MA2102 : Linear Algebra I

Satvik Saha, 19MS154 November 26, 2020

Find the eigenvalues and corresponding eigenvectors of the matrix

$$
A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}.
$$

Find an invertible matrix P such that $P^{-1}AP$ is diagonal.

Solution Recall that an eigenvalue of a matrix $A \in M_n(\mathbb{R})$ is $\lambda \in \mathbb{R}$ such that $Av = \lambda v$, for some nonzero $v \in \mathbb{R}^n$. Furthermore, the eigenvalues of a matrix can be computed as the roots of the characteristic polynomial $p(\lambda) = \det(A - \lambda I_n)$.

Lemma 1. The eigenvalues of $A \in M_n(F)$ are precisely the roots of the characteristic polynomial $p(\lambda) = \det(A - \lambda I_n).$

Proof. Suppose that λ is an eigenvalue of A. Then, we find some $v \neq 0$ such that $Av = \lambda v$. Rearranging, $(A - \lambda I_n)v = 0$. Thus, $v \in \text{ker}(A - \lambda I_n)$, so the kernel of $A - \lambda I_n$ must have dimension greater than 1. From the Rank Nullity theorem, $A - \lambda I_n$ cannot be of full rank, hence $\det(A - \lambda I_n) = 0$.

Conversely, note that if $\det(A - \lambda I_n) = 0$, then $A - \lambda I_n$ is not of full rank. Thus, the Rank Nullity theorem guarantees that we can find some $v \neq 0$ in the kernel of $A - \lambda I_n$ such that $(A - \lambda I_n)v = 0$, i.e. $Av = \lambda v$. This shows that λ is an eigenvalue of A, completing the proof. П

Lemma 2. Let $P \in M_n(F)$ be a matrix whose columns are eigenvectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ of A. Then, $AP = PD$, where D is the diagonal matrix of the corresponding eigenvalues.

Proof. Suppose that $Av_i = \lambda_i v_i$, for $\lambda_i \in F$. The rules of matrix multiplication directly give the desired result.

$$
AP = \begin{bmatrix} Av_1 & Av_2 & \cdots & Av_n \end{bmatrix}
$$

= $\begin{bmatrix} \lambda_1 \mathbf{v}_1 & \lambda_2 \mathbf{v}_2 & \cdots & \lambda_n \mathbf{v}_n \end{bmatrix}$
= $\begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_n \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix}$
= PD .

Suppose that we find n linearly independent eigenvalues of A. Then from Lemma 2, $AP = PD$ where the columns of P are the eigenvectors. Furthermore, the linear independence of the eigenvectors mean that P is of full rank, i.e. is invertible. Thus, we can write $P^{-1}AP = D$.

The remainder of this exercise is purely computational. We first evaluate the characteristic polynomial

$$
\det\begin{bmatrix} 1 - \lambda & 2 & 2 \\ 2 & 1 - \lambda & 2 \\ 2 & 2 & 1 - \lambda \end{bmatrix} = (1 - \lambda)^3 + 2 \cdot 8 - 3 \cdot 4(1 - \lambda)
$$

= $1 - 3\lambda + 3\lambda^2 - \lambda^3 + 16 - 12 + 12\lambda$
= $5 + 9\lambda + 3\lambda^2 - \lambda^3$.

The Rational Root theorem says that any rational root of p must be of the form ± 1 or ± 5 . Upon inspection, $p(-1) = p(5) = 0$. We synthetically divide $p(\lambda)$ by $\lambda - 5$.

 \Box

$$
\begin{array}{c|cccc}\n\lambda-5 & -1 & 3 & 9 & 5 \\
\hline\n0 & -5 & -10 & -5 \\
\hline\n-1 & -2 & -1 & 0\n\end{array}
$$

Thus,

$$
p(\lambda) = (\lambda - 5)(-\lambda^2 - 2\lambda - 1) = (5 - \lambda)(1 + \lambda)^2.
$$

The only roots of $p(\lambda)$ are 5 and −1. From Lemma 1, the eigenvalues of A are 5 and −1. We calculate the associated eigenvectors by demanding $(A - \lambda_i I_n) = v_i$.

