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Fourier Series and Transforms (M.L. Boas, Chapter 7)

Section 6. Problem 14 Use the Fourier expansion of the following function (as seen in problem 5.7),

f(x){o, —r <z <0,

z, 0<z<m.
to show that S =" 44, 1/n*=n%/8. Try z = 0,7, 7/2.
Solution. We recall that the Fourier expansion of f is given by

[ee]
f(x) :% + Z {—nzw(l — COSNT) COSNT — Ecosmrsinnx .

n=1

Now, note that f satisfies the Dirichlet conditions, since it is a single-valued periodic function of period
27, defined between —7 and 4+, has a finite number of extrema, with a finite number of discontinuities

(at 0 and 7). Also,
+m ™ 7T2
/ |f(x)|dx=/ rdr = —,
-7 0 2

which is finite. Hence, our Fourier series does indeed converge to f. Furthermore, the series at the
discontinuities 0 and 7 converges to the average of the left and right hand limits, i.e. to the midpoints
of the jump discontinuities. Thus,

f0) = % ngg_ fz) + lim f(x)} = %[0 +0] = 0.
f(m) = % [zgrgf(x) + lim (x)] = %[w—i—O] =2

Thus, we first set z = 0. Then, all sine terms vanish and all the cosines become unity. Note that
1 — cosn vanishes for even n and becomes 2 for odd n, so we obtain

T 2 1
fO)=0=7--3 —.
odd n
Rearranging, S = (7/4)(n/2) = m2/8.

We may also try = =, in which case the sines vanish again, and the cosines follow cosnr = (—1)™.
Thus, Y 44 ,(—1)"/n? = =S, so we have

T w2 1
fm=g5=7+-2> —
odd n

Rearranging, we again obtain S = (7/4)(7/2) = m2/8.

Finally, when & = /2, the cosines vanish and the sines follow sinnn/2 = 1,0,—1,0,.... Thus, we get
an alternating sum

T T (—=1)nt0/2 g 11 1
) . S R S AR
fa/)=5=73-2 (1 n R

odd n



Thus, we obtain

As a side note, from Y., 1/n* = 7?/8, we see that

1 11 1 1 1 1 1 1 2
Y mtiim il wtilwt il
even n n=1 even n odd n even n

Rearranging, > 1/n? = (4/3)(w?/32) = 72 /24. Adding on the odd terms, we get

even n

2

72 - —.
—mn 6
The computation of this particular infinite sum is famously known as the Basel problem.

Section 7. Problem 2. Expand the following periodic function as a Fourier series.

0, —T<x<0,
flx)=<1, 0<z<m/2,
0, m7/2<z<m.

Solution. We write

f)= 3 cnem
The coefficients for n # 0 are calculated as
1 [f7 . 1 _
- —inz _ 1— 72n7r/2:| )
n 2 J_, (z)e de 2min [ c
When n =0,
[t 1 7 1
‘=5 7rJc(i’?)dﬂf—g 971
Thus,
11 X1 /
_ = - -1 —inm 2i| nx
f(@) 4 * 21 Z n [ ¢ c

We can rewrite this as

1 =1 , , 1 , 4
= P iy —lnﬂ'/Q} nr |:1 _ 7,7171'/2:| —inx
fla) = 7+ 5= > - [ e e - e e

n=1
_ l_i_ L i l [emw e—inx] _ l [ein(x—w/2) _ e—in(m—ﬂ-/2)}
4 2m n n
n=1
1 =[1 1
= Z+Z msinnx—msin(nx—nﬂ'/Q)]
n=1*"
1+i ) 1 nw . N 1 . nr
= - —sinnr — — cos — sinnx + — sin — cosnx
4 = Lnm nmw 2 nm 2
1 <[1 nm 1 nw
- - — sin — (1- 7) innz| .
4—1—; o S1n 5 cosnx—i—nﬂ_( cos 5 smnx}

This is precisely what we obtained earlier in (5.2).



Problem 7. Expand the following periodic function as a Fourier series.

f(x){o, 1 <z<0,

z, 0<z<m.

