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Partial Differential Equations (M.L. Boas, Chapter 13)
Section 3. Problem 4. At t = 0, two flat slabs each 5 cm thick, one at 0◦ and one at 20◦, are stacked
together, and then the surfaces are kept at 0◦. Find the temperature as a function of x and t for t > 0.

Solution. We have our initial temperature distribution in the interior

u(x, 0) = u0(x) =

{
0, if 0 < x < 5

20, if 5 ≤ x < 10
,

and our boundary conditions specify that u(0, t) = u(10, t) = 0. With this, we must solve the heat flow
equation

∂2u

∂x2
=

1

α2

∂u

∂t
.

As usual, we perform a partial separation of variables u(x, t) = F (x)T (t), upon which we obtain

1

F

d2

dx2
F =

1

α2T

dT

dt
= constant = −k2.

This leads to the eqautions
d

dt
T +2 α2T = 0,

d2

dx2
F + k2F = 0.

The first equation has the solution T (t) = exp(−k2α2t). Thus, we justify the choice of −k2 as our
constant with the observation that T remains finite as t→ ∞. The second equation admits solutions of
the form A cos kx+B sin kx. The cosine part is discarded using u(0, 0) = 0, and we must have k = nπ/10
from u(10, 0) = 0. Superimposing thses solutions, we write

u(x, t) =

∞∑
n=1

An sin
nπx

10
e−(nπα/10)2t.

The coefficients An are simply given by

An =
2

10

∫ 10

0

u0(x) sin
nπx

10
dx =

1

5

∫ 10

5

20 sin
nπx

10
dx =

40

nπ
(cosnπ/2− cosnπ).

Note that the cosine part in parenthesis is 1 for odd n, 0 for multiples of 4, and −2 for the rest. Thus,

u(x, t) =

∞∑
n=1

40

nπ

(
cos

nπ

2
− cosnπ

)
sin

nπx

10
e−(nπα/10)2t.

Problem 6. The ends of a bar are initially at 20◦ and 150◦; at t = 0, the 150◦ end is changed to 50◦.
Find the time-dependent temperature distribution.

Solution. We have already seen that a solution of the heat equation over a domain [0, `] where the initial
conditions are given by u0(x) is

u(x, t) =

∞∑
n=1

An sin
nπx

`
e−(nπα/`)2t.

The initial value u0(x) must be a steady state solution, i.e. u′′0(x) = 0. This forces a linear form,

u0(x) = 20 + 130
x

`
.
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Now, note that at t → ∞, u → 0. However, we want a steady state solution where the boundaries are
at 20 and 50 respectively. Such a solution obeys u′′f (x) = 0, which is a linear form again.

uf (x) = 20 + 30
x

`
.

Thus, our final solution is actually the superposition

u(x, t) = uf (x) +

∞∑
n=1

An sin
nπx

`
e−(nπα/`)2t.

The coefficients An are evaluted at t = 0 to obtain

An =
2

`

∫ `

0

(u0(x)− uf (x)) sin
nπx

`
dx = −200

nπ
cosnπ.

Thus,

u(x, t) = 20 + 30
x

`
+

∞∑
n=1

−200

nπ
cosnπ sin

nπx

`
e−(nπα/`)2t.

Note that the coefficients An are identical to those in the indicated equation (3.16) because u0(x) −
uf (x) = 100x/`, which is the function used in that particular problem.

Problem 7. A bar of length ` with insulated sides has its ends also insulated from time t = 0 on.
Initially the temperature is u = x, where x is the distance from one end. Determine the temperature
distribution inside the bar at time t.

Solution. We perform separation of variables u(x, t) = F (x)T (t) as usual, obtaining T (t) = exp(−k2α2t)
and F (x) = A cos kx+B sin kx. Now, since the boundaries are insulated, we demand u′(0, t) = u′(`, t) =
0, which means that −A sin kx + B cos kx = 0 at x = 0, `. This forces B = 0 and k = nπ/`, so we take
superpositions and obtain the general solution

u(x, t) =
A0

2
+

∞∑
n=1

An cos
nπx

`
e−(nπα/`)2t.

