MA 2101 : Analysis I

Satvik Saha, 19MS154, Group C October 2, 2020

Exercise 1 Using only the definition of an ordered field, show that if $x, y \in \mathbb{R}$ with $x > y > 0$, then

 $\sqrt{x} > \sqrt{y}$.

Solution Note that $\sqrt{x} > 0$ and $\sqrt{y} > 0$, since if either were equal to 0, then one of x and y would **be zero.** Also, $\sqrt{x} \neq \sqrt{y}$ since if it were, then $x = \sqrt{x} \sqrt{x} = \sqrt{y} \sqrt{y} = y$. Suppose that $\sqrt{x} < \sqrt{y}$. Then, $\sqrt{y} - \sqrt{x} > 0$ and $\sqrt{y} + \sqrt{x} > 0$, so

$$
(\sqrt{y} - \sqrt{x})(\sqrt{y} + \sqrt{x}) = y - x > 0,
$$

which is a contradiction. Thus, we must have $\sqrt{x} > \sqrt{y}$.

Exercise 2 Show that \mathbb{Q} is neither open nor closed in the Euclidean space R.

Solution We know that between two reals, there exists a rational real as well as an irrational real¹. Thus, if $p \in \mathbb{Q}$ were an interior point of \mathbb{Q} , there would exist $r > 0$ such that $B_r(q) \subseteq \mathbb{Q}$. This is impossible since there exists an irrational number $x \notin \mathbb{Q}$ between p and $p+r$. Thus, $p \notin \mathbb{Q}^{\circ}$, so \mathbb{Q} is not open.

Again, if Q were closed, then $S = \mathbb{R} \setminus \mathbb{Q}$ must be open. If $x \in S$ were an interior point of S, then there would exist $r > 0$ such that $B_r(x) \subseteq S$. This is also impossible, since there exists a rational number $y \notin S$ between x and $x + r$. Thus, $p \notin S^{\circ}$, so S is not open, hence Q is not closed.

Exercise 3 Find the closure of the set

$$
S = \left\{ \frac{1}{n^2} : n \in \mathbb{N} \right\},\
$$

in the Euclidean space R.

Solution We claim that $\overline{S} = S \cup \{0\}$. Since all points in S are trivially closure points of S, we first show that 0 is a ilmit point of S. This follows since for every $r > 0$, we can find $n \in \mathbb{N}$ such that $nr > 1$ using the Archimedean property. Since, $n^2 \ge n$, we have $0 < 1/n^2 < r$, so $1/n^2 \in S \cap B_r(0)$.

We now show that there are no limit points of S apart from 0. Suppose $x \notin S \cup \{0\}$ is a limit point of S. This means that every neighbourhood of x contains infinitely many points of S. If $x < 0$, then note that $B_{-x}(x) \cap S = \emptyset$. Otherwise, if $x > 0$, set $r = x/2$. If $B_r(x)$ contained infinitely many points of S, then there would be infinitely many natural numbers n such that $x - r < 1/n^2 < x + r$, i.e. inifinitely many n such that $n^2 < 2/x$, which is absurd. Hence, x is not a limit point of S.

Exercise 4 Construct an example where an infinite union of compact subsets of the Euclidean space $\mathbb R$ is a bounded open set S. Is S compact?

¹This is true because given $x, y \in \mathbb{R}$, $x < y$, we can choose rationals p, q such that $x < p < y$ and $x < p < q < y$, using the density of the rationals in the reals. We also pick a rational s such that $p - \sqrt{2} < s < q - \sqrt{2}$, and it is easily verified that $s + \sqrt{2}$ is irrational.

Solution Compact subsets of \mathbb{R} are precisely the closed and bounded sets, by the Heine-Borel theorem. Thus, consider

$$
\mathcal{O} = \bigcup_{n=1}^{\infty} \mathcal{C}_n, \qquad C_n = \left[-1 + \frac{1}{n}, 1 - \frac{1}{n} \right].
$$

Note that each \mathcal{C}_n is a closed interval contained within the open ball $(-1, 1)$, hence is compact. We claim that $\mathcal{O} = (-1, 1)$. This is true because for any $x \in \mathcal{O}$, we find n such that $x \in C_n$, so $-1 + 1/n \le x \le 1 + 1/n$. Thus, $-1 < x < 1$, i.e. $x \in (-1,1)$. Again, for any $x \in (-1,1)$, we find $m, n \in \mathbb{N}$ such that $m(x+1) > 1$, and $n(1-x) > 1$, so $-1+1/m < x < 1-1/n$. Setting $k = \max(m, n)$, we see that $x \in \mathcal{C}_k$, hence $x \in \mathcal{O}$. Additionally, $\mathcal O$ is bounded and open, as it is simply the open ball $B_1(0)$.

It follows from the Heine-Borel theorem that the set $\mathcal O$ is not compact, since it is not closed. Note that $1 \notin \mathcal{O}$ is a limit point of \mathcal{O} , since for any $r > 0$, we see that $1-r/2 \in \mathcal{O} \cap B_r(1)$ if $r < 4$ and $0 \in \mathcal{O} \cap B_r(1)$ if $r \geq 4$.

