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Fourier Series and Transforms (M.L. Boas, Chapter 7)
Section 6. Problem 14 Use the Fourier expansion of the following function (as seen in problem 5.7),

f(x) =

{
0, −π < x < 0,

x, 0 < x < π.
,

to show that S =
∑

odd n 1/n
2 = π2/8. Try x = 0, π, π/2.

Solution. We recall that the Fourier expansion of f is given by

f(x) =
π

4
+

∞∑
n=1

[
− 1

n2π
(1− cosnπ) cosnx− 1

n
cosnπ sinnx

]
.

Now, note that f satisfies the Dirichlet conditions, since it is a single-valued periodic function of period
2π, defined between −π and +π, has a finite number of extrema, with a finite number of discontinuities
(at 0 and π). Also, ∫ +π

−π

|f(x)| dx =

∫ π

0

x dx =
π2

2
,

which is finite. Hence, our Fourier series does indeed converge to f . Furthermore, the series at the
discontinuities 0 and π converges to the average of the left and right hand limits, i.e. to the midpoints
of the jump discontinuities. Thus,

f(0) =
1

2

[
lim

x→0−
f(x) + lim

x→0+
f(x)

]
=

1

2
[0 + 0] = 0.

f(π) =
1

2

[
lim

x→π−
f(x) + lim

x→π+
f(x)

]
=

1

2
[π + 0] =

π

2
.

Thus, we first set x = 0. Then, all sine terms vanish and all the cosines become unity. Note that
1− cosnπ vanishes for even n and becomes 2 for odd n, so we obtain

f(0) = 0 =
π

4
− 2

π

∑
odd n

1

n2
.

Rearranging, S = (π/4)(π/2) = π2/8.

We may also try x = π, in which case the sines vanish again, and the cosines follow cosnπ = (−1)n.
Thus,

∑
odd n(−1)n/n2 = −S, so we have

f(π) =
π

2
=

π

4
+

2

π

∑
odd n

1

n2
.

Rearranging, we again obtain S = (π/4)(π/2) = π2/8.

Finally, when x = π/2, the cosines vanish and the sines follow sinnπ/2 = 1, 0,−1, 0, . . . . Thus, we get
an alternating sum

f(π/2) =
π

2
=

π

4
−

∑
odd n

(−1)n
(−1)(n+1)/2

n
=

π

4
+ 1− 1

3
+

1

5
− 1

7
+ . . .
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Thus, we obtain
π

4
= 1− 1

3
+

1

5
− 1

7
+ . . .

As a side note, from
∑

odd n 1/n
2 = π2/8, we see that

∑
even n

1

n2
=

1

4

∞∑
n=1

1

n2
=

1

4

∑
even n

1

n2
+

1

4

∑
odd n

1

n2
=

1

4

∑
even n

1

n2
+

π2

32
.

Rearranging,
∑

even n 1/n
2 = (4/3)(π2/32) = π2/24. Adding on the odd terms, we get

∞∑
n=1

1

n2
=

π2

6
.

The computation of this particular infinite sum is famously known as the Basel problem.

Section 7. Problem 2. Expand the following periodic function as a Fourier series.

f(x) =


0, −π < x < 0,

1, 0 < x < π/2,

0, π/2 < x < π.

Solution. We write

f(x) =

+∞∑
n=−∞

cne
inx.

The coefficients for n 6= 0 are calculated as

cn =
1

2π

∫ +π

−π

f(x)e−inx dx =
1

2πin

[
1− e−inπ/2

]
.

When n = 0,

c0 =
1

2π

∫ +π

−π

f(x) dx =
1

2π
· π
2
=

1

4
.

Thus,

f(x) =
1

4
+

1

2πi

+∞∑
n=−∞
n 6=0

1

n

[
1− e−inπ/2

]
einx.

We can rewrite this as

f(x) =
1

4
+

1

2πi

∞∑
n=1

1

n

[
1− e−inπ/2

]
einx − 1

n

[
1− einπ/2

]
e−inx

=
1

4
+

1

2πi

∞∑
n=1

1

n

[
einx − e−inx

]
− 1

n

[
ein(x−π/2) − e−in(x−π/2)

]
=

1

4
+

∞∑
n=1

[
1

nπ
sinnx− 1

nπ
sin(nx− nπ/2)

]

=
1

4
+

∞∑
n=1

[
1

nπ
sinnx− 1

nπ
cos

nπ

2
sinnx+

1

nπ
sin

nπ

2
cosnx

]

=
1

4
+

∞∑
n=1

[
1

nπ
sin

nπ

2
cosnx+

1

nπ

(
1− cos

nπ

2

)
sinnx

]
.

This is precisely what we obtained earlier in (5.2).
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Problem 7. Expand the following periodic function as a Fourier series.

f(x) =

{
0, −π < x < 0,

x, 0 < x < π.

Solution. We write

f(x) =

+∞∑
n=−∞

cne
inx.

The coefficients for n 6= 0 are calculated as

cn =
1

2π

∫ +π

−π

f(x)e−inx dx = − 1

2πin
πe−inπ +

1

2πin

∫ π

0

e−inx dx = − 1

2in
e−inπ +

1

2πn2

[
e−inπ − 1

]
.