Solution. We write

“+o0
E cneznm

The coeflicients for n # 0 are calculated as
c 1 i f( ) —inz .. _ 1 e inm + 1 /7r PR - _ie—inw + 1 [e—imr _ 1]
"o 2min 2min J, 2in 27n? '
When n =0,
1 [f 1 2
€= 5 f(z) dx =9 9 T 1

Thus,

=1 . X 1 . ) 1 ,
f(l’) _ % _ Z T [ezn(zfﬂ’) . efzn(:zzfﬂ'):| . |:ezn(:r77r) + efzn(szr):| + [eznz —e

in 2mn? 27n?2
n=1
o0
T 1 . 1 1
= — - E —sin(nz — nm) — — cos(nz — nm) + — cosnx
4 n ™ ™
n=1
o0
T 1 1
= — - Z — COSMT SINNT — ——5 COSNT COSNT + —— COSNT
4 n ™ ™
n=1
o0
™
= ,_Z — (1 — cosnm) cosnz + — cosnmsinnz| .
4 =l n

This is precisely what we obtained earlier in (5.7).

Problem 11. Expand the following periodic function as a Fourier series.

f(z){o', 1 <z<0,

sinz, 0<ax<m.

Solution. We write

“+o0
E cneznm

7inz]

The coeflicients for n # 0, &1 are calculated as
1 +m 1 L ) ) 1 61’7\'(1777.) -1 efiﬂ(lJrn) -1
n —inT - iz _ =i o—ing g —
=5y | S@ede =gz | (e —er e dr 47r[ —n " 1+n

For odd n, note that ¢, = 0. Thus,

1{ 1 1 ] 1 1
=5 |75+ 5 | ==

2r |1—=2n  1+2n ™ 4n?2 —1°
When n =0,
1 [f 1 1
— 9=
Co = 277 f() T -



When n =1,

1 " i 7iz) —iT d 1 1 —2mi + 1 ] 1
C a— e — € rT = —|m — — — | = —.
T 4 4ri 2 2| 4
When n = —1,
1 T s 1 1 1] 1
= 1T oI AT g — T | 2w = __
1= g f (€T me e dr = o [ e 2| T 4
Thus,
11 1 1 2 1
— _ptr Tt T 2inx
)= T 43 416 T :Z_ 4n? — 1
n#0
We can rewrite this as
_ 1 1 1 1T —ix 2 . 1 1 2inx —2inx
f@) = 245 5 —e) W;Q e e

11 2~ 1
= ; =+ gsinx — ;; mCOSQTME.
This is precisely what we obtained earlier in (5.11).

Section 8. Problem 7. Expand the following periodic function as a Fourier series.

0, —4<z<0,
f(x){x, 0<x <t

Solution. We write

“+o0
nm nwT
) = Cn e/t — qo + a, COS —— +b sin —.

The coeflicients ¢, for n # 0 are calculated as

Co = i /Jr[ f(x)e—inﬂ'z/de _ 1 Ee_m”—i- 1 /E e—irmr/ldqj _ ¢ e—inﬂ+ ¢ [e—irm _ 1]
"2, - 2min 2min J, - 2min 2m2n?2 ’
When n =0,
1 [t 12 v
= = — d = — . — = —,
€0 =do 2(/,4 fayde =555 =7
Thus,

VA=~ I R 1 . 17,
_ - _ = - —inm —inm inmx/l
/(@) 4 n; {Qine 2mn2© + 277712] ‘ ’

n#0

The coefficients a,, and b,, are calculated for n > 0 as,

+¢ ;
an E/ f(zx)co s—dx—é/ mcos—dx—M /bmwdm——m(l—cosmﬁ
1 4
bnzz 3 f( )sm%dw—z/o xsmm;fxd :—mxcosngxo—sz—mcosnm

Thus,

i n Y4

oo
/ nrx 1 nwx
- - E (1 — cosnm)cos — + — cosnmwsin — | .
T = n2

Note that our new solutions are premsely the old ones, scaled by ¢/m and with the substitution x — 7 //.
This is because our new function is merely the old one scaled by a factor of ¢/7 along both axes.



