

When $n = 0$,
$$c_0 = a_0 = \frac{1}{2\ell} \int_{-\ell}^{+\ell} f(x) \, dx = \frac{1}{2\ell} \cdot \frac{\ell^2}{2} = \frac{\ell}{4}.$$

Thus,

$$f(x) = \frac{\ell}{4} - \frac{\ell}{\pi} \sum_{\substack{n = -\infty \\ n \neq 0}}^{+\infty} \left[\frac{1}{2in} e^{-in\pi} - \frac{1}{2\pi n^2} e^{-in\pi} + \frac{1}{2\pi n^2} \right] e^{in\pi x/\ell}$$

The coefficients a_n and b_n are calculated for n > 0 as,

$$a_{n} = \frac{1}{\ell} \int_{-\ell}^{+\ell} f(x) \cos \frac{n\pi x}{\ell} \, dx = \frac{1}{\ell} \int_{0}^{\ell} x \cos \frac{n\pi x}{\ell} \, dx = \frac{1}{n\pi} x \sin \frac{n\pi x}{\ell} \Big|_{0}^{\ell} - \frac{1}{n\pi} \int_{0}^{\ell} \sin \frac{n\pi x}{\ell} \, dx = -\frac{\ell}{n^{2}\pi^{2}} (1 - \cos n\pi),$$

$$b_{n} = \frac{1}{\ell} \int_{-\ell}^{+\ell} f(x) \sin \frac{n\pi x}{\ell} \, dx = \frac{1}{\ell} \int_{0}^{\ell} x \sin \frac{n\pi x}{\ell} \, dx = -\frac{1}{n\pi} x \cos \frac{n\pi x}{\ell} \Big|_{0}^{\ell} + \frac{1}{n\pi} \int_{0}^{\ell} \cos \frac{n\pi x}{\ell} \, dx = -\frac{\ell}{n\pi} \cos n\pi,$$

Thus,

$$f(x) = \frac{\ell}{4} - \frac{\ell}{\pi} \sum_{n=1}^{\infty} \left[\frac{1}{n^2 \pi} (1 - \cos n\pi) \cos \frac{n\pi x}{\ell} + \frac{1}{n} \cos n\pi \sin \frac{n\pi x}{\ell} \right].$$

Note that our new solutions are precisely the old ones, scaled by ℓ/π and with the substitution $x \mapsto \pi x/\ell$. This is because our new function is merely the old one scaled by a factor of ℓ/π along both axes.