Term presentation Problem 3

Satvik Saha, 19MS154 November 28, 2020

MA2102: Linear Algebra I Indian Institute of Science Education and Research, Kolkata Let *V* and *W* be vector spaces over the same field *F*. Show that the set $\mathcal{L}(V, W)$, consisting of linear maps from V to W, is a vector space. If *V* and *W* are finite dimensional, then find the dimension of $\mathcal{L}(V, W)$.

Preliminaries

A vector space *V* over a field *F* is a set equipped with a binary operation $+: V \times V \rightarrow F$ called addition, and an operation \cdot : $F \times V \rightarrow V$ called scalar multiplication, such that

- 1. $u + v \in V$, for all $u, v \in V$.
- 2. $\lambda u \in V$, for all $u \in V$, $\lambda \in F$.
- 3. $u + v = v + u$, for all $u, v \in V$.
- 4. $(u + v) + w = u + (v + w)$, for all $u, v, w \in V$.
- 5. There exists $0 \in V$ such that $0 + v = v$ for all $v \in V$.
- 6. For all $v \in V$, there exists $u \in V$ such that $v + u = 0$. We denote $u = -v$.
- 7. $\lambda(u + v) = \lambda u + \lambda v$, for all $u, v \in V$, $\lambda \in F$.
- 8. $(\lambda \mu)\mathbf{v} = \lambda(\mu \mathbf{v})$ for all $\mathbf{v} \in \mathbf{V}$, $\lambda, \mu \in \mathbf{F}$.
- 9. $(\lambda + \mu)\mathbf{v} = \lambda\mathbf{v} + \mu\mathbf{v}$, for all $\mathbf{v} \in \mathbf{V}$, $\lambda, \mu \in \mathbf{F}$.
- 10. There exists $1 \in F$ such that $1v = v$ for all $v \in V$.

A basis of a vector space *V* over a field *F* is a set of linearly independent vectors in *V* such that any element of *V* can be written as a finite linear combination of them.

The dimension of a vector space *V* is equal to number of elements in a basis of *V*. This is well defined by the Replacement Theorem, which guarantees that any two bases will have the same size.

A linear map between the vector spaces *V* and *W* is a map *T* : $V \rightarrow W$ such that for all $u, v \in V$ and $\lambda \in F$,

$$
T(u + v) = T(u) + T(v),
$$

$$
T(\lambda v) = \lambda T(v).
$$

Let *T*, *T*₁, *T*₂ : *V* \rightarrow *W* be linear maps and let $\lambda \in F$. We define addition and scalar multiplication on $\mathcal{L}(V, W)$ as follows.

$$
(T_1 + T_2)(v) = T_1(v) + T_2(v) \qquad \text{for all } v \in V,
$$

$$
(\lambda T)(v) = \lambda T(v) \qquad \text{for all } v \in V.
$$

 $T_1 + T_2$ and λT are both linear maps in $\mathcal{L}(V, W)$.

$$
(T_1 + T_2)(u + \mu v) = T_1(u + \mu v) + T_2(u + \mu v)
$$

= T₁(u) + \mu T₁(v) + T₂(u) + \mu T₂(v)
= (T₁ + T₂)(u) + \mu (T₁ + T₂)(v).

$$
(\lambda \mathcal{T})(u + \mu v) = \lambda \mathcal{T}(u + \mu v)
$$

= $\lambda \mathcal{T}(u) + \lambda \mu \mathcal{T}(v)$)
= $(\lambda \mathcal{T})(u) + \mu(\lambda \mathcal{T})(v)$.

For all $v \in V$, note that the commutativity of addition in *W* gives

$$
(T_1+T_2)(v)=T_1(v)+T_2(v)=T_2(v)+T_1(v)=(T_2+T_1)(v).
$$

The associativity of addition in *W* gives

 $((T_1 + T_2) + T_3)(v) = T_1(v) + (T_2 + T_3)(v) = T_1(v) + T_2(v) + T_3(v),$ $(T_1 + (T_2 + T_3))(v) = (T_1 + T_2)(v) + T_3(v) = T_1(v) + T_2(v) + T_3(v).$

Thus, $T_1 + T_2 = T_2 + T_1$ and $(T_1 + T_2) + T_3 = T_1 + (T_2 + T_3)$.

Define the linear map $\mathbf{0}_\mathcal{L}: V \to W$, $\mathbf{v} \mapsto \mathbf{0}_W$. For any $T \in \mathcal{L}(V, W)$, for all $v \in V$.

$$
(0_{\mathcal{L}}+T)(v)=0_{\mathcal{L}}(v)+T(v)=0_W+T(v)=T(v).
$$

Define T' : $V \rightarrow W$, $v \mapsto -T(v)$. Then,

 $(T + T')(\nu) = T(\nu) + T'(\nu) = T(\nu) - T(\nu) = 0$ _{*W*} = 0_{*L*}(*v*).

