MA2102 : Linear Algebra I

Satvik Saha, 19MS154

Find a basis of the quotient space $M_n(\mathbb{R}) / Sym_n(\mathbb{R})$, where $Sym_n(\mathbb{R})$ is the subspace of symmetric matrices.

Solution The subspace of symmetric matrices is such that for any $A \in Sym_n(\mathbb{R})$,

$$A = A^{\top} \quad \Leftrightarrow \quad a_{ij} = a_{ji}.$$

Lemma 1. The skew-symmetric matrices form a subspace where for any $B \in \text{Skew}_n(\mathbb{R})$,

$$B = -B^{\top} \quad \Leftrightarrow \quad b_{ij} = -b_{ji}.$$

Proof. Let $B_1, B_2 \in \text{Skew}_n(\mathbb{R})$ and $\lambda \in \mathbb{R}$. Then,

$$(B_1 + B_2)^{\top} = B_1^{\top} + B_2^{\top} = -B_1 - B_2 = -(B_1 + B_2), \qquad (\lambda B_1)^{\top} = \lambda B_1^{\top} = -\lambda B_1,$$

Thus, $B_1 + B_2 \in \text{Skew}_n(\mathbb{R})$ and $\lambda B_1 \in \text{Skew}_n(\mathbb{R})$. Furthermore, the zero matrix $\mathbf{0} \in \text{Skew}_n(\mathbb{R})$ because it is equal to its negative transpose. Thus, $\text{Skew}_n(\mathbb{R})$ is a vector subspace of $M_n(\mathbb{R})$.

Throughout this proof, we will be using A to denote symmetric matrices and B to denote skew-symmetric matrices.

Lemma 2. The vector space $M_n(\mathbb{R})$ can be decomposed as the direct sum of $Sym_n(\mathbb{R})$ and $Skew_n(\mathbb{R})$.

$$\mathrm{M}_{\mathrm{n}}(\mathbb{R}) = \mathrm{Sym}_{\mathrm{n}}(\mathbb{R}) \oplus \mathrm{Skew}_{\mathrm{n}}(\mathbb{R})$$
.

Equivalently, every matrix $X \in M_n(\mathbb{R})$ has a unique representation X = A + B, where $A \in Sym_n(\mathbb{R})$ and $B \in Skew_n(\mathbb{R})$.

Proof. It is easily verified that for any $X \in M_n(\mathbb{R})$,

$$X = \frac{1}{2}(X + X^{\top}) + \frac{1}{2}(X - X^{\top}).$$

Now, $(X + X^{\top})/2 \in \text{Sym}_n(\mathbb{R})$ and $(X - X^{\top})/2 \in \text{Skew}_n(\mathbb{R})$.

$$\frac{1}{2}(X+X^{\top})^{\top} = \frac{1}{2}(X^{\top}+X) = \frac{1}{2}(X+X^{\top}), \qquad \frac{1}{2}(X-X^{\top})^{\top} = \frac{1}{2}(X^{\top}-X) = -\frac{1}{2}(X-X^{\top})$$

Hence, $M_n(\mathbb{R}) = \operatorname{Sym}_n(\mathbb{R}) + \operatorname{Skew}_n(\mathbb{R})$. Furthermore, $\operatorname{Sym}_n(\mathbb{R}) \cap \operatorname{Skew}_n(\mathbb{R}) = \{\mathbf{0}\}$, because if $X \in \operatorname{Sym}_n(\mathbb{R})$ and $X \in \operatorname{Skew}_n(\mathbb{R})$, we would require $X = X^{\top}$ and $X = -X^{\top}$. Equating, we are forced into $X = \mathbf{0}$. This proves the claim.

Lemma 3. Let $\beta = \{E_{ij} : 1 \leq i, j \leq n\}$ be the standard basis of $M_n(\mathbb{R})$, where E_{ij} is the matrix with 1 in the i, j^{th} entry and 0 everywhere else. Set $B_{ij} = E_{ij} - E_{ji}$. Then, the set

$$\gamma = \{ B_{ij} \colon 1 \le i < j \le n \}$$

is a basis of $Skew_n(\mathbb{R})$.

Proof. Note that $\gamma \subset \text{Skew}_n(\mathbb{R})$. Consider the following linear combination, where the indices satisfy $1 \leq i < j \leq n$.

$$\sum_{i< j} c_{ij} B_{ij} = \sum_{i< j} c_{ij} E_{ij} - c_{ij} E_{ji} = \mathbf{0}.$$

Note that none of the E_{ij} equals any of the E_{ji} since i < j, so the linear independence of β (hence the linear independence of any subset of β) gives $c_{ij} = 0$ for all $1 \le i < j \le n$. This establishes the linear

November 27, $20\overline{20}$

independence of γ . Suppose $B \in \text{Skew}_n(\mathbb{R})$. Then, $b_{ij} = -b_{ji}$ and $b_{ii} = 0$. This means that we can write

$$B = \sum_{i=1}^{n} \sum_{j=1}^{n} b_{ij} E_{ij} = \sum_{i < j} b_{ij} E_{ij} + \sum_{i=j}^{n} b_{ij} E_{ij} + \sum_{i > j} b_{ij} E_{ij}$$
$$= \sum_{i < j}^{n} b_{ij} E_{ij} + \mathbf{0} + \sum_{i < j}^{n} b_{ji} E_{ji}$$
$$= \sum_{i < j}^{n} b_{ij} E_{ij} - \sum_{i < j}^{n} b_{ij} E_{ji}$$
$$= \sum_{i < j}^{n} b_{ij} B_{ij}.$$

Thus, γ is a linearly independent spanning subset of $\operatorname{Skew}_n(\mathbb{R})$, hence a basis of $\operatorname{Skew}_n(\mathbb{R})$.