When n = 0,

c0 =
1

2π

∫ +π

−π

f(x) dx =
1

2π
· π

2

2
=

π

4
.

Thus,

f(x) =
π

4
−

+∞∑
n=−∞
n 6=0

[
1

2in
e−inπ − 1

2πn2
e−inπ +

1

2πn2

]
einx.

We can rewrite this as

f(x) =
π

4
−

∞∑
n=1

1

2in

[
ein(x−π) − e−in(x−π)

]
− 1

2πn2

[
ein(x−π) + e−in(x−π)

]
+

1

2πn2

[
einx − e−inx

]
=

π

4
−

∞∑
n=1

1

n
sin(nx− nπ)− 1

πn2
cos(nx− nπ) +

1

πn2
cosnx

=
π

4
−

∞∑
n=1

1

n
cosnπ sinnx− 1

πn2
cosnπ cosnx+

1

πn2
cosnx

=
π

4
−

∞∑
n=1

[
1

πn2
(1− cosnπ) cosnx+

1

n
cosnπ sinnx

]
.

This is precisely what we obtained earlier in (5.7).

Problem 11. Expand the following periodic function as a Fourier series.

f(x) =

{
0, −π < x < 0,

sinx, 0 < x < π.

Solution. We write

f(x) =

+∞∑
n=−∞

cne
inx.

The coefficients for n 6= 0,±1 are calculated as

cn =
1

2π

∫ +π

−π

f(x)e−inx dx =
1

4πi

∫ π

0

(eix − e−ix)e−inx dx = − 1

4π

[
eiπ(1−n) − 1

1− n
+

e−iπ(1+n) − 1

1 + n

]
.

For odd n, note that cn = 0. Thus,

c2n =
1

2π

[
1

1− 2n
+

1

1 + 2n

]
= − 1

π
· 1

4n2 − 1
.

When n = 0,

c0 =
1

2π

∫ +π

−π

f(x) dx =
1

2π
· 2 =

1

π
.
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When n = 1,

c1 =
1

4πi

∫ π

0

(eix − e−ix)e−ix dx =
1

4πi

[
π − 1

2i
e−2πi +

1

2i

]
=

1

4i
.

When n = −1,

c−1 =
1

4πi

∫ π

0

(eix − e−ix)eix dx =
1

4πi

[
−π +

1

2i
e−2πi − 1

2i

]
= − 1

4i
.

Thus,

f(x) =
1

π
+

1

4i
eix − 1

4i
e−ix − 1

π

+∞∑
n=−∞
n 6=0

1

4n2 − 1
e2inx.

We can rewrite this as

f(x) =
1

π
+

1

2
· 1

2i
(eix − e−ix)− 2

π

∞∑
n=1

1

2
· 1

4n2 − 1
(e2inx + e−2inx)

=
1

π
+

1

2
sinx− 2

π

∞∑
n=1

1

4n2 − 1
cos 2nx.

This is precisely what we obtained earlier in (5.11).

Section 8. Problem 7. Expand the following periodic function as a Fourier series.

f(x) =

{
0, −` < x < 0,

x, 0 < x < `.

Solution. We write

f(x) =

+∞∑
n=−∞

cne
inx/` = a0 +

∞∑
n=1

an cos
nπx

`
+ bn sin

nπx

`
.

The coefficients cn for n 6= 0 are calculated as

cn =
1

2`

∫ +`

−`

f(x)e−inπx/`dx = − 1

2πin
`e−inπ+

1

2πin

∫ `

0

e−inπx/`dx = − `

2πin
e−inπ+

`

2π2n2

[
e−inπ − 1

]
.

When n = 0,

c0 = a0 =
1

2`

∫ +`

−`

f(x) dx =
1

2`
· `

2

2
=

`

4
.

Thus,

f(x) =
`

4
− `

π

+∞∑
n=−∞
n 6=0

[
1

2in
e−inπ − 1

2πn2
e−inπ +

1

2πn2

]
einπx/`.

The coefficients an and bn are calculated for n > 0 as,

an =
1

`

∫ +`

−`

f(x) cos
nπx

`
dx =

1

`

∫ `

0

x cos
nπx

`
dx =�������1

nπ
x sin

nπx

`

∣∣∣`
0
− 1

nπ

∫ `

0

sin
nπx

`
dx = − `

n2π2
(1− cosnπ),

bn =
1

`

∫ +`

−`

f(x) sin
nπx

`
dx =

1

`

∫ `

0

x sin
nπx

`
dx = − 1

nπ
x cos

nπx

`

∣∣∣`
0
+
���������1

nπ

∫ `

0

cos
nπx

`
dx = − `

nπ
cosnπ,

Thus,

f(x) =
`

4
− `

π

∞∑
n=1

[
1

n2π
(1− cosnπ) cos

nπx

`
+

1

n
cosnπ sin

nπx

`

]
.

Note that our new solutions are precisely the old ones, scaled by `/π and with the substitution x 7→ πx/`.
This is because our new function is merely the old one scaled by a factor of `/π along both axes.
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