MA2102 : Linear Algebra I

Satvik Saha, 19MS154

November 26, 2020

Let V and W be vector spaces over the same field F. Show that the set $\mathcal{L}(V, W)$, consisting of linear maps from V to W, is a vector space. If V and W are finite dimensional, then find the dimension of $\mathcal{L}(V, W)$.

Solution Recall that a vector space V over a field F is a set equipped with a binary operation $+: V \times V \to F$ called addition, and an operation $:: F \times V \to V$ called scalar multiplication, such that

- 1. $\boldsymbol{u} + \boldsymbol{v} \in V$, for all $\boldsymbol{u}, \boldsymbol{v} \in V$.
- 2. $\lambda \boldsymbol{u} \in V$, for all $\boldsymbol{u} \in V$, $\lambda \in F$.
- 3. $\boldsymbol{u} + \boldsymbol{v} = \boldsymbol{v} + \boldsymbol{u}$, for all $\boldsymbol{u}, \boldsymbol{v} \in V$.
- 4. $(\boldsymbol{u} + \boldsymbol{v}) + \boldsymbol{w} = \boldsymbol{u} + (\boldsymbol{v} + \boldsymbol{w})$, for all $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w} \in V$.
- 5. There exists $\mathbf{0} \in V$ such that $\mathbf{0} + \mathbf{v} = \mathbf{v}$ for all $\mathbf{v} \in V$.
- 6. For all $v \in V$, there exists $u \in V$ such that v + u = 0. We denote u = -v.
- 7. $\lambda(\boldsymbol{u} + \boldsymbol{v}) = \lambda \boldsymbol{u} + \lambda \boldsymbol{v}$, for all $\boldsymbol{u}, \boldsymbol{v} \in V, \lambda \in F$.
- 8. $(\lambda \mu) \boldsymbol{v} = \lambda(\mu \boldsymbol{v})$ for all $\boldsymbol{v} \in V, \lambda, \mu \in F$.
- 9. $(\lambda + \mu)\boldsymbol{v} = \lambda \boldsymbol{v} + \mu \boldsymbol{v}$, for all $\boldsymbol{v} \in V, \lambda, \mu \in F$.
- 10. There exists $1 \in F$ such that $1\boldsymbol{v} = \boldsymbol{v}$ for all $\boldsymbol{v} \in V$.

Let $T, T_1, T_2: V \to W$ be linear maps and let $\lambda \in F$. We define addition and scalar multiplication on $\mathcal{L}(V, W)$ as follows.

$$(T_1 + T_2)(\boldsymbol{v}) = T_1(\boldsymbol{v}) + T_2(\boldsymbol{v}) \qquad \text{for all } \boldsymbol{v} \in V, \\ (\lambda T)(\boldsymbol{v}) = \lambda T(\boldsymbol{v}) \qquad \text{for all } \boldsymbol{v} \in V.$$

With this, we verify the enumerated axioms one by one.

1. Since T_1 and T_2 are linear maps in $\mathcal{L}(V, W)$, for all $u, v \in V$ and $\mu \in F$,

$$\begin{aligned} (T_1 + T_2)(\boldsymbol{u} + \mu \boldsymbol{v}) &= T_1(\boldsymbol{u} + \mu \boldsymbol{v}) + T_2(\boldsymbol{u} + \mu \boldsymbol{v}) \\ &= T_1(\boldsymbol{u}) + \mu T_1(\boldsymbol{v}) + T_2(\boldsymbol{u}) + \mu T_2(\boldsymbol{v}) \\ &= (T_1 + T_2)(\boldsymbol{u}) + \mu (T_1 + T_2)(\boldsymbol{v}). \end{aligned}$$

Thus, $T_1 + T_2$ is a linear map in $\mathcal{L}(V, W)$.

2. Again, since T is a linear map in $\mathcal{L}(V, W)$, for all $\boldsymbol{u}, \boldsymbol{v} \in V$ and $\lambda, \mu \in F$,

$$\begin{aligned} (\lambda T)(\boldsymbol{u} + \mu \boldsymbol{v}) &= \lambda T(\boldsymbol{u} + \mu \boldsymbol{v}) \\ &= \lambda T(\boldsymbol{u}) + \lambda \mu T(\boldsymbol{v})) \\ &= (\lambda T)(\boldsymbol{u}) + \mu (\lambda T)(\boldsymbol{v}). \end{aligned}$$

Thus, λT is a linear map in $\mathcal{L}(V, W)$.