We calculate the coefficients An by setting t = 0, obtaining a cosine series from which we have

An =
2

`

∫ `

0

u0(x) cos
nπx

`
dx.

For n = 0, we see that A0 = `. Otherwise,

An =
2

`

∫ `

0

x cos
nπx

`
dx = − 2`

n2π2
(1− cosnπ).

Putting everything together,

u(x, t) =
`

2
−

∞∑
n=1

2`

n2π2
(1− cosnπ) cos

nπx

`
e−(nπα/`)2t.

Problem 9. A bar of length 2 is initially at 0◦. For t > 0, the x = 0 end is insulated and the x = 2
end is held at 100◦. Find the time dependent temperature distribution.

Solution. We perform the standard separation of variables u(x, t) = F (x)T (t), obtaining T (t) =
exp(−k2α2t) and F (x) = A cos kx + B sin kx. Now, from u′(0, t) = 0, F ′(0) = B = 0 and from
u(x→ 2, 0) = 0, we must have cos 2k = 0, so 2k = (2n+ 1)π/2. Thus,

u(x, t) =

∞∑
n=0

An cos
(2n+ 1)πx

4
e−((2n+1)πα/4)2t.
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This is not quite right, since as t→ ∞, we want u(2, t→ ∞) = 100 while here, u(2, t→ ∞) = 0. We fix
this by adding the solution 100 to u, so

u(x, t) = 100 +

∞∑
n=0

An cos
(2n+ 1)πx

4
e−((2n+1)πα/4)2t.

Note that we have absorbed the other constant from the cosine series into the sum so that we could take
the proper limit as t→ ∞. We can now calculate the coefficients

An =
2

2

∫ 2

0

(−100) cos
(2n+ 1)πx

4
dx = − 400

(2n+ 1)π
cosnπ.

This process of obtaining the Fourier coefficients is justified, since our cosine series conly contains odd
terms. Thus, there is no separate calculation for A0, which would have otherwise been calculated
separately if the cosine vanished. Putting everything together,

u(x, t) = 100 −
∞∑

n=0

400

(2n+ 1)π
cosnπ cos

(2n+ 1)πx

4
e−((2n+1)πα/4)2t.

Problem 12. Solve the “particle” in a box problem to find Ψ(x, t) if Ψ(x, 0) = sin2(πx) on (0, 1).
What is En?

Solution. We start with the Schrödinger equation,

− ~2

2m

∂2

∂x2
Ψ(x, t) + V (x)Ψ(x, t) = i~

∂

∂t
Ψ(x, t).

Performing a partial separation of variables Ψ(x, t) = ψ(x)T (t), we have

− ~2

2m

1

ψ

d2

dx2
ψ + V = i~

1

T

d

dt
T = constant (E).

The temporal part is solved by T (t) = exp(−iEt/~). The spatial part of the equation becomes

− ~2

2m

d2

dx2
ψ + V ψ = Eψ.

For the “particle in a box” problem, we set V (x) = 0 on (0, 1) and ∞ everywhere else. This forces
Ψ(x) = 0 outside (0, 1). Setting k2 = 2mE/~2, we see that a solution of the time independent equation
is ψ(x) = A cos kx+B sin kx. Using the boundary conditions Ψ(0, t) = Ψ(1, t) = 0, we must have A = 0
and k = nπ. Comparing this with E, we find that

En =
~2π2n2

2m
.

Thus, we obtain the general solution

Ψ(x, t) =

∞∑
n=1

An sinnπx e
−iEnt/~.

The coefficients An are calculated by setting t = 0, where Ψ(x, 0) = ψ0(x) = sin2 πx = (1− cos 2πx)/2.

An = 2

∫ 1

0

ψ0(x) sinnπx dx =

∫ 1

0

sinnπx− cos 2πx sinnπx dx =
4

nπ(4− n2)
(1− cosnπ).

Note that when n = 2, we have A2 = 0 (indeed, all the even terms A2n are zero). Putting everything
together,

Ψ(x, t) =

∞∑
n=1

4

nπ(4− n2)
(1− cosnπ) sinnπx e−iEnt/~.

Again, note that the n = 2 term vanishes.
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