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Find a basis of the quotient space Mn(R) / Symn(R), where Symn(R) is the subspace of symmetric
matrices.

Solution The subspace of symmetric matrices is such that for any A ∈ Symn(R),

A = A> ⇔ aij = aji.

Lemma 1. The skew-symmetric matrices form a subspace where for any B ∈ Skewn(R),

B = −B> ⇔ bij = −bji.

Proof. Let B1, B2 ∈ Skewn(R) and λ ∈ R. Then,

(B1 +B2)
> = B>

1 +B>
2 = −B1 −B2 = −(B1 +B2), (λB1)

> = λB>
1 = −λB1.

Thus, B1 + B2 ∈ Skewn(R) and λB1 ∈ Skewn(R). Furthermore, the zero matrix 0 ∈ Skewn(R) because
it is equal to its negative transpose. Thus, Skewn(R) is a vector subspace of Mn(R).

Throughout this proof, we will be using A to denote symmetric matrices and B to denote skew-symmetric
matrices.

Lemma 2. The vector space Mn(R) can be decomposed as the direct sum of Symn(R) and Skewn(R).

Mn(R) = Symn(R) ⊕ Skewn(R) .

Equivalently, every matrix X ∈ Mn(R) has a unique representation X = A + B, where A ∈ Symn(R)
and B ∈ Skewn(R).

Proof. It is easily verified that for any X ∈ Mn(R),

X =
1

2
(X +X>) +

1

2
(X −X>).

Now, (X +X>)/2 ∈ Symn(R) and (X −X>)/2 ∈ Skewn(R).

1

2
(X +X>)> =

1

2
(X> +X) =

1

2
(X +X>),

1

2
(X −X>)> =

1

2
(X> −X) = −1

2
(X −X>)

Hence, Mn(R) = Symn(R)+Skewn(R). Furthermore, Symn(R)∩ Skewn(R) = {0}, because if X ∈
Symn(R) and X ∈ Skewn(R), we would require X = X> and X = −X>. Equating, we are forced into
X = 0. This proves the claim.

Lemma 3. Let β = {Eij : 1 ≤ i, j ≤ n} be the standard basis of Mn(R), where Eij is the matrix with 1
in the i, jth entry and 0 everywhere else. Set Bij = Eij − Eji. Then, the set

γ = {Bij : 1 ≤ i < j ≤ n}

is a basis of Skewn(R).

Proof. Note that γ ⊂ Skewn(R). Consider the following linear combination, where the indices satisfy
1 ≤ i < j ≤ n. ∑

i<j

cijBij =
∑
i<j

cijEij − cijEji = 0.

Note that none of the Eij equals any of the Eji since i < j, so the linear independence of β (hence the
linear independence of any subset of β) gives cij = 0 for all 1 ≤ i < j ≤ n. This establishes the linear
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independence of γ.
Suppose B ∈ Skewn(R). Then, bij = −bji and bii = 0. This means that we can write

B =

n∑
i=1

n∑
j=1

bijEij =
∑
i<j

bijEij +
∑
i=j

bijEij +
∑
i>j

bijEij

=
∑
i<j

bijEij + 0+
∑
i<j

bjiEji

=
∑
i<j

bijEij −
∑
i<j

bijEji

=
∑
i<j

bijBij .

Thus, γ is a linearly independent spanning subset of Skewn(R), hence a basis of Skewn(R).

Let V be vector space over F and let W ⊆ V be a subspace. The quotient space V/W consists of
equivalence classes [v], where v ∈ V and

[v] = v +W = {v +w : w ∈ W}.

Equivalently, u ∈ [v] if and only if u− v ∈ W . We define

[u] + [v] = [u+ v], λ[v] = [λv].

With this, V/W is a vector space over F .

Lemma 4. Let v ∈ V and w1,w2 ∈ W . Then

[v +w1] = [v +w2].

Proof. Pick u ∈ [v + w1]. Then u = v + w1 + w′
1 for some w′

1 ∈ W . Now, w1 + w′
1 ∈ W , so

(w1 +w′
1)−w2 ∈ W . This means that

u = v +w1 +w′
1 = v +w2 + (w1 +w′

1 −w2) ∈ [v +w2].

Hence, [v + w1] ⊆ [v + w2]. The reverse inclusion follows by symmetry, exchanging the roles of the
subscripts 1 and 2 in the argument above.

Alternatively, note that since addition in well-defined,

[v +w1] = [v] + [w1] = [v] + [0] = [v] + [w2] = [v +w2].

With this, we claim that the set

γ′ = {[Bij ] : Bij ∈ γ} = {[Bij ] : 1 ≤ i < j ≤ n}

is a basis of Mn(R) / Symn(R).

Consider the linear combination ∑
i<j

cij [Bij ] = [0].

By the linearity of the equivalence classes as well as the fact that γ is a basis of Skewn(R), we can simplify
this as

[B] = [0],

where B =
∑

i<j cijBij ∈ Skewn(R). This means that the skew-symmetric matrix B ∈ [0], i.e.
B = 0 + A = A for some A ∈ Symn(R). Lemma 2 forces B = 0, whence cij = 0. Thus, γ′ is lin-
early independent.

Pick [X] ∈ Mn(R) /Symn(R). Since X ∈ Mn(R), use Lemma 2 to write X = A+B where A ∈ Symn(R)
and B ∈ Skewn(R). Note that by Lemma 4,

[X] = [A+B] = [B],
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because A,0 ∈ Symn(R). Now, expand B in the basis γ.

B =
∑
i<j

bijBij .

Then, the linearity of the equivalence classes gives

[X] = [B] =
∑
i<j

bij [Bij ].

Thus, γ′ is linearly independent and spans Mn(R) / Symn(R). This proves that γ′ is a basis of Mn(R) /Symn(R).
This completes the exercise.

Moreover, γ and γ′ contain 1 + 2 + · · ·+ (n− 1) = n(n− 1)/2 elements, so

dimSkewn(R) = dimMn(R) / Symn(R) =
1

2
n(n− 1).

Remark. We give a sketch of an alternate proof that γ′ is a basis of Mn(R) / Symn(R). Recall that for
a linear map T : V → W , the map

T : V/ kerT → imT, [v] 7→ T (v)

is a linear isomorphism. By setting

T : Mn(R) → Mn(R), X 7→ 1

2
(X −X>),

note that kerT = Symn(R) (because A = A> when A ∈ Symn(R)) and imT = Skewn(R) (because
(X −X>)/2 is always skew-symmetric).

Note that if B ∈ Skewn(R) then its preimage under T is the equivalence class [B]. Since a linear
isomorphism sends a basis to a basis, and the inverse of a linear isomorphism is a linear isomorphism,
the set T −1(γ) = γ′ is a basis of Mn(R) /Symn(R).
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