3. For all $\boldsymbol{v} \in V$, note that the commutativity of addition in W gives

$$(T_1 + T_2)(\mathbf{v}) = T_1(\mathbf{v}) + T_2(\mathbf{v}) = T_2(\mathbf{v}) + T_1(\mathbf{v}) = (T_2 + T_1)(\mathbf{v}).$$

Thus, $T_1 + T_2 = T_2 + T_1$.

4. For all $\boldsymbol{v} \in V$, the associativity of addition in W gives

$$((T_1 + T_2) + T_3)(\mathbf{v}) = T_1(\mathbf{v}) + (T_2 + T_3)(\mathbf{v}) = T_1(\mathbf{v}) + T_2(\mathbf{v}) + T_3(\mathbf{v}),$$

$$(T_1 + (T_2 + T_3))(\mathbf{v}) = (T_1 + T_2)(\mathbf{v}) + T_3(\mathbf{v}) = T_1(\mathbf{v}) + T_2(\mathbf{v}) + T_3(\mathbf{v}).$$

Thus, $(T_1 + T_2) + T_3 = T_1 + (T_2 + T_3)$.

5. Define the linear map $\mathbf{0}_{\mathcal{L}}: V \to W, v \mapsto \mathbf{0}_W$. For any $T \in \mathcal{L}(V, W)$, for all $v \in V$.

$$(\mathbf{0}_{\mathcal{L}}+T)(\mathbf{v})=\mathbf{0}_{\mathcal{L}}(\mathbf{v})+T(\mathbf{v})=\mathbf{0}_{W}+T(\mathbf{v})=T(\mathbf{v}).$$

Thus, $\mathbf{0}_{\mathcal{L}} + T = T$.

6. Define $T': V \to W, v \mapsto -T(v)$. Then for all $v \in V$,

$$(T+T')(\boldsymbol{v}) = T(\boldsymbol{v}) + T'(\boldsymbol{v}) = T(\boldsymbol{v}) - T(\boldsymbol{v}) = \mathbf{0}_W = \mathbf{0}_{\mathcal{L}}(\boldsymbol{v}).$$

Thus, $T + T' = \mathbf{0}_{\mathcal{L}}$.

7. For $\lambda, \mu \in F$, for all $\boldsymbol{v} \in V$,

$$egin{aligned} &(\lambda(T_1+T_2))(m{v}) &= \lambda(T_1+T_2)(m{v}) \ &= \lambda(T_1(m{v})+T_2(m{v})) \ &= \lambda T_1(m{v})+\lambda T_2(m{v}) \ &= (\lambda T_1)(m{v})+(\lambda T_2)(m{v}) \ &= (\lambda T_1+\lambda T_2)(m{v}). \end{aligned}$$

Thus, $\lambda(T_1 + T_2) = \lambda T_1 + \lambda T_2$.

8. For $\lambda, \mu \in F$, for all $\boldsymbol{v} \in V$,

$$\begin{aligned} ((\lambda + \mu)T)(\boldsymbol{v}) &= (\lambda + \mu)T(\boldsymbol{v}) \\ &= \lambda T(\boldsymbol{v}) + \mu T(\boldsymbol{v}) \\ &= (\lambda T)(\boldsymbol{v}) + (\mu T)(\boldsymbol{v}) \\ &= (\lambda T + \mu T)(\boldsymbol{v}). \end{aligned}$$

Thus, $(\lambda + \mu)T = \lambda T + \mu T$.

9. For $\lambda, \mu \in F$, for all $\boldsymbol{v} \in V$,

$$\begin{aligned} ((\lambda\mu)T)(\boldsymbol{v}) &= (\lambda\mu)T(\boldsymbol{v}) \\ &= \lambda(\mu T(\boldsymbol{v})) \\ &= \lambda(\mu T)(\boldsymbol{v}) \\ &= (\lambda(\mu T))(\boldsymbol{v}). \end{aligned}$$

Thus, $(\lambda \mu)T = \lambda(\mu T)$.

10. Pick the scalar $1 \in F$ which satisfies $1\boldsymbol{w} = \boldsymbol{w}$ for all $\boldsymbol{w} \in W$. Then for all $\boldsymbol{v} \in V$,

$$(1T)(\boldsymbol{v}) = 1(T(\boldsymbol{v})) = T(\boldsymbol{v}),$$

so 1T = T.

This verifies that $\mathcal{L}(V, W)$ is a vector space.