Thus, $0_{\mathcal{L}} + T = T$ and $T + T' = 0_{\mathcal{L}}$.

L(*V*, *W*) as a vector space: Distributivity of scaling

For $\lambda, \mu \in F$, for all $v \in V$, $(\lambda(T_1 + T_2))(\nu) = \lambda(T_1 + T_2)(\nu)$ $= \lambda(T_1(v) + T_2(v))$ $= \lambda T_1(\mathbf{v}) + \lambda T_2(\mathbf{v})$ $= (\lambda T_1)(v) + (\lambda T_2)(v)$ $= (\lambda T_1 + \lambda T_2)(v)$. $((\lambda + \mu)T)(v) = (\lambda + \mu)T(v)$ $= \lambda T(v) + \mu T(v)$ $= (\lambda T)(v) + (\mu T)(v)$ $= (\lambda T + \mu T)(v).$

Thus, $\lambda(T_1 + T_2) = \lambda T_1 + \lambda T_2$ and $(\lambda + \mu)T = \lambda T + \mu T$.

L(*V*, *W*) as a vector space: Scaling

For $\lambda, \mu \in F$, for all $v \in V$,

$$
((\lambda \mu)T)(v) = (\lambda \mu)T(v)
$$

= $\lambda(\mu T(v))$
= $\lambda(\mu T)(v)$
= $(\lambda(\mu T))(v).$

Thus, $(\lambda \mu)T = \lambda(\mu T)$.

Pick the scalar $1 \in F$ which satisfies $1w = w$ for all $w \in W$. Then

$$
(1T)(v) = 1(T(v)) = T(v),
$$

 $\text{so } 1T = T$.

Thus, we have verified that $\mathcal{L}(V, W)$ is a vector space, with the given structure of addition and scaling.

Dimension of $\mathcal{L}(V, W)$ when V and W are finite dimensional

Let $\beta = {\bf v}_1, \ldots, {\bf v}_n$ be a basis of *V* and let $\gamma = {\bf w}_1, \ldots, {\bf w}_m$ be a basis of *W*.

Define the linear maps

$$
T_{ij}: V \to W, \qquad \mathbf{v}_k \mapsto \delta_{ik} \mathbf{w}_j,
$$

for all $i = 1, \ldots, n$ and $j = 1, \ldots, m$. We claim that the set of all such T_{ii} comprises a basis of $\mathcal{L}(V, W)$.

Note that

$$
T_{ij}(\lambda_1\mathbf{v}_1+\cdots+\lambda_n\mathbf{v}_n)=\lambda_i\mathbf{w}_j.
$$

$span\{T_{ii}\} = \mathcal{L}(V, W)$

Suppose $T: V \to W$ is a linear map in $\mathcal{L}(V, W)$. For each of the basis vectors $v_i \in \beta$, there exist unique scalars a_{ii} such that

$$
T(\mathbf{v}_i) = a_{i1}\mathbf{w}_1 + a_{i2}\mathbf{w}_2 + \cdots + a_{im}\mathbf{w}_m.
$$

We see that

$$
T = \sum_{i=1}^n \sum_{j=1}^m a_{ij} T_{ij}.
$$

To prove this, pick any $v \in V$ and write $v = \lambda_1 v_1 + \cdots + \lambda_n v_n$. Then,

$$
T(\mathbf{v}) = \sum_{i=1}^n \lambda_i T(\mathbf{v}_i) = \sum_{i=1}^n \sum_{j=1}^m \lambda_i a_{ij} w_j = \sum_{i=1}^n \sum_{j=1}^m a_{ij} T_{ij}(\mathbf{v}).
$$

Consider the linear combination

$$
\sum_{i=1}^{n}\sum_{j=1}^{m}c_{ij}T_{ij}=0.
$$

By successively evaluating this map on v_k for $k = 1, \ldots, n$, we see that

$$
\sum_{i=1}^{n}\sum_{j=1}^{m}c_{ij}T_{ij}(\mathbf{v}_{k})=\sum_{i=1}^{n}\sum_{j=1}^{m}c_{ij}\delta_{ik}\mathbf{w}_{j}=\sum_{j=1}^{m}c_{kj}\mathbf{w}_{j}=\mathbf{0}.
$$

The linear independence of $\gamma = {\bf{w}}_1, \ldots, {\bf{w}}_m$ } forces $c_{ki} = 0$.

Thus, the set of all T_{ii} is a linearly independent set which spans $\mathcal{L}(V, W)$. Hence, this comprises a basis of $\mathcal{L}(V, W)$.

This basis contains *mn* elements. Thus,

 $\dim \mathcal{L}(V, W) = mn$,

where $n = \dim V$ and $m = \dim W$ are finite.