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Exercise 1 Show that the sum, difference, product and quotient (if the denominator is non-zero
everywhere in the domain of definition) of two real valued continuous functions on a metric space M are
continuous.

Exercise 2 Let (X,d) be a metric space and let f,g: C — R be continuous. Show that the set
A={eeX: f(z) < g(x)}

is an open set in X.

Solution Note that the difference of continuous function g — f is continuous, and the set (0, c0) is open
in R. Thus, the preimage of the open set (0,00) in g — f, i.e. the set {x € X: 0 < (¢ — f)(z)}, must be
open in X. This is precisely the set A, which proves the claim.

Exercise 3 Let {a,} and {5,} be two sequences and let N € N be such that «,, < 3, for all n > N.
Show that

liminf a,, < liminf 3,.

n—oo n—oo

1/n

Exercise 4 For n € N, define a,, = n'/™. Does the sequence {«,,} converge? Determine

lim sup a, .
n—00

Solution We show that the sequence n'/™ — 1. Note that for n > 2, we have n'/" > 1, so we write
n'/™ =1+ h,, for positive h,,. Thus, using the binomial theorem,

1 1
n:(1+hn)":1+nhn+§n(n—1)hi+-~-+h2>gn(n—l)hi.

Thus, 0 < h2 < 2/(n — 1), which means that h,, — 0 by the Comparison Test, so n'/™ = 1 + h,, — 1.
Since n'/™ # 0, we also see that 1/n'/™ — 1.

Now, if a,, — ¢, then the set of subsequential limits is the singleton set {¢}. To show this, suppose that
some subsequence «a,, — ¢, where ¢ # (. Set e = |¢ — ¢'|/3 > 0. Then, there exists some N1 € N such
that ay,, € Bc(¢') for all ny, > N;y. Also, since a,, — ¢, there exists some Ny € N such that a,, € B.(¢)
for all n > Ny. Now, choose N > Nj + Na, and choose K such that ng > N. Then, a,,, € B.(f) and
Ony € Be('). Now, from the triangle inequality,

0<3e=0—V]|=|(l—ane)— (' —an)| <[l —np|+ [l — any| < e+e=2e.

This is a contradiction. Thus, we must have £ = ¢/. This forces the set of subsequential limits to be the
singleton {¢}, whose supremum is ¢. Thus,

limsupn'/™ = 1.
n—oo

Exercise 5

(a) If {a,} is a decreasing sequence of strictly positive numbers and if 3 a,, is convergent, show that
lim,, o na, = 0.

(b) Give an example of a divergent series ) a,, with {a,} decreasing and such that lim,,_, . na, = 0.



Solution

(a) Since ) a, converges and {a,} is decreasing, we use the Cauchy Condensation test to conclude
that > 2™agn converges. Thus, the sequence of the terms 2"asn — 0. Let € > 0, and let N € N
be such that for all n > N, 0 < 2"agn < €/2. (recall that a,, is strictly positive). Thus, for all
n>2N > N, find k > N such that 2¥*1 > n > 2. Then, age+1 < a, < agr, s0

0 < nap, < nage < 2k+1a2k < €.

Thus, we have na,, — 0.

We have used the fact that 2" > n for all n € N. This is shown by induction. The base case n =1
is true; if 28 > k for some k € N, note that k > 1 so 2kt1 =2.28 > 9k =k + %k > k + 1. This
completes the proof.

(b) Starting the sequence from n = 2, set
1

nlogn’

Ay =

Note that log(n+1) > log(n), so {a,} is strictly decreasing. Also, lim,,_, o na, = lim, . 1/logn =
0, because logn is strictly positive for n > 1 and strictly increasing, so 1/logn is a strictly positive
decreasing sequence bounded below by 0. Hence, 1/logn converges via the Monotone Convergence
theorem. Also, the subsequence 1/log2™ = 1/nlog2 converges to 0, hence 1/logn — 0.

Applying the Cauchy Condensation test,

on A 1
aogn = = .
2 27 log2™  nlog?2

We know that > 1/n does not converge. Thus, neither does > 2™agn, so Y . a,, diverges.