When V and W are finite-dimensional, say with dimensions n and m respectively, we claim that the dimension of $\mathcal{L}(V, W)$ is mn. To prove this, let $\beta = \{v_1, \ldots, v_n\}$ be an ordered basis of V and let $\gamma = \{w_1, \ldots, w_m\}$ be an ordered basis of W. Define the linear maps

$$T_{ij}: V \to W, \qquad \boldsymbol{v}_k \mapsto \delta_{ik} \boldsymbol{w}_j,$$

for all i = 1, ..., n and j = 1, ..., m. We will show that the set of all such T_{ij} (of which there are mn) comprises a basis of $\mathcal{L}(V, W)$. Note that T_{ij} has only been defined on the basis vectors $v_k \in \beta$. To uniquely define T_{ij} on V, pick arbitrary $v \in V$ and expand it in the basis β as $v = \lambda_1 v_1 + \cdots + \lambda_n v_n$. Note that the choice of scalars $\lambda_i \in F$ is unique, since β is a basis. We now write.

$$T_{ij}(\boldsymbol{v}) = T_{ij}(\lambda_1 \boldsymbol{v}_1 + \dots + \lambda_n \boldsymbol{v}_n) = \lambda_i \boldsymbol{w}_j$$

To verify that this map is indeed linear, pick some $\boldsymbol{u} = \mu_1 \boldsymbol{v}_1 + \cdots + \mu_n \boldsymbol{v}_n \in V$. Note that $\boldsymbol{u} + \boldsymbol{v} = (\mu_1 + \lambda_1) \boldsymbol{v}_1 + \dots + (\mu_n + \lambda_n) \boldsymbol{v}_n$, so

$$T_{ij}(\boldsymbol{u}+\boldsymbol{v}) = (\mu_i + \lambda_i)\boldsymbol{w}_j = \mu_i \boldsymbol{w}_j + \lambda_i \boldsymbol{w}_j = T_{ij}(\boldsymbol{u}) + T_{ij}(\boldsymbol{v}).$$

Also, note that $c\boldsymbol{v} = c\lambda_1\boldsymbol{v}_1 + \cdots + c\lambda_n\boldsymbol{v}_n$ for all $c \in F$, so

$$T_{ij}(c\boldsymbol{v}) = (c\lambda_i)\boldsymbol{w}_j = c(\lambda_i\boldsymbol{w}_j) = cT_{ij}(\boldsymbol{v}).$$

Thus, all T_{ij} are indeed linear maps in $\mathcal{L}(V, W)$.

We first show that the set of T_{ij} spans $\mathcal{L}(V, W)$. Suppose $T: V \to W$ is a linear map in $\mathcal{L}(V, W)$. For each of the basis vectors $v_i \in \beta$, there exist unique scalars $a_{ij} \in F$ such that

$$T(\boldsymbol{v}_i) = a_{i1}\boldsymbol{w}_1 + a_{i2}\boldsymbol{w}_2 + \dots + a_{im}\boldsymbol{w}_m.$$

This is true because γ is a basis of W. Pick any $v \in V$ and write $v = \lambda_1 v_1 + \cdots + \lambda_n v_n$. Then,

$$T(\boldsymbol{v}) = \sum_{i=1}^{n} \lambda_i T(\boldsymbol{v}_i) = \sum_{i=1}^{n} \sum_{j=1}^{m} \lambda_i a_{ij} \boldsymbol{w}_j = \sum_{i=1}^{n} \sum_{j=1}^{m} a_{ij} T_{ij}(\boldsymbol{v}).$$

This means that

$$T = \sum_{i=1}^{n} \sum_{j=1}^{m} a_{ij} T_{ij}.$$

Hence, T is in the span of the set of T_{ij} for arbitrary $T \in \mathcal{L}(V, W)$.

We now show that the set of T_{ij} are linearly independent. Consider the linear combination

$$\sum_{i=1}^{n} \sum_{j=1}^{m} c_{ij} T_{ij} = \mathbf{0}_{\mathcal{L}}$$

By successively evaluating this map on $v_k \in \beta$ for k = 1, ..., n, we see that

$$\sum_{i=1}^n \sum_{j=1}^m c_{ij} T_{ij}(\boldsymbol{v}_k) = \sum_{i=1}^n \sum_{j=1}^m c_{ij} \delta_{ik} \boldsymbol{w}_j = \sum_{j=1}^m c_{kj} \boldsymbol{w}_j = \boldsymbol{0}.$$

The linear independence of $\gamma = \{w_1, \ldots, w_m\}$ forces $c_{kj} = 0$. Hence, all the coefficients in the linear combination of T_{ij} are zero, so they are linearly independent.

This proves that the set $\{T_{ij}: i, j \in \mathbb{N}, 1 \leq i \leq n, 1 \leq j \leq m\}$ is a basis of $\mathcal{L}(V, W)$. This set contains mn elements, hence dim $\mathcal{L}(V, W) = mn = \dim V \cdot \dim W$.