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Partial Differential Equations (M.L. Boas, Chapter 13)
Section 1. Problem 4. Obtain the heat flow equation

∇2u =
1

α2

∂2u

∂t2

as follows. The quantity of heat Q flowing across a surface is proportional to the normal component of
the (negative) temperature gradient, (−∇T )·n. Apply the discussion of the flow of water in Chapter 6 to
the flow of heat. Thus, show that the rate of gain of heat per unit volume per unit time is proportional to
∇·∇T . But ∂T/∂t is proportional to this gain in heat, Thus show that T satisfies the given heat equation.

Solution. Analogous to the case of flowing water, it is helpful to define a quantity called the heat flux
density q, which is the rate of flow of heat per unit area. We know that this is proportional to the
negative gradient of the temperature, so q = −κ∇T . This is called Fourier’s Law. For isotropic ma-
terials, the thermal conductivity κ is a simple scalar. Now, given some surface S, the rate of flow of
heat per unit area locally is proportional to the normal component of the heat flux, i.e. q · n. This is
indeed similar to the given equation in Chapter 6, where the role of q is played by the velocity of water v.

We proceed similarly by considering an elemental volume, a cuboid with sides dx, dx, dz. With an
appropriate orientation of the coordinate axes, the normal vectors to the faces of the cuboid are simply
the unit vectors î, ĵ and k̂ (and their negatives). Thus, through the faces perpendicular to the x-axis,
which have area dy dz, the rate of flow of heat is (q · î)dydz = qxdydz. However, qx at the two opposing
faces are different, say by a quantity dqx which we approximate using a Taylor series.

qx
∣∣
face 1 = qx

∣∣
face 2 + (dx)

∂qx
∂x

∣∣∣∣
face 2

+ O((dx)2).

Ignoring the higher order terms in dx, we obtain

dqx = qx
∣∣
face 1 − qx

∣∣
face 2 =

(
∂qx
∂x

)
dx.

Thus, the net flow (inflow minus outflow) through these faces is given by (∂qx/∂x)dxdydz. Doing the
same for the remaining faces and adding up the flow rates must precisely yield the rate of loss of heat
from our elemental volume, due to the conservation of heat. Thus,

∂

∂t
Q = −

(
∂qx
∂x

+
∂qy
∂y

+
∂qz
∂z

)
dxdydz = −∇ · q dV.

Here, Q is the internal heat in the elemental volume. On the other hand, we know that the rate of
heat transfer in a material is related to the change in its temperature via the specific heat capacity σ by
δQ = σdmdT = σρdV dT , where ρ is the density of the material. Thus,

∂

∂t
(σρT )dV = −∇ · q dV.

Assuming that σ, ρ remain constant and substituting our result from Fourier’s Law yields

σρ
∂

∂t
T = κ∇ ·∇T.

Setting α2 = κ/σρ and recognizing ∇ ·∇T = ∇2T gives us the heat equation.

1

α2

∂

∂t
T = ∇2T.
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Section 2. Problem 5. Show that the solutions of

1

X

d2

dx2
X(x) = − 1

Y

d2

dy2
Y (y) = −k2

can also be written as

X(x) =

{
eikx

e−ikx
, Y (y) =

{
sinh ky

cosh ky
.

Also show that these solutions are equivalent to

X(x) =

{
sin kx

cos kx
, Y (y) =

{
eky

e−ky
.

if k is real and

X(x) =

{
ekx

e−kx
, Y (y) =

{
sin ky

cos ky
.

if k is purely imaginary. Also show that X = sin k(x− a), Y = sinh k(y − b) are solutions.

Solution. Our equations can be simply written as

X ′′ = −k2X, Y ′′ = k2Y.

It only remains to substitute the proposed solutions. It is indeed true that

d2

dx2
eikx = −k2eikx, d2

dy2
sinh ky = k2 sinh ky,

d2

dx2
e−ikx = −k2e−ikx,

d2

dy2
cosh ky = k2 cosh ky.

The equivalences follow from the fact that linear combinations of solutions to our ODES are also solutions.
When k is real,

sin kx =
1

2i
(eikx − e−ikx), cos kx =

1

2
(eikx + e−ikx),

eky = sinh y + cosh y, e−ky = − sinh y + cosh y.

When k is purely imaginary, say k = i` for real `, we have

eikx = e−`x, e−ikx = e`x,

sinh ky =
1

2
(ei`y − e−i`y) = i sin `y, cosh ky =

1

2
(ei`y + e−i`y) = cos `y.

Thus, for purely imaginary k, the roles of x and y seem to have flipped. This is equivalent to choosing
+k2 as our constant after separation instead of −k2. Finally, we see that

d2

dx2
sin k(x− a) = −k2 sin k(x− a),

d2

dy2
sinh k(y − b) = k2 sinh k(y − b).

All of the above follows from the fact that the derivatives follow the cycle

sinx→ cosx→ − sinx→ − cosx,

sinhx↔ coshx,
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Problem 13. Find the steady-state temperature distribution in a rectangular plate covering the area
0 < x < 10, 0 < y < 20, if the two adjacent sides along the axes are held at temperatures T = x and
T = y and the other two sides at 0.

Solution. We construct two solutions, f and g where f is zero on all boundaries eccept the y = 0
boundary, and g is zero on all boundaries eccept the x = 0 boundary. In both cases, we perform the
standard separation of variables to obtain

1

X

d2

dx2
X = − 1

Y

d2

dy2
Y = constant.

