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Partial Differential Equations (M.L. Boas, Chapter 13)
Section 1. Problem 2.

(a)

Show that the expression u = sin(x — vt) describing a sinusoidal wave satisfies the wave equation

1 0%u

Vi = ——.
v2 Ot?

Show that in general, f(z — vt) and f(z + vt) satisfy the wave equation, where f is any function

with a second derivative.

Solution. Note that in one dimension, the laplacian V? is simply the operator 9%/9x? (the other
two spatial derivatives cause u(xz — vt) to vanish). Thus, we compute derivatives

2
gu = cos(x — vt), a—u 0 ( 0 ) = —sin(z — vt).

oz 922"~ ox \ 0z "
0 0? o (0 5 .
U= Y cos(z — vt), 7%= ((%u) = —v*sin(z — vt).

2

Thus, % = v*u” as desired, so u does indeed satisfy the wave equation.

For some general, twice differentiable function f, we can do the same. Let f’ and f” denote the
first and second derivatives of f respectively. Then,

%f(x:tvt) = f'(x £ ot), ;—;ﬂxivt) = % <§xf(x:|:vt)> = f"(x £ vt).

2
%f(x:l:vt) = dof'(x £ ot), %f(a: +ot) = % (;f@:l:m)) =2 f"(x £ vt).

Clearly, i = v?*u”, where u = f(x £ vt) (these are actually two separate cases, which we present
together for brevity). This means that f(z £ vt) are both solutions of the wave equation.

Show that
u(r,t) = 1f(r + vt)
r

both satisfy the wave equation in spherical coordinates.

Solution. We must verify that
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The first step follows by the product rule, which simplifies our work.

I N Y
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Thus, we need only calculate

1 o 1 02 1., 2 10 w2

Thus, i = v2u”, so f(r £ vt)/r are indeed solutions of the wave equation.



Section 4. Problem 2. A string of length ¢ has a zero initial velocity and a displacement yo(z),
described as

4hz /¢, if0o<z</l/4,
yo(x) = { 2h —4dhax/l, ifl/4 <z <1L)2,
0, if0/2 <2<

Find the displacement as a function of z and t.

Solution. We seek a solution y(x,t) to the wave equation

2 1P
02’ T oY

We perform the separation of variable y(x,t) = X (z)T'(¢), thus obtaining

1 d? 1 d?

— — _ 2
Y@ = W@T = constant = —k~.

Note that we chose —k? to ensure that our solutions do not diverge. Setting kv = w, we see that this is
equivalent to the ODES
X"+ kX =0, T" +W*T = 0.

Thus, our solutions look like X (z) = Acoskx + Bsinkz, and T(t) = Ccoswt + Dsinwt. From the
boundary conditions y(0,t) = y(¢,t) = 0 we see that A = 0 and k,, = nw/¢. From the initial condition
v(z) = yi(z) = 0, we see that T7(0) = = 0. Thus, our solution is of the form

t
Z A, sm —_— co mzv .

The coefficients A,, are obtained by observing that at ¢ = 0, we can write yo(x) as a sine series. Thus,

2 Z
A”:Z/ ydx)sin?dx

t/4 4hx . mm‘ 2 ¢/2 dhx\ . nnx

nmw nmw nmw nmw nmw
= 4s8in — — nmwcos — +4sin — — 4sin — + nwcos —

n27r2 4 4 4 2 4
8h [ 9gin T . TL7T:|
= —— |2sin — —sin —| .
n2m2 4 2
Thus, we have our solution
EOO [2 sin —ﬂ — sin nr sin nre cos nmvt
—~ 2 l L

Problem 4. Solve the previous problem if the initial displacement yo(x) is described as

dhx /L, if0<ax</l/4,
yo(x) = 2h —4hx /b, if£/4 <z < 30/4,
AR+ dha/t, if30/4 <z < 0.

Find the displacement as a function of x and t.
Solution. We perform the separation of variables y(z,t) = X (z)T'(t) in the same manner as before,

use the same boundary conditions to eliminate the cosine part of X, and use the initial conditions to
eliminate the sine part of 7. Thus,

o0
. nmx nmvut
= E A, sin —— cos .
Y4 4
n=1



The only difference is in the coefficients A,,, which we recalculate as

2 e
A, == / yo(x) sin nre dx.
£ Jo 14

Note geometrically that yo(z) = —yo(¢ — x), i.e. the reflection about £/2 is precisely the negative of the
original curve. Thus,

£/2 0 — £/2
A, = / Yo () Sinntﬂ +yo(l — ) Sinw dx = / yo(x)(1 + cosnm) sinn—zx dx.
0 0

We have used the identity
2a a
F@)dt = / f(@) + f(2a —t) dt.
0 0
This means that As,+1 = 0, otherwise, we use our previously calculated value of the integral to obtain

16h . 2nm . 2nm 8h . nmw
W 2sin — —sin — | = sin
n)2mw

Ay, = — "7 sin—.
2 4 2 n2r2 2

Thus, we have our solution

o0
8h nmw 2nmw 2nmut
y(x,t) = g 55 Sin —- sin Ccos .
‘= nim 2 Y4 Y4

Problem 5. A string of length /¢ is initially stretched straight; its ends are fixed for all t. At time
t =0, its points are given the velocity V(z) = (9y/0t);=¢ described by

Vi) = 2hx /¢, if0<axz</{/2,
|2k —2hx/l, ifL/2 <z <L

Determine the shape of the string at time t.

