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Exercise 1 Using only the definition of an ordered field, show that if z,y € R with = > y > 0, then
VT > /Y.

Solution Note that \/z > 0 and ,/y > 0, since if either were equal to 0, then one of  and y would
be zero. Also, \/x # \/y since if it were, then x = \/2\/x = \/y,/y = y. Suppose that /z < /y. Then,
VU —+vx>0and /y+ x>0, s0

VY= Vo) (Vy+Va) = y—xz >0,

which is a contradiction. Thus, we must have \/z > /3.
Exercise 2 Show that Q is neither open nor closed in the Euclidean space R.

Solution We know that between two reals, there exists a rational real as well as an irrational real®.
Thus, if p € Q were an interior point of Q, there would exist r > 0 such that B,(¢) € Q. This is im-
possible since there exists an irrational number z ¢ Q between p and p+r. Thus, p ¢ Q°, so Q is not open.

Again, if Q were closed, then S = R\ Q must be open. If z € S were an interior point of S, then there
would exist r > 0 such that B,(z) C S. This is also impossible, since there exists a rational number
y ¢ S between x and = + r. Thus, p ¢ S°, so S is not open, hence Q is not closed.

Exercise 3 Find the closure of the set

in the Euclidean space R.

Solution We claim that S = S U {0}. Since all points in S are trivially closure points of S, we first
show that 0 is a ilmit point of S. This follows since for every r > 0, we can find n € N such that nr > 1
using the Archimedean property. Since, n? > n, we have 0 < 1/n? < r, so 1/n? € SN B,(0).

We now show that there are no limit points of S apart from 0. Suppose x ¢ S U {0} is a limit point of
S. This means that every neighbourhood of = contains infinitely many points of S. If x < 0, then note
that B_,(z) NS = (. Otherwise, if x > 0, set r = 2/2. If B,.(z) contained infinitely many points of S,
then there would be infinitely many natural numbers n such that  —r < 1/n? < z + 7, i.e. inifintely
many n such that n? < 2/, which is absurd. Hence, z is not a limit point of S.

Exercise 4 Construct an example where an infinite union of compact subsets of the Euclidean space
R is a bounded open set S. Is .S compact?

1This is true because given z,y € R, x < y, we can choose rationals p, g such that z < p < y and < p < ¢ < y, using
the density of the rationals in the reals. We also pick a rational s such that p — /2 < s < ¢ — /2, and it is easily verified
that s + v/2 is irrational.



Solution Compact subsets of R are precisely the closed and bounded sets, by the Heine-Borel theorem.
Thus, consider
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ozUcn, onz[—1+,1—]
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Note that each C,, is a closed interval contained within the open ball (—1,1), hence is compact. We
claim that O = (—1,1). This is true because for any x € O, we find n such that x € C,, so
—14+1/n <z <14+1/n Thus, -1 <z < 1, ie. x € (—1,1). Again, for any x € (—1,1), we find
m,n € Nsuch that m(z+1) > 1, and n(1—2z) > 1,s0 —14+1/m <z < 1—1/n. Setting k = max(m,n),
we see that z € Ci, hence x € O. Additionally, O is bounded and open, as it is simply the open ball B;(0).

It follows from the Heine-Borel theorem that the set O is not compact, since it is not closed. Note that
1 ¢ O is a limit point of O, since for any r > 0, we see that 1 —r/2 € ONB,(1) ifr <4and 0 € ONB,.(1)
if r > 4.

Exercise 5

(i) Show that the map d: R™ x R™ — R defined by

’ 1+ /e =yl

is a metric, where ||| denotes the Euclidean norm on R™.
(ii) Let d be the above metric. Show that not all closed and bounded subsets of (R”, d) are compact.

(iii) Does the above phenomenon provide a counterexample to the Heine-Borel theorem?

Solution

(i) The fact that d is symmetric, i.e. d(z,y) = d(y, x), follows trivially from the fact that the Euclidean
norm |||| is symmetric.
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The non-negativity of the Euclidean norm guarantees that ||z — y|| > 0, so v/|lz —y| > 0 and
1+ /|l —y|| > 0. This makes d(z,y) well defined and non-negative for all z,y € R™. Moreover,

if d(x,y) = 0, the denominator is positive so the numerator 1/||z — y|| must be zero. This forces
lz — y|| = 0, whence z = y. Again, if z =y, then ||z — y|| = 0 so d(z,y) = 0.

We must now show that d obeys the triangle inequality. Set? a? = ||x—y/|, b* = ||[y—2]|, ¢ = ||[z—2]|.
Thus, from the properties of the Euclidean norm,

A < a?+ b2
Note that a,b, ¢ are non-negative reals. Thus, the following set of inequalities are bidirectionally
equivalent.
d(z,z) < d(z,y) +d(y, 2)
c a b
< +

1+4+c¢ l1+a 1+0b

c(I4+a)(1+b) < al+b)A+c)+b(1+a)(l+c)
c+ac+be+abe < a+ab+ ac+ abe + b+ ab + be + abe
c < a+b+ 2ab+ abe

The last inequality is true since (a + b)? = a? + b? + 2ab > a® + b2, so

c<Va2+b2<a+b<a+b+2ab+ abe.

This proves the desired inequality.

2This is justified, since \/||z|| > 0.



(i)

(iii)

We claim that the set R™ C (R™,d) is closed, bounded, and not compact. The fact that R™ is
closed follows from the fact that its complement () is open. The fact that it is bounded follows from
the fact that R™ C B;(0). This is true since for any x € R", ||z| > 0, so
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Note that if ||z]] < ||y|l, then v/||z| < +/llyll, so 1/(1 + +/llz|]) > 1/(1 + +/|lyll), hence d(z,0) <
d(y,0).

d(z,0)

Let us use the notation n’ = (n,0,0,...,0) € R™. To show that R™ is not compact, consider the
open cover

O={JOn  On=Byu0).
n=1

Note that in the this is indeed an open cover of R", since for any x € R", we can find a positive
integer k such that ||z|| < ||k’|| = k using the Archimedean property. This means that d(z,0) <
d(k',0), so x € Ok(0). On the other hand, if O had a finite subcover, note that O, (0) C O,+1(0),
so our subcover is simply Oy(0) for some k£ > 1. However, we see that ||k’ + 1’| > |¥/|, so
d(k'+1,0) > d(k',0) and k¥’ + 1’ ¢ O, (0) which is a contradiction. Hence, R™ is not compact for
any n € N.

The Heine-Borel theorem applies only to Euclidean spaces R™, with the Euclidean metric. Since
our example in (ii) works in a different metric d, there is no violation of the Heine-Borel theorem.