Exercise 5

(i) Show that the map $d: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ defined by

$$
d(x, y) = \frac{\sqrt{\|x - y\|}}{1 + \sqrt{\|x - y\|}},
$$

is a metric, where $\| \|$ denotes the Euclidean norm on \mathbb{R}^n .

- (ii) Let d be the above metric. Show that not all closed and bounded subsets of (\mathbb{R}^n, d) are compact.
- (iii) Does the above phenomenon provide a counterexample to the Heine-Borel theorem?

Solution

(i) The fact that d is symmetric, i.e. $d(x, y) = d(y, x)$, follows trivially from the fact that the Euclidean norm $\| \cdot \|$ is symmetric.

$$
d(x,y) = \frac{\sqrt{\|x-y\|}}{1 + \sqrt{\|x-y\|}} = \frac{\sqrt{\|y-x\|}}{1 + \sqrt{\|y-x\|}} = d(y,x).
$$

The non-negativity of the Euclidean norm guarantees that $||x - y|| \geq 0$, so $\sqrt{||x - y||} \geq 0$ and $1 + \sqrt{\|x - y\|} > 0$. This makes $d(x, y)$ well defined and non-negative for all $x, y \in \mathbb{R}^n$. Moreover, if $d(x, y) = 0$, the denominator is positive so the numerator $\sqrt{||x - y||}$ must be zero. This forces $||x - y|| = 0$, whence $x = y$. Again, if $x = y$, then $||x - y|| = 0$ so $d(x, y) = 0$.

We must now show that d obeys the triangle inequality. Set² $a^2 = ||x-y||$, $b^2 = ||y-z||$, $c^2 = ||x-z||$. Thus, from the properties of the Euclidean norm,

$$
c^2 \le a^2 + b^2.
$$

Note that a, b, c are non-negative reals. Thus, the following set of inequalities are bidirectionally equivalent.

$$
d(x, z) \leq d(x, y) + d(y, z)
$$

\n
$$
\frac{c}{1+c} \leq \frac{a}{1+a} + \frac{b}{1+b}
$$

\n
$$
c(1+a)(1+b) \leq a(1+b)(1+c) + b(1+a)(1+c)
$$

\n
$$
c + ac + bc + abc \leq a + ab + ac + abc + b + ab + bc + abc
$$

\n
$$
c \leq a + b + 2ab + abc
$$

The last inequality is true since $(a+b)^2 = a^2 + b^2 + 2ab \ge a^2 + b^2$, so

$$
c \le \sqrt{a^2 + b^2} \le a + b \le a + b + 2ab + abc.
$$

This proves the desired inequality.

²This is justified, since $\sqrt{||x||} \geq 0$.

(ii) We claim that the set $\mathbb{R}^n \subset (\mathbb{R}^n, d)$ is closed, bounded, and not compact. The fact that \mathbb{R}^n is closed follows from the fact that its complement \emptyset is open. The fact that it is bounded follows from the fact that $\mathbb{R}^n \subseteq B_1(0)$. This is true since for any $x \in \mathbb{R}^n$, $||x|| \geq 0$, so

$$
d(x,0)=\frac{\sqrt{\|x\|}}{1+\sqrt{\|x\|}}=1-\frac{1}{1+\sqrt{\|x\|}}<1.
$$

Note that if $||x|| < ||y||$, then $\sqrt{||x||} < \sqrt{||y||}$, so $1/(1 + \sqrt{||x||}) > 1/(1 + \sqrt{||y||})$, hence $d(x, 0) <$ $d(y, 0)$.

Let us use the notation $n' = (n, 0, 0, \ldots, 0) \in \mathbb{R}^n$. To show that \mathbb{R}^n is not compact, consider the open cover

$$
\mathcal{O} = \bigcup_{n=1}^{\infty} \mathcal{O}_n, \qquad \mathcal{O}_n = B_{d(n',0)}(0).
$$

Note that in the this is indeed an open cover of \mathbb{R}^n , since for any $x \in \mathbb{R}^n$, we can find a positive integer k such that $||x|| < ||k'|| = k$ using the Archimedean property. This means that $d(x, 0)$ $d(k', 0)$, so $x \in \mathcal{O}_k(0)$. On the other hand, if $\mathcal O$ had a finite subcover, note that $\mathcal O_n(0) \subset \mathcal O_{n+1}(0)$, so our subcover is simply $\mathcal{O}_k(0)$ for some $k \geq 1$. However, we see that $||k' + 1'|| > ||k'||$, so $d(k'+1',0) > d(k',0)$ and $k'+1' \notin \mathcal{O}_k(0)$ which is a contradiction. Hence, \mathbb{R}^n is not compact for any $n \in \mathbb{N}$.

(iii) The Heine-Borel theorem applies only to Euclidean spaces \mathbb{R}^n , with the Euclidean metric. Since our example in (ii) works in a different metric d, there is no violation of the Heine-Borel theorem.