When
$$
\lambda = 5
$$
,

$$
\begin{bmatrix} 1-5 & 2 & 2 \ 2 & 1-5 & 2 \ 2 & 2 & 1-5 \end{bmatrix} \begin{bmatrix} v_1 \ v_2 \ v_3 \end{bmatrix} = \begin{bmatrix} -4v_1 + 2v_2 + 2v_3 \ 2v_1 - 4v_2 + 2v_3 \ 2v_1 + 2v_2 - 4v_3 \end{bmatrix} = \begin{bmatrix} 0 \ 0 \ 0 \end{bmatrix}.
$$

This forces $v_1 = v_2 = v_3$. We choose $v_1 = v_2 = v_3 = 1$.

When $\lambda = -1$,

$$
\begin{bmatrix} 1+1 & 2 & 2 \ 2 & 1+1 & 2 \ 2 & 2 & 1+1 \end{bmatrix} \begin{bmatrix} v_1 \ v_2 \ v_3 \end{bmatrix} = \begin{bmatrix} 2v_1 + 2v_2 + 2v_3 \ 2v_1 + 2v_2 + 2v_3 \ 2v_1 + 2v_2 + 2v_3 \end{bmatrix} = \begin{bmatrix} 0 \ 0 \ 0 \end{bmatrix}.
$$

This gives $v_1 + v_2 + v_3 = 0$. We choose two vectors such that $v_2 = 0$, $v_3 = 1$ in the first and $v_2 = 1$, $v_3 = 0$ in the second.

Thus, we have obtained three eigenvectors of A, chosen to be linearly independent.

$$
\lambda = 5, \qquad \mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}
$$

$$
\lambda = -1, \qquad \mathbf{v}_2 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \qquad \mathbf{v}_3 = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}.
$$

Note that this is not the complete set of eigenvectors associated with each of the eigenvalues. The eigenspace E_5 is the set span $\{v_1\} = \{c_1v_1: c_1 \in \mathbb{R}\}\$ and the eigenspace E_{-1} is the set span $\{v_2, v_3\} =$ ${c_2\mathbf{v}_2 + c_3\mathbf{v}_3 : c_2, c_3 \in \mathbb{R}}.$

The linear independence of v_1, v_2, v_3 is verified by Gauss Jordan elimination. Let P be the matrix whose columns are the eigenvectors v_1, v_3, v_3 in order.

$$
\begin{bmatrix} 1 & -1 & -1 & | & 1 & 0 & 0 \\ 1 & 0 & 1 & | & 0 & 1 & 0 \\ 1 & 1 & 0 & | & 0 & 0 & 1 \end{bmatrix}
$$

Perform the row operation $R_1 \rightarrow R_1 + R_2 + R_3$.

$$
\begin{bmatrix} 3 & 0 & 0 & | & 1 & 1 & 1 \\ 1 & 0 & 1 & | & 0 & 1 & 0 \\ 1 & 1 & 0 & | & 0 & 0 & 1 \end{bmatrix}
$$

Perform $R_2 \to R_2 - \frac{1}{3}R_1$ and $R_3 \to R_3 - \frac{1}{3}R_1$.

$$
\begin{bmatrix} 3 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & -\frac{1}{3} & \frac{2}{3} & -\frac{1}{3} \\ 0 & 1 & 0 & -\frac{1}{3} & -\frac{1}{3} & \frac{2}{3} \end{bmatrix}
$$

Perform $R_1 \rightarrow \frac{1}{3}R_1$, and the swap $R_2 \leftrightarrow R_3$.

$$
\begin{bmatrix} 1 & 0 & 0 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ 0 & 1 & 0 & -\frac{1}{3} & -\frac{1}{3} & \frac{2}{3} \\ 0 & 0 & 1 & -\frac{1}{3} & \frac{2}{3} & -\frac{1}{3} \end{bmatrix}
$$

We have the identity matrix I_3 on the left, which shows that P is full rank. Thus, P is invertible, and its inverse is the matrix on the right. We have already proved that we must have $P^{-1}AP = D$, where D is the diagonal matrix of eigenvalues $D(5, -1, -1)$. Nevertheless, we verify this computationally, completing the exercise.

$$
P^{-1}AP = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ -1 & -1 & 2 \\ -1 & 2 & -1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 & -1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}
$$

$$
= \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ -1 & -1 & 2 \\ -1 & 2 & -1 \end{bmatrix} \begin{bmatrix} 5 & 1 & 1 \\ 5 & 0 & -1 \\ 5 & -1 & 0 \end{bmatrix}
$$

$$
= \begin{bmatrix} 5 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}
$$