Now, in the case of f , we demand a periodic solution for X, so we choose a negative constant. Thus,

Xf (x) = A sin kfx+B cos kfx, Yf (y) = Cekfy +De−kfy.

Using Xf (0) = Xf (10) = 0, we have B = 0 and kf = nπ/10. From Yf (20) = 0, we choose Yf (y) =
sinh kf (20− y). Thus, our solution is of the form

f(x, y) =

∞∑
n=1

An sin
nπx

10
sinh

nπ(20− y)

10
.

At y = 0, we demand f(x, 0) = x. We end up with a sine series, whose coefficients An satisfy

An sinh
20nπ

10
=

2

10

∫ 10

0

x sin
nπx

10
dx = −20 cosnπ

nπ
.

We have used the identity ∫
x sin ax dx =

1

a2
(sin ax− ax cos ax).

We follow an analogous process for g, essentially switching the roles of x and y to obtain

g(x, y) =

∞∑
n=1

Bn sin
nπy

20
sinh

nπ(10− x)

20
.

At x = 0, we demand g(0, y) = y. Thus,

Bn sinh
10nπ

20
=

2

20

∫ 20

0

y sin
nπy

20
dy = −40 cosnπ

nπ
.

Hence, our solution is simply the sum f + g, so

T (x, y) =

∞∑
n=1

−20 cosnπ

nπ
{sinh 2nπ}−1

sin
nπx

10
sinh

nπ(20− y)

10

+

∞∑
n=1

−40 cosnπ

nπ

{
sinh

nπ

2

}−1

sin
nπy

20
sinh

nπ(10− x)

20
.

Problem 14. Find the steady-state temperature distribution in a semi-infinite plate of width 10 cm if
the two long sides are insulated, the far end (at ∞) is at 0, and the bottom edge is at T = f(x) = x− 5.
Repeat for f(x) = x at y = 0 and find the value of T for large y.

Solution. After performing separation of variables, we choose

X(x) = A sin kx+B cos kx, Y (y) = Ceky +De−ky.

Now, since T → 0 as y → ∞, we must have C = 0. The fact that the left and right boundaries are
insulated means that ∂T/∂x = 0, which requires X ′(x) = Ak cos kx−Bk sin kx = 0 at x = 0, 10. Thus,
A = 0 and k = nπ/10. Putting this together, we have

T (x, y) =
A0

2
+

∞∑
n=1

An cos
nπx

10
e−nπy/10,
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where the coefficients An are given by

An =
2

10

∫ 10

0

(x− 5) cos
nπx

10
dx.

Note that A0 vanishes. Otherwise, we have

An≥1 = − 20

π2n2
(1− cosnπ).

We have used the identity ∫
x cos ax dx =

1

a2
(cos ax+ ax sin ax).

Thus,

T (x, y) =

∞∑
n=1

−20

π2n2
(1− cosnπ) cos

nπx

10
e−nπy/10.

Note that as y → ∞, T → 0 as desired.

In the second case, where f(x) = x, we use the same reasoning as before to obtain X(x). For y → ∞,
we assume that the temperature is finite, and this is enough to justify the same choice Y (y) = e−ky as
before. Thus, the only difference in our new solution lies in the coefficients An.

An =
2

10

∫ 10

0

x cos
nπx

10
dx.

This time, A0 does not vanish, and is instead equal to 10. The remaining coefficients An≥1 remain
identical, so the final solution is given by

T̃ (x, y) = 5 +

∞∑
n=1

−20

π2n2
(1− cosnπ) cos

nπx

10
e−nπy/10.

Here, as y → ∞, we see that T̃ → 5. This is easily explained by noting that a constant function is a
solution of Laplace’s equation. Thus, by adding a constant temperature of 5 degrees to the entire plate in
the first problem, we obtain the required boundary conditions in the second problem and do not change
the insulation requirement. We may also interpret this as performing a change in units of temperature,
effectively shifting all values up by 5.

Problem 16. Show that there is only one function u which takes given values on the (closed) boundary
of a region and satisfies Laplaces equation ∇2u = 0 in the interior of the region.

Solution. Let the interior of the region be labeled D, and let the boundary conditions be given such that
u = f(x), for x on the boundary ∂D. We select two solutions u1 and u2, and construct U = u1 − u2.
Note that by the linearity of the Laplacian,

∇2U = ∇2(u1 − u2) = ∇2u1 −∇2u2 = 0

in the interior D, and U = u1 − u2 = f − f = 0 on the boundary ∂D.
We now invoke Green’s first identity,∫

D

φ∇2ψ −∇φ ·∇ψ dV =

∮
∂D

(φ∇ψ) · n dS.

Setting U = φ = ψ, we have∫
D

U∇2U − ‖∇U‖2 dV =

∮
∂D

(U∇U) · n dS = 0,

since U = 0 on the boundary. Also, ∇2U = 0 in the interior, so∫
D

‖∇U‖2 dV = 0.

4



This is possible only if ∇U = 0 everywhere in the interior. Now, choose a point y ∈ ∂D, and let x ∈ D
be arbitrary. We choose a path γ from y to x. By the Fundamental Theorem of Calculus for line
integrals, we have

U(x)− U(y) =

∫
γ

(∇U) · d` = 0.

Thus, we have U(x) = U(y) = 0 for all x ∈ D. Hence. u1 = u2 everywhere, so the solution to Laplace’s
equation is unique.
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