Let V be vector space over F and let $W \subseteq V$ be a subspace. The quotient space V/W consists of equivalence classes [v], where $v \in V$ and

$$[\boldsymbol{v}] = \boldsymbol{v} + W = \{\boldsymbol{v} + \boldsymbol{w} \colon \boldsymbol{w} \in W\}.$$

Equivalently, $\boldsymbol{u} \in [\boldsymbol{v}]$ if and only if $\boldsymbol{u} - \boldsymbol{v} \in W$. We define

$$[\boldsymbol{u}] + [\boldsymbol{v}] = [\boldsymbol{u} + \boldsymbol{v}], \qquad \lambda[\boldsymbol{v}] = [\lambda \boldsymbol{v}].$$

With this, V/W is a vector space over F.

Lemma 4. Let $v \in V$ and $w_1, w_2 \in W$. Then

$$[v + w_1] = [v + w_2].$$

Proof. Pick $u \in [v + w_1]$. Then $u = v + w_1 + w'_1$ for some $w'_1 \in W$. Now, $w_1 + w'_1 \in W$, so $(w_1 + w'_1) - w_2 \in W$. This means that

$$u = v + w_1 + w'_1 = v + w_2 + (w_1 + w'_1 - w_2) \in [v + w_2]$$

Hence, $[v + w_1] \subseteq [v + w_2]$. The reverse inclusion follows by symmetry, exchanging the roles of the subscripts 1 and 2 in the argument above.

Alternatively, note that since addition in well-defined,

$$[v + w_1] = [v] + [w_1] = [v] + [0] = [v] + [w_2] = [v + w_2]$$

With this, we claim that the set

$$\gamma' = \{ [B_{ij}] \colon B_{ij} \in \gamma \} = \{ [B_{ij}] \colon 1 \le i < j \le n \}$$

is a basis of $M_n(\mathbb{R}) / Sym_n(\mathbb{R})$.

Consider the linear combination

$$\sum_{i < j} c_{ij}[B_{ij}] = [\mathbf{0}].$$

By the linearity of the equivalence classes as well as the fact that γ is a basis of $\text{Skew}_n(\mathbb{R})$, we can simplify this as

$$[B] = [\mathbf{0}],$$

where $B = \sum_{i < j} c_{ij} B_{ij} \in \text{Skew}_n(\mathbb{R})$. This means that the skew-symmetric matrix $B \in [\mathbf{0}]$, i.e. $B = \mathbf{0} + A = A$ for some $A \in \text{Sym}_n(\mathbb{R})$. Lemma 2 forces $B = \mathbf{0}$, whence $c_{ij} = 0$. Thus, γ' is linearly independent.

Pick $[X] \in M_n(\mathbb{R}) / Sym_n(\mathbb{R})$. Since $X \in M_n(\mathbb{R})$, use Lemma 2 to write X = A + B where $A \in Sym_n(\mathbb{R})$ and $B \in Skew_n(\mathbb{R})$. Note that by Lemma 4,

$$[X] = [A + B] = [B],$$

because $A, \mathbf{0} \in \text{Sym}_n(\mathbb{R})$. Now, expand B in the basis γ .

$$B = \sum_{i < j} b_{ij} B_{ij}$$

Then, the linearity of the equivalence classes gives

$$[X] = [B] = \sum_{i < j} b_{ij} [B_{ij}].$$

Thus, γ' is linearly independent and spans $M_n(\mathbb{R}) / \operatorname{Sym}_n(\mathbb{R})$. This proves that γ' is a basis of $M_n(\mathbb{R}) / \operatorname{Sym}_n(\mathbb{R})$. This completes the exercise.

Moreover, γ and γ' contain $1 + 2 + \cdots + (n-1) = n(n-1)/2$ elements, so

dim Skew_n(
$$\mathbb{R}$$
) = dim M_n(\mathbb{R}) / Sym_n(\mathbb{R}) = $\frac{1}{2}n(n-1)$.

Remark. We give a sketch of an alternate proof that γ' is a basis of $M_n(\mathbb{R}) / Sym_n(\mathbb{R})$. Recall that for a linear map $T: V \to W$, the map

$$\mathscr{T}: V/\ker T \to \operatorname{im} T, \qquad [v] \mapsto T(v)$$

is a linear isomorphism. By setting

$$T: \mathrm{M}_{\mathrm{n}}(\mathbb{R}) \to \mathrm{M}_{\mathrm{n}}(\mathbb{R}), \qquad X \mapsto \frac{1}{2}(X - X^{\top}),$$

note that ker $T = \text{Sym}_n(\mathbb{R})$ (because $A = A^{\top}$ when $A \in \text{Sym}_n(\mathbb{R})$) and im $T = \text{Skew}_n(\mathbb{R})$ (because $(X - X^{\top})/2$ is always skew-symmetric).

Note that if $B \in \text{Skew}_n(\mathbb{R})$ then its preimage under \mathscr{T} is the equivalence class [B]. Since a linear isomorphism sends a basis to a basis, and the inverse of a linear isomorphism is a linear isomorphism, the set $\mathscr{T}^{-1}(\gamma) = \gamma'$ is a basis of $M_n(\mathbb{R}) / \text{Sym}_n(\mathbb{R})$.