MA2102 : Linear Algebra I

Satvik Saha, 19MS154 November 27, 2020

Find a basis of the quotient space $M_n(\mathbb{R})/Sym_n(\mathbb{R})$, where $Sym_n(\mathbb{R})$ is the subspace of symmetric matrices.

Solution The subspace of symmetric matrices is such that for any $A \in \text{Sym}_{n}(\mathbb{R})$,

 $A = A^{\top} \quad \Leftrightarrow \quad a_{ij} = a_{ji}.$

Lemma 1. *The skew-symmetric matrices form a subspace where for any* $B \in \text{Skew}_n(\mathbb{R})$,

$$
B = -B^{\top} \quad \Leftrightarrow \quad b_{ij} = -b_{ji}.
$$

Proof. Let $B_1, B_2 \in \text{Skew}_n(\mathbb{R})$ and $\lambda \in \mathbb{R}$. Then,

$$
(B_1 + B_2)^{\top} = B_1^{\top} + B_2^{\top} = -B_1 - B_2 = -(B_1 + B_2), \qquad (\lambda B_1)^{\top} = \lambda B_1^{\top} = -\lambda B_1.
$$

Thus, $B_1 + B_2 \in \text{Skew}_n(\mathbb{R})$ and $\lambda B_1 \in \text{Skew}_n(\mathbb{R})$. Furthermore, the zero matrix $\mathbf{0} \in \text{Skew}_n(\mathbb{R})$ because it is equal to its negative transpose. Thus, $Skew_n(\mathbb{R})$ is a vector subspace of $M_n(\mathbb{R})$. П

Throughout this proof, we will be using A to denote symmetric matrices and B to denote skew-symmetric matrices.

Lemma 2. The vector space $M_n(\mathbb{R})$ can be decomposed as the direct sum of $Sym_n(\mathbb{R})$ and $Skew_n(\mathbb{R})$.

$$
M_n(\mathbb{R}) = \mathrm{Sym}_n(\mathbb{R}) \oplus \mathrm{Skew}_n(\mathbb{R}).
$$

Equivalently, every matrix $X \in M_n(\mathbb{R})$ *has a unique representation* $X = A + B$ *, where* $A \in Sym_n(\mathbb{R})$ $and B \in \text{Skew}_n(\mathbb{R})$.

Proof. It is easily verified that for any $X \in M_n(\mathbb{R})$,

$$
X = \frac{1}{2}(X + X^{\top}) + \frac{1}{2}(X - X^{\top}).
$$

Now, $(X + X^{\top})/2 \in \text{Sym}_{n}(\mathbb{R})$ and $(X - X^{\top})/2 \in \text{Skew}_{n}(\mathbb{R})$.

$$
\frac{1}{2}(X + X^{\top})^{\top} = \frac{1}{2}(X^{\top} + X) = \frac{1}{2}(X + X^{\top}), \qquad \frac{1}{2}(X - X^{\top})^{\top} = \frac{1}{2}(X^{\top} - X) = -\frac{1}{2}(X - X^{\top})
$$

Hence, $M_n(\mathbb{R}) = Sym_n(\mathbb{R}) + Skew_n(\mathbb{R})$. Furthermore, $Sym_n(\mathbb{R}) \cap Skew_n(\mathbb{R}) = \{0\}$, because if $X \in$ $Sym_n(\mathbb{R})$ and $X \in Skew_n(\mathbb{R})$, we would require $X = X^\top$ and $X = -X^\top$. Equating, we are forced into $X = 0$. This proves the claim. \Box

Lemma 3. Let $\beta = \{E_{ij} : 1 \le i, j \le n\}$ be the standard basis of $M_n(\mathbb{R})$, where E_{ij} is the matrix with 1 *in the i*, *j*th *entry* and 0 *everywhere else. Set* $B_{ij} = E_{ij} - E_{ji}$ *. Then, the set*

$$
\gamma = \{B_{ij} \colon 1 \le i < j \le n\}
$$

is a basis of $Skew_n(\mathbb{R})$.

Proof. Note that $\gamma \subset \text{Skew}_n(\mathbb{R})$. Consider the following linear combination, where the indices satisfy $1 \leq i < j \leq n$.

$$
\sum_{i < j} c_{ij} B_{ij} = \sum_{i < j} c_{ij} E_{ij} - c_{ij} E_{ji} = \mathbf{0}.
$$

Note that none of the E_{ij} equals any of the E_{ji} since $i < j$, so the linear independence of β (hence the linear independence of any subset of β) gives $c_{ij} = 0$ for all $1 \leq i < j \leq n$. This establishes the linear

independence of γ . Suppose $B \in \text{Skew}_n(\mathbb{R})$. Then, $b_{ij} = -b_{ji}$ and $b_{ii} = 0$. This means that we can write

$$
B = \sum_{i=1}^{n} \sum_{j=1}^{n} b_{ij} E_{ij} = \sum_{i < j} b_{ij} E_{ij} + \sum_{i > j} b_{ij} E_{ij} + \sum_{i > j} b_{ij} E_{ij}
$$
\n
$$
= \sum_{i < j} b_{ij} E_{ij} + \mathbf{0} + \sum_{i < j} b_{ji} E_{ji}
$$
\n
$$
= \sum_{i < j} b_{ij} E_{ij} - \sum_{i < j} b_{ij} E_{ji}
$$
\n
$$
= \sum_{i < j} b_{ij} B_{ij}.
$$

Thus, γ is a linearly independent spanning subset of Skew_n(\mathbb{R}), hence a basis of Skew_n(\mathbb{R}). \Box

Let V be vector space over F and let $W \subseteq V$ be a subspace. The quotient space V/W consists of equivalence classes $[v]$, where $v \in V$ and

$$
[\boldsymbol{v}] = \boldsymbol{v} + W = \{\boldsymbol{v} + \boldsymbol{w} \colon \boldsymbol{w} \in W\}.
$$

Equivalently, $u \in [v]$ if and only if $u - v \in W$. We define

$$
[\boldsymbol{u}]+[\boldsymbol{v}]=[\boldsymbol{u}+\boldsymbol{v}], \qquad \lambda[\boldsymbol{v}]=[\lambda \boldsymbol{v}].
$$

With this, V/W is a vector space over F .

