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Exercise 1 Show that the sum, difference, product and quotient (if the denominator is non-zero
everywhere in the domain of definition) of two real valued continuous functions on a metric space M are
continuous.

Exercise 2 Let (X, d) be a metric space and let f, g : C → R be continuous. Show that the set

A = {x ∈ X : f(x) < g(x)}

is an open set in X.

Solution Note that the difference of continuous function g−f is continuous, and the set (0,∞) is open
in R. Thus, the preimage of the open set (0,∞) in g − f , i.e. the set {x ∈ X : 0 < (g − f)(x)}, must be
open in X. This is precisely the set A, which proves the claim.

Exercise 3 Let {αn} and {βn} be two sequences and let N ∈ N be such that αn ≤ βn for all n ≥ N .
Show that

lim inf
n→∞

αn ≤ lim inf
n→∞

βn.

Exercise 4 For n ∈ N, define αn = n1/n. Does the sequence {αn} converge? Determine

lim sup
n→∞

αn.

Solution We show that the sequence n1/n → 1. Note that for n ≥ 2, we have n1/n > 1, so we write
n1/n = 1 + hn for positive hn. Thus, using the binomial theorem,

n = (1 + hn)
n = 1 + nhn +

1

2
n(n− 1)h2

n + · · ·+ hn
n >

1

2
n(n− 1)h2

n.

Thus, 0 < h2
n < 2/(n − 1), which means that hn → 0 by the Comparison Test, so n1/n = 1 + hn → 1.

Since n1/n 6= 0, we also see that 1/n1/n → 1.

Now, if αn → `, then the set of subsequential limits is the singleton set {`}. To show this, suppose that
some subsequence αnk

→ `′, where `′ 6= `. Set ε = |`− `′|/3 > 0. Then, there exists some N1 ∈ N such
that αnk

∈ Bε(`
′) for all nk ≥ N1. Also, since αn → `, there exists some N2 ∈ N such that αn ∈ Bε(`)

for all n ≥ N2. Now, choose N > N1 +N2, and choose K such that nK > N . Then, αnK
∈ Bε(`) and

αnK
∈ Bε(`

′). Now, from the triangle inequality,

0 < 3ε = |`− `′| = |(`− αnK
)− (`′ − αnK

)| ≤ |`− αnK
|+ |`′ − αnK

| < ε+ ε = 2ε.

This is a contradiction. Thus, we must have ` = `′. This forces the set of subsequential limits to be the
singleton {`}, whose supremum is `. Thus,

lim sup
n→∞

n1/n = 1.

Exercise 5

(a) If {an} is a decreasing sequence of strictly positive numbers and if
∑

an is convergent, show that
limn→∞ nan = 0.

(b) Give an example of a divergent series
∑

an with {an} decreasing and such that limn→∞ nan = 0.
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Solution

(a) Since
∑

an converges and {an} is decreasing, we use the Cauchy Condensation test to conclude
that

∑
2na2n converges. Thus, the sequence of the terms 2na2n → 0. Let ε > 0, and let N ∈ N

be such that for all n ≥ N , 0 < 2na2n < ε/2. (recall that an is strictly positive). Thus, for all
n ≥ 2N > N , find k ≥ N such that 2k+1 > n ≥ 2k. Then, a2k+1 < an ≤ a2k , so

0 < nan ≤ na2k < 2k+1a2k < ε.

Thus, we have nan → 0.

We have used the fact that 2n > n for all n ∈ N. This is shown by induction. The base case n = 1
is true; if 2k > k for some k ∈ N, note that k ≥ 1 so 2k+1 = 2 · 2k > 2k = k + k ≥ k + 1. This
completes the proof.

(b) Starting the sequence from n = 2, set
an =

1

n log n
.

Note that log(n+1) > log(n), so {an} is strictly decreasing. Also, limn→∞ nan = limn→∞ 1/ log n =
0, because log n is strictly positive for n > 1 and strictly increasing, so 1/ log n is a strictly positive
decreasing sequence bounded below by 0. Hence, 1/ log n converges via the Monotone Convergence
theorem. Also, the subsequence 1/ log 2n = 1/n log 2 converges to 0, hence 1/ log n → 0.

Applying the Cauchy Condensation test,

2na2n =
2n

2n log 2n
=

1

n log 2
.

We know that
∑

1/n does not converge. Thus, neither does
∑

2na2n , so
∑

an diverges.

Exercise 6

(a) Let

sk =
k∑

n=0

1

n!
.

Show that
∑∞

k=0 k(e− sk) converges.

(b) Show that e /∈ Q.

Solution

(a) We note that e =
∑∞

n=1 1/n!, so

e− sk =

∞∑
n=k+1

1

n!
=

1

(k + 1)!
+

1

(k + 2)!
+ . . .

=
1

k!

