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Exercise 1 Let {αn} be a sequence of positive integers such that the digit ‘5’ occurs in the decimal
expansion of none of the terms of this sequence. Show that the series

∑∞
n=1 1/αn converges.

Solution We assume that αn are distinct. Without loss of generality1, let {αn} be an increasing
sequence. Let Am denote the set of all such αn such that 10m ≤ αn < 10m+1. Every integer in Am has
precisely m + 1 digits. The first cannot be 0 or 5, and the remaining m digits cannot be 5. Thus, Am

can contain no more than 8 × 9m integers. Furthermore, the smallest element of Am has to be at least
10m, so 1/αn ≤ 1/10m for all αn ∈ Am. Thus,∑

αn∈Am

1

αn
≤ |Am| 1

10m
≤ 8 · 9m

10m
.

Also, note that all Am, with m = 0, 1, 2, . . . , exhaust all possible terms of {αn} exclusively. Thus, if sk
denotes the partial sum of all terms 1/αn where αn < 10k,

sk =
∑

αn<10k

1

αn
≤

k−1∑
m=0

8 ·
(

9

10

)m

= 8 · 1− (9/10)k

1− 9/10
< 80.

Thus, the partial sums are bounded above by 80. Furthermore, the sequence of partial sums is mono-
tonically increasing, since all the terms in the series are positive. Thus, the given series

∑∞
n=1 1/αn

converges by the Monotone Convergence Theorem.

Exercise 2 Let k ∈ Z. Find the radius of convergence of the of the power series
∑∞

n=1 x
n/nk.

Solution To find the radius of convergence of the given power series, we must calculate the limit

a = lim sup
n→∞

∣∣∣∣ 1nk

∣∣∣∣1/n .
When k = 0, this limit is trivially 1.
We first show that the sequence n1/n → 1. Note that for n ≥ 2, we have n1/n > 1, so we write
n1/n = 1 + hn for positive hn. Thus, using the binomial theorem,

n = (1 + hn)
n = 1 + nhn +

1

2
n(n− 1)h2

n + · · ·+ hn
n >

1

2
n(n− 1)h2

n.

Thus, 0 < h2
n < 2/(n − 1), which means that hn → 0, so n1/n = 1 + hn → 1. Since n1/n 6= 0, we also

see that 1/n1/n → 1. Thus, taking k (or −k) products, we see that 1/nk/n → 1, so in all cases, a = 1.
Thus, the radius of convergence of the power series is 1/a = 1 irrespective of k.

Note that we can also see this via the ratio test, whereby as n → ∞,∣∣∣∣ xn+1

(n+ 1)k
· n

k

xn

∣∣∣∣ = |x|
∣∣∣∣ n

n+ 1

∣∣∣∣k → |x|.

Thus, the series converges when |x| < 1.

Exercise 3 Let {αn} be a real sequence. Show that if
∑∞

n=1 nαn converges, then so does the series∑∞
n=1 αn.

Solution We simply apply Abel’s Lemma on the sequences {nαn} and {1/n}. The first converges as
given, hence its kth partial sums sk =

∑k
n=1 αn are bounded2. Also, the sequence 1/n → 0, since for

1Since we prove convergence, thereby absolute convergence of the increasing sequence, any rearrangement is also con-
vergent by Dirichlet’s Theorem.

2We may define α0 = 0 for consistency with the definitions.
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any ε > 0, there exists N ∈ N such that Nε > 1. Thus, 1/n ∈ Bε(0) for all n ≥ N . Furthermore,
1/(n+ 1) < 1/n, so this sequence is non-increasing. Thus, the series formed by their product,

∞∑
n=1

nαn · 1
n
=

∞∑
n=1

αn,

must also converge.

Exercise 4 Let {αn} be a real sequence. Show that

(a) If the ratio test implies that the series
∑∞

n=1 αn converges, then so does the root test.

(b) If the root test implies that the series
∑∞

n=1 αn diverges, then so does the ratio test.

Solution

(a) Suppose the ratio test gives the convergence of
∑∞

n=1 αn, i.e.

lim sup
n→∞

∣∣∣∣αn+1

αn

∣∣∣∣ = ` < 1.

Thus, given ε > 0, there exists an integer N ∈ N such that for all n ≥ N , we have∣∣∣∣αn+1

αn

∣∣∣∣ < `+ ε.

We thus telescope the product

|αn| =
∣∣∣∣ αn

αn−1

∣∣∣∣ . . . ∣∣∣∣αN+1

αN

∣∣∣∣ |αN | < (`+ ε)n−N |αN |.

Thus, for all n ≥ N , we have

|αn|1/n < (`+ ε)1−N/n|αN |1/n = (`+ ε)

∣∣∣∣ αN

(`+ ε)N

∣∣∣∣1/n .
Taking the limit n → ∞, we have

lim sup
n→∞

|αn|1/n ≤ `+ ε.

Simply choosing ε = (1− `)/2, we have lim supn→∞ |αn|1/n < 1, as desired.

Note that we have not verified whether the proper limit exists, merely the fact that the upper limit
is less than 1.

We have used the fact that for a > 0, the limit a1/n → 1. To prove this, first suppose a > 1, in
which case a1/n > 1. We thus write a1/n = 1 + bn, so for n ≥ 2,

a = (1 + bn)
n = 1 + nbn + · · ·+ bnn > nbn.

Thus, 0 < bn < a/n, so bn → 0, hence a1/n → 1. For a < 1, simply note that 1/a > 1, and
(1/a)1/n → 1, so a1/n → 1. The case a = 1 is trivial.

(b) Suppose the root test gives the divergence of
∑∞

n=1 αn, i.e.

lim sup
n→∞

|αn|1/n = `∗ > 1.

Thus, given ε > 0, there exists a subsequence αkn → ` such that 1 < ` ≤ `∗3, and4

`− ε ≤ |αkn
|1/kn ≤ `+ ε.

3Note that `∗ is the supremum of subsequential limits.
4Simply choose k1 as the first index where the sequence is contained within the ε neighbourhood.
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This means that (` − ε)kn ≤ |αkn
| ≤ (` + ε)kn . Specifically, since ` > 1, we can always choose ε

such that `− ε > 1. For instance, we may set ε = (`− 1)/4.

Suppose that lim supn→∞ |αn+1/αn| = s ≤ 1. Note that s ≥ 0. This means that for the same ε,
there exists N ∈ N such that for all n ≥ N , we have∣∣∣∣αn+1

αn

∣∣∣∣ < s+ ε.

Thus, for all kn > N , we can telescope the product

|αkn | =
∣∣∣∣ αkn

αkn−1

∣∣∣∣ . . . ∣∣∣∣αN+1

αN

∣∣∣∣ |αN | < (s+ ε)kn−N |αN |.

Since (`− ε)kn < |αkn |, this is equivalent to demanding(
`− ε

s+ ε

)kn

<
|αN |

(s+ ε)N
.

On the other hand, note that (`− ε)/(s+ ε) > 1, since with our choice of ε = (`− 1)/4,

`− ε = `− 4ε+ 3ε = 1 + 3ε ≥ s+ 3ε > s+ ε.

Thus, the quantity ((` − ε)/(s + ε))kn is unbounded above with increasing kn > N . This is a
contradiction. Thus, we must have s > 1, as desired.
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