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Let a ∈ R. Consider the set

Sn
a =

{
1, (x− a), (x− a)2, . . . , (x− a)n

}
.

Show that Sn
a is a basis for Pn(R), the space of polynomials of degree at most n.

We notate the superscript Sn
a to denote the highest degree term (x− a)n.

Solution We first calculate the dimension of Pn(R) and exhibit the standard basis.

Lemma 1. The set Sn
0 = {1, x, x2, . . . , xn} is a basis of Pn(R).

Proof. Note that any polynomial in Pn(R) is of the form

p(x) = a0 + a1x+ · · ·+ anx
n.

This means that Pn(R) ⊆ spanSn
0 . We now show linear independence by considering the linear combi-

nation
c0 + c1x+ c2x

2 + · · ·+ cnx
n = 0.

Because the polynomial on the left is equated with the zero polynomial on the right, it must identically
evaluate to 0 no matter the choice of x ∈ R. We choose n+ 1 distinct reals x, which we exhibit as n+ 1
roots of the polynomial on the left. However, the degree of this polynomial is at most n. We conclude
that the polynomial on the left is the zero polynomial, so c0 = c1 = · · · = cn.
This proves that the set Sn

0 is a basis of Pn(R).

We use the fact that dimPn(R) = n + 1, from Lemma 1. Thus, we need only show that Sn
a is linearly

independent for a 6= 0. This is sufficient to prove that Sn
a is a basis of Pn(R), because the Replacement

Theorem guarantees that any linearly independent set of size dimPn(R) will be a basis.

Lemma 2. The polynomial (x− a)n − xn has degree at most n− 1, for n ∈ N.

Proof. We expand (x− a)n using the Binomial Theorem to obtain

(x− a)n = xn − naxn−1 +

(
n

2

)
a2xn−2 + · · ·+ (−1)nan.

Subtracting xn from both sides leaves terms of degree at most n− 1 on the right. Thus,

(x− a)n − xn ∈ Pn−1(R) ⊂ Pn(R).

The coefficients of this n − 1 degree polynomial are the binomial coefficients with alternating sign, as
seen above.

With this, we prove that Sn
a for a 6= 0 is a basis of Pn(R) by induction. For n = 0, the claim is trivial,

since we have S0
a = S0

0 = {1}, which is a linearly independent set in P0(R), hence a basis of P0(R).

For n = 1, consider the linear combination of elements from S1
a = {1, (x− a)}

c0 + c1(x− a) = 0,

for arbitrary c0, c1 ∈ R. Successively set x = a and x = 0. Thus, c0 = 0 and c0 − c1a = 0, whence
c0 = c1 = 0. This shows that S1

a is linearly independent in P1(R), hence a basis of P1(R).
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Suppose that for n = k, the set Sk
a =

{
1, (x− a), . . . , (x− a)k

}
is a basis of Pk(R). Consider the linear

combination of elements from Sk+1
a ,

c0 + c1(x− a) + · · ·+ ck(x− a)k + ck+1(x− a)k+1 = 0.

Subtract and add ck+1x
k+1.[

c0 + c1(x− a) + · · ·+ ck(x− a)k + ck+1

(
(x− a)k+1 − xk+1

) ]
+ ck+1x

k+1 = 0.

Note that the portion in square brackets is a polynomial of degree at most k. This is because (x−a)k+1−
xk+1 has degree at most k by Lemma 2, and the remaining terms also have degree at most k. Thus, we
expand this bracketed polynomial in the basis Sk

a .

pk(x) = a0 + a1x+ · · ·+ akx
k ∈ Pk(R).

Replacing this in the previous equation,

a0 + a1x+ · · ·+ akx
k + ck+1x

k+1 = 0.

The linear independence of Sk+1
0 = {1, x, . . . , xk+1} from Lemma 1 gives a0 = a1 = · · · = ak = ck+1 = 0.

Substituting this back into the original linear combination with the cj coefficients, we have

c0 + c1(x− a) + · · ·+ ck(x− a)k = 0.

The induction hypothesis, whereby Sk
a is linearly independent, gives c0 = c1 = · · · = ck = 0 = ck+1.

This shows that Sk+1
a is linearly independent in Pk+1(R), which means it is a basis of Pk+1(R).

Thus, by the principle of mathematical induction, the set Sn
a is a basis of Pn(R) for all integers n ≥ 0.

This completes the proof.
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