[
1

k + 1
+

1

(k + 1)(k + 2)
+

1

(k + 1)(k + 2)(k + 3)
+ . . .

]
≤ 1

k!

[
1

k + 1
+

1

(k + 1)2
+

1

(k + 1)3
+ . . .

]
=

1

k!
· 1

1− (k + 1)

=
1

k · k!
.

We used a comparison with a geometric series. Also, each term in e − sk is positive. Thus, we
obtain the inequality

0 < k(e− sk) ≤
1

k!
.

The series
∑

1/k! converges (to e), so the given series
∑

k(e − sk) must also converge by the
comparison test.
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(b) Suppose to the contrary that e ∈ Q, so e = p/q for some integers p, q > 0. Note that q 6= 1, since
e is not an integer (it can be shown that 2 < e < 3). Now, q!/n! is an integer whenever q ≥ n,
because q! = q · (q − 1)! = · · · = q · (q − 1) · · · (n+ 1) · n!. Thus, the quantity

q!sq =

q∑
n=0

q!

n!

is the sum of positive integers, hence is a positive integer. Also, q!e = q! · p/q = (q − 1)! · p is an
integer, hence q!(e− sk) is an integer. However, we have already shown that

0 < q!(e− sq) ≤
1

q
< 1,

which is a contradiction since there are no integers in (0, 1). Hence, e /∈ Q.

Exercise 7 For x ∈ R, let

Ex =

∞∑
n=0

xn

n!
.

(a) Show that the series Ex converges for all x ∈ R.

(b) Show that if |x| < 2, then (Ex − 2)(2− |x|) ≤ |x|.

Solution

(a) Let an = xn/n!. Note that∣∣∣∣an+1

an

∣∣∣∣ = ∣∣∣∣ xn+1

(n+ 1)!
· n!
xn

∣∣∣∣ = ∣∣∣∣ x

n+ 1

∣∣∣∣ → 0 < 1.

Thus, by the ratio test, the series Ex converges everywhere, for all x ∈ R.

(b) We have to show that if |x| < 2,

Ex ≤ 2 +
|x|

2− |x|
= 2 +

|x|/2
1− |x|/2

.

Equivalently,
Ex − 1 ≤ 1 +

|x|/2
1− |x|/2

=
1

1− |x|/2
.

Expanding as a power series and a geometric series respectively, we have to show that

x+
x2

2
+

x3

6
+ · · ·+ xn

n!
+ · · · ≤ 1 +

|x|
2

+
|x|2

4
+

|x|3

8
+ · · ·+ |x|n

2n
+ . . .

Note that the series of absolute values is greater than the original by comparison, so we have to
show that

|x|+ |x|2

2
+

|x|3

6
+ · · ·+ |x|n

n!
+ · · · ≤ 1 +

|x|
2

+
|x|2

4
+

|x|3

8
+ · · ·+ |x|n

2n
+ . . .

Whenever n ≥ 8, we see that n! > 2n, hence |x|n/n! < |x|n/2n. Thus, we need only show that

|x|+ |x|2

2
+

|x|3

6
+

|x|4

24
+

|x|5

120
+

|x|6

720
+

|x|7

5040
≤ 1 +

|x|
2

+
|x|2

4
+

|x|3

8
+

|x|4

16
+

|x|5

32
+

|x|6

64
+

|x|7

128
.

Set u = |x| ≥ 0, rearrange, and note that we demand the following when 0 ≤ u < 2.

1− u

2
− u2

4
− u3

24
+

u4

48
+

11u5

480
+

41u6

2880
+

307u7

40320
≥ 0.

Clearing the common denominator 40320, we write

40320 + 840u4 + 924u5 + 574u6 + 307u7 ≥ 20160u+ 10080u2 + 1680u3.

We have used the fact that n! > 2n for n ≥ 8. Thus is true by induction. The base case n = 8 is
8! > 28 = 256. Suppose that k! ≥ 2k for some k ∈ N; then (k + 1)! = k(k + 1)! ≥ k · 2k > 2k+1.
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Exercise 8 Justify whether the series
∞∑

n=1

(−1)n√
n2 + 1

converges absolutely or diverges.

Solution The given series converges conditionally. Note that the series
∑

(−1)n has partial sums −1
and 0, hence the partial sums are bounded. Also, the sequence 1/

√
n2 + 1 is decreasing and converges

to zero, since
0 <

1√
n2 + 1

<
1√
n2

<
1

n
,

so 1/
√
n2 + 1 → 0. Thus, by Abel’s Lemma, the series

∑∞
n=1(−1)n/

√
n2 + 1 converges.

The series of absolute values is such that

0 <
1

2n
=

1√
n2 + 3n2

<
1√

n2 + 1
.

Note that the harmonic series
∑

1/n diverges. Thus, the series
∑∞

n=1 1/
√
n2 + 1 diverges by the com-

parison test.
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