Solution. We perform separation of variables y(z,t) = X (x)T'(t) again. The boundary conditions dictate
that the cosine part of the spatial solution vanishes and k,, = nwz/¢. However, since the string is
perfectly flat initially, we make no judgement on the temporal part yet. Taking a time derivative, we
see that the velocity function dictates V' (0) = V(¢) = 0. This means that the derivative of the temporal
part, —Cw sin wt + Dw cos wt, must vanish at 0 and ¢, so D = 0. Thus, our solution is of the form

t
y(z,t) = ZAnsin?sin m;v .

Taking a time derivative,

o0
. nmwYv . NIIT nmot
y(z,t) = ZAn

7 78—
Now we can set ¢ = 0, whereby y(z,0) = V(z) gives us the Fourier coefficients

9 ¢
?An = Z/o Vix) sin? dx.

If we note that V(z) = V(¢ — z) due to symmetry, this simplifies the integral similarly to the previous

problem, so

2 2 2n 2h
?An = Z(l — cosmr)/o 7$ sin ? dx = W(l — cosn) 2sinn77r — n7rcosn—27r .
Note that As, = 0, and when n is odd,
20 . nmw 8¢ . nmw
A = g () [28in T ] = i sin

This vanishes anyways when n is even. Thus, we have our solution

oo

Z 8ht nw . nmxr . nwvut

y(JC,t) = msin781n781n 1



Problem 8. Solve Problem 5 if the initial velocity is

Vi) = sin 27z /¢, %f0<a?<€/2,
0, it0/2 <z < L.

Solution. We use separation of variables y(x,t) = X (z)T'(¢) and argue exactly the same as in Problem
5, obtaining the general solution

To obtain the coefficients A,,, we take a time derivative and set ¢t = 0, so

%An = E/OZV(x)sinanda: = E/OZ/QSinQﬂfsinm;C dx = ﬁsin%.
Note that when n = 2, we must use L’Hopital’s Rule, so
Azzi im 4 sinnl:ilim_—lcosﬂzi.
2nv n—2 (4 — n?)7w 2 2mun—2 n 2 Admv

Thus, we have our solution

o0

(2.1) { . 2mx . 27t n Z 4¢ . nmw . nmwx . nuut
T = ——sin——sin ———— sin— sin —— sin .
Yo 4o 14 L n(4 —n?)mv 2 L L

n=
n#2

Problem 12. Let f(z) = 2—2% on (0,1). Expand f as a Fourier sine series and write the corresponding
solutions for

o Temperature in a semi-infinite plate with the lower boundary fixed at f.

e Temperature in a rectangular plate of height H with the lower boundary fixed at f.
e Heat flow in one dimension with initial temperature f.

o Particle in a box with initial condition f.

e A plucked string with initial shape f.

o A struck string with initial velocity f.

Solution. We first write f as a Fourier sine series
o0
f(x) = Z A, sinnme.
n=1
The coefficients are calculated as
1 1
A, = 2/ f(z)sinnre de = 2/ (x — 2?) sinnre dr = i
0 0

53 (1 — cosnm).

We have used the integrals

L r 1 1 1
rsinnrx dr = —— cosnwr| + — cosnmx dx
0 nm 0 nm 0
= —— cosnm.
nmw
1 Z,2 1 1
2 .
z°sinnrr dr = —— cos mr:v‘ + — 2x cosnmx dr
0 nm 0 nm 0

1 2r . 1 L
= ——cosnm + — 5 sinnmrr| — —— sinnmx dz
nmw n2m o n?m2 J,

= ——cosnm — (1 — cosnm).
nm

n3m3

Thus, A, vanishes for even n, and is equal to 8/n373 for odd n. With this, we directly use the equations
indicated in the question to write our solutions (setting ¢ = 1).



(a) Temperature in a semi-infinite plate.

o0
T = E Ae MY sinnmrx.
n=1

(b) Temperature in a rectangular plate of height H.

T = Z A, [sinh nwH] ™" sinhnw(H — y) sin nr.
n=1

(c) Heat flow in one dimension.
o0

u = Z Ane*("’w‘)gt sinnwx.
n=1
(d) Particle in a box.
n2m2h?

2m

o0
v = E Ane*lE"t/hsinnﬂm, E, =
n=1

(e) Plucked string.

oo
y = E A, sinnmx cosnmt.

n=1
(f) Struck string.
o
n . .
= —— sinnmx sinnwvut.
y ; nmwv

(Eq 2.9)

(Bq 2.15)

(BEq 3.12)

(Eq 3.26)

(Eq 4.7)

(Eq 4.10)

Computer plots of the above solutions are presented below. The code used to generate them can be

found here.
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(a) Temperature in a semi-infinite plate
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(b) Temperature in a rectangular plate, height H
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(c) Heat flow in 1D
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(d) Particle in a box

(e) Displacement of a plucked string
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(f) Displacement of a struck string

Heatmaps of solutions.
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