Lemma 4. *Let* $v \in V$ *and* $w_1, w_2 \in W$ *. Then*

$$
[\boldsymbol{v}+\boldsymbol{w}_1] = [\boldsymbol{v}+\boldsymbol{w}_2].
$$

Proof. Pick $u \in [v+w_1]$. Then $u = v + w_1 + w'_1$ for some $w'_1 \in W$. Now, $w_1 + w'_1 \in W$, so $(\boldsymbol{w}_1 + \boldsymbol{w}'_1) - \boldsymbol{w}_2 \in W$. This means that

$$
\boldsymbol{u} = \boldsymbol{v} + \boldsymbol{w}_1 + \boldsymbol{w}_1' = \boldsymbol{v} + \boldsymbol{w}_2 + (\boldsymbol{w}_1 + \boldsymbol{w}_1' - \boldsymbol{w}_2) \in [\boldsymbol{v} + \boldsymbol{w}_2].
$$

Hence, $[\mathbf{v}+\mathbf{w}_1] \subseteq [\mathbf{v}+\mathbf{w}_2]$. The reverse inclusion follows by symmetry, exchanging the roles of the subscripts 1 and 2 in the argument above.

 \Box

Alternatively, note that since addition in well-defined,

$$
[\boldsymbol{v}+\boldsymbol{w}_1] = [\boldsymbol{v}] + [\boldsymbol{w}_1] = [\boldsymbol{v}] + [\boldsymbol{0}] = [\boldsymbol{v}] + [\boldsymbol{w}_2] = [\boldsymbol{v}+\boldsymbol{w}_2].
$$

With this, we claim that the set

$$
\gamma' = \{ [B_{ij}] \colon B_{ij} \in \gamma \} = \{ [B_{ij}] \colon 1 \le i < j \le n \}
$$

is a basis of $M_n(\mathbb{R})/Sym_n(\mathbb{R})$.

Consider the linear combination

$$
\sum_{i
$$

By the linearity of the equivalence classes as well as the fact that γ is a basis of Skew_n(R), we can simplify this as

$$
[B] = [0],
$$

where $B = \sum_{i \leq j} c_{ij} B_{ij} \in \text{Skew}_{n}(\mathbb{R})$. This means that the skew-symmetric matrix $B \in [0]$, i.e. $B = 0 + A = A$ for some $A \in \text{Sym}_{n}(\mathbb{R})$. Lemma 2 forces $B = 0$, whence $c_{ij} = 0$. Thus, γ' is linearly independent.

Pick $[X] \in M_n(\mathbb{R})$ / $Sym_n(\mathbb{R})$. Since $X \in M_n(\mathbb{R})$, use Lemma 2 to write $X = A + B$ where $A \in Sym_n(\mathbb{R})$. and $B \in \text{Skew}_n(\mathbb{R})$. Note that by Lemma 4,

$$
[X] = [A + B] = [B],
$$

because $A, 0 \in \text{Sym}_{n}(\mathbb{R})$. Now, expand B in the basis γ .

$$
B=\sum_{i
$$

Then, the linearity of the equivalence classes gives

$$
[X] = [B] = \sum_{i < j} b_{ij} [B_{ij}].
$$

Thus, γ' is linearly independent and spans $M_n(\mathbb{R})/Sym_n(\mathbb{R})$. This proves that γ' is a basis of $M_n(\mathbb{R})/Sym_n(\mathbb{R})$. This completes the exercise.

Moreover, γ and γ' contain $1 + 2 + \cdots + (n - 1) = n(n - 1)/2$ elements, so

$$
\dim \operatorname{Skew}_n(\mathbb{R}) = \dim M_n(\mathbb{R}) / \operatorname{Sym}_n(\mathbb{R}) = \frac{1}{2}n(n-1).
$$

Remark. We give a sketch of an alternate proof that γ' is a basis of $M_n(\mathbb{R})$ / $Sym_n(\mathbb{R})$. Recall that for *a linear map* $T: V \to W$, the map

$$
\mathscr{T}: V/\ker T \to \mathrm{im}\, T, \qquad [\mathbf{v}] \mapsto T(\mathbf{v})
$$

is a linear isomorphism. By setting

$$
T: M_n(\mathbb{R}) \to M_n(\mathbb{R}), \qquad X \mapsto \frac{1}{2}(X - X^{\top}),
$$

note that ker $T = \text{Sym}_{n}(\mathbb{R})$ *(because* $A = A^{\top}$ *when* $A \in \text{Sym}_{n}(\mathbb{R})$ *) and* $\text{im } T = \text{Skew}_{n}(\mathbb{R})$ *(because* $(X - X^{\top})/2$ *is always skew-symmetric).*

Note that if $B \in \text{Skew}_n(\mathbb{R})$ *then its preimage under* \mathcal{T} *is the equivalence class* [B]*. Since a linear isomorphism sends a basis to a basis, and the inverse of a linear isomorphism is a linear isomorphism, the set* $\mathscr{T}^{-1}(\gamma) = \gamma'$ *is a basis of* $M_n(\mathbb{R})$ / $Sym_n(\mathbb{R})$ *.*