Exercise 6

(a) Let
"1
Sk:Za.
n=0
Show that >~ k(e — si) converges.
(b) Show that e ¢ Q.
Solution
(a) We note that e =72 1/nl, so
— 1 1 1
e— S = Z = '+ '+...
Mewiic (k+1)!  (k+2)!
1{ Ly . + ! +
Sk kT B+D(k+2) 0 R+ D(E+2)(K+3)
<At 1y
Tk kE+1 (B+1)2 0 (k+1)3
_1 LI
Sk 1—(k+1)
1
kR

We used a comparison with a geometric series. Also, each term in e — si is positive. Thus, we

obtain the inequality
1
0<kle—sk) < ik
The series > 1/k! converges (to e), so the given series Y k(e — s) must also converge by the
comparison test.



(b) Suppose to the contrary that e € Q, so e = p/q for some integers p,q > 0. Note that ¢ # 1, since

e is not an integer (it can be shown that 2 < e < 3). Now, ¢!/n! is an integer whenever ¢ > n,

because ¢! =q-(¢g—1)!'=---=¢q-(¢—1)---(n+1)-nl. Thus, the quantity
q
qlsq = q—"
— nl

is the sum of positive integers, hence is a positive integer. Also, ¢le = ¢!-p/q = (¢ —1)!-pis an
integer, hence ¢!(e — si) is an integer. However, we have already shown that
1
0<gle—sy) <—<1,
q

which is a contradiction since there are no integers in (0, 1). Hence, e ¢ Q.

Exercise 7 For x € R, let

oo n

EI:Z%

n=0

(a) Show that the series E, converges for all z € R.

(b)

Show that if |z| < 2, then (E, — 2)(2 — |z|) < |z|.

Solution

(a)

Let a,, = z™/n!l. Note that

T
n+1

anJrl
27

L n! ‘

(n+1)! an|

‘%0<1.

Thus, by the ratio test, the series E, converges everywhere, for all z € R.

We have to show that if |z| < 2,

oocpy Wl _,, a2
2 — |z| 1—z[/2
Equivalently,
2 1

1—|zf/2 " 1—]a|/2°
Expanding as a power series and a geometric series respectively, we have to show that
2o " |z | |2 | = ="

X x
- i R e <] — —_— — —
Tt At e S T e e e

Note that the series of absolute values is greater than the original by comparison, so we have to
show that

@+@+...+w+...<1+@+@+@+...+w
2 6 n! - 2 4 8 2n

Whenever n > 8, we see that n! > 27, hence |z|"/n! < |2|™/2". Thus, we need only show that

+ ...

R O O O N O P
2 6 24 120 720 5040 — 2 4 8 16 32 64 128°

Set u = |z| > 0, rearrange, and note that we demand the following when 0 < u < 2.

=] +

1 u  u? Wl n ut n 11u® n 4148 n 307u” >0
2 4 24 48 480 2880 40320 —

Clearing the common denominator 40320, we write

40320 + 840u* + 924u® + 574u8 + 307u” > 20160u + 10080u? + 1680u>.

We have used the fact that n! > 2™ for n > 8. Thus is true by induction. The base case n = 8 is
8! > 28 = 256. Suppose that k! > 2* for some k € N; then (k +1)! = k(k + 1)! > k-2~ > 2k+1,



Exercise 8 Justify whether the series
o0
>
—vn?+1
converges absolutely or diverges.

Solution The given series converges conditionally. Note that the series > (—1)" has partial sums —1
and 0, hence the partial sums are bounded. Also, the sequence 1/v/n? + 1 is decreasing and converges

to zero, since
1 1

— < =<
N e S
so 1/v/n? +1 — 0. Thus, by Abel’s Lemma, the series Y~ (—1)"/v/n? 4+ 1 converges.

0<

)

S|

The series of absolute values is such that

1 1 1

0<—= < .
2n /n24+3n2  Vn2+1

Note that the harmonic series ) 1/n diverges. Thus, the series > 2 1/v/n? + 1 diverges by the com-
parison test.



