MA 2101 : Analysis I

Satvik Saha, 19MS154, Group C

Exercise 1 Using only the definition of an ordered field, show that if $x, y \in \mathbb{R}$ with x > y > 0, then

 $\sqrt{x} > \sqrt{y}.$

Solution Note that $\sqrt{x} > 0$ and $\sqrt{y} > 0$, since if either were equal to 0, then one of x and y would be zero. Also, $\sqrt{x} \neq \sqrt{y}$ since if it were, then $x = \sqrt{x}\sqrt{x} = \sqrt{y}\sqrt{y} = y$. Suppose that $\sqrt{x} < \sqrt{y}$. Then, $\sqrt{y} - \sqrt{x} > 0$ and $\sqrt{y} + \sqrt{x} > 0$, so

$$(\sqrt{y} - \sqrt{x})(\sqrt{y} + \sqrt{x}) = y - x > 0,$$

which is a contradiction. Thus, we must have $\sqrt{x} > \sqrt{y}$.

Exercise 2 Show that \mathbb{Q} is neither open nor closed in the Euclidean space \mathbb{R} .

Solution We know that between two reals, there exists a rational real as well as an irrational real¹. Thus, if $p \in \mathbb{Q}$ were an interior point of \mathbb{Q} , there would exist r > 0 such that $B_r(q) \subseteq \mathbb{Q}$. This is impossible since there exists an irrational number $x \notin \mathbb{Q}$ between p and p+r. Thus, $p \notin \mathbb{Q}^\circ$, so \mathbb{Q} is not open.

Again, if \mathbb{Q} were closed, then $S = \mathbb{R} \setminus \mathbb{Q}$ must be open. If $x \in S$ were an interior point of S, then there would exist r > 0 such that $B_r(x) \subseteq S$. This is also impossible, since there exists a rational number $y \notin S$ between x and x + r. Thus, $p \notin S^{\circ}$, so S is not open, hence \mathbb{Q} is not closed.

Exercise 3 Find the closure of the set

$$S = \left\{ \frac{1}{n^2} : n \in \mathbb{N} \right\},\,$$

in the Euclidean space \mathbb{R} .

Solution We claim that $\overline{S} = S \cup \{0\}$. Since all points in S are trivially closure points of S, we first show that 0 is a ilmit point of S. This follows since for every r > 0, we can find $n \in \mathbb{N}$ such that nr > 1 using the Archimedean property. Since, $n^2 \ge n$, we have $0 < 1/n^2 < r$, so $1/n^2 \in S \cap B_r(0)$.

We now show that there are no limit points of S apart from 0. Suppose $x \notin S \cup \{0\}$ is a limit point of S. This means that every neighbourhood of x contains infinitely many points of S. If x < 0, then note that $B_{-x}(x) \cap S = \emptyset$. Otherwise, if x > 0, set r = x/2. If $B_r(x)$ contained infinitely many points of S, then there would be infinitely many natural numbers n such that $x - r < 1/n^2 < x + r$, i.e. infinitely many n such that $n^2 < 2/x$, which is absurd. Hence, x is not a limit point of S.

Exercise 4 Construct an example where an infinite union of compact subsets of the Euclidean space \mathbb{R} is a bounded open set S. Is S compact?

October 2, 2020

¹This is true because given $x, y \in \mathbb{R}$, x < y, we can choose rationals p, q such that x and <math>x , using the density of the rationals in the reals. We also pick a rational <math>s such that $p - \sqrt{2} < s < q - \sqrt{2}$, and it is easily verified that $s + \sqrt{2}$ is irrational.

Solution Compact subsets of \mathbb{R} are precisely the closed and bounded sets, by the Heine-Borel theorem. Thus, consider

$$\mathcal{O} = \bigcup_{n=1}^{\infty} \mathcal{C}_n, \qquad C_n = \left[-1 + \frac{1}{n}, 1 - \frac{1}{n}\right].$$

Note that each C_n is a closed interval contained within the open ball (-1, 1), hence is compact. We claim that $\mathcal{O} = (-1, 1)$. This is true because for any $x \in \mathcal{O}$, we find n such that $x \in C_n$, so $-1 + 1/n \leq x \leq 1 + 1/n$. Thus, -1 < x < 1, i.e. $x \in (-1, 1)$. Again, for any $x \in (-1, 1)$, we find $m, n \in \mathbb{N}$ such that m(x+1) > 1, and n(1-x) > 1, so -1 + 1/m < x < 1 - 1/n. Setting $k = \max(m, n)$, we see that $x \in C_k$, hence $x \in \mathcal{O}$. Additionally, \mathcal{O} is bounded and open, as it is simply the open ball $B_1(0)$.

It follows from the Heine-Borel theorem that the set \mathcal{O} is not compact, since it is not closed. Note that $1 \notin \mathcal{O}$ is a limit point of \mathcal{O} , since for any r > 0, we see that $1 - r/2 \in \mathcal{O} \cap B_r(1)$ if r < 4 and $0 \in \mathcal{O} \cap B_r(1)$ if $r \geq 4$.

Exercise 5

(i) Show that the map $d: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ defined by

$$d(x,y) = \frac{\sqrt{\|x-y\|}}{1 + \sqrt{\|x-y\|}},$$

is a metric, where $\|\|$ denotes the Euclidean norm on \mathbb{R}^n .

- (ii) Let d be the above metric. Show that not all closed and bounded subsets of (\mathbb{R}^n, d) are compact.
- (iii) Does the above phenomenon provide a counterexample to the Heine-Borel theorem?

Solution

(i) The fact that d is symmetric, i.e. d(x, y) = d(y, x), follows trivially from the fact that the Euclidean norm || || is symmetric.

$$d(x,y) = \frac{\sqrt{\|x-y\|}}{1+\sqrt{\|x-y\|}} = \frac{\sqrt{\|y-x\|}}{1+\sqrt{\|y-x\|}} = d(y,x).$$

The non-negativity of the Euclidean norm guarantees that $||x - y|| \ge 0$, so $\sqrt{||x - y||} \ge 0$ and $1 + \sqrt{||x - y||} > 0$. This makes d(x, y) well defined and non-negative for all $x, y \in \mathbb{R}^n$. Moreover, if d(x, y) = 0, the denominator is positive so the numerator $\sqrt{||x - y||}$ must be zero. This forces ||x - y|| = 0, whence x = y. Again, if x = y, then ||x - y|| = 0 so d(x, y) = 0.

We must now show that d obeys the triangle inequality. Set² $a^2 = ||x-y||, b^2 = ||y-z||, c^2 = ||x-z||$. Thus, from the properties of the Euclidean norm,

$$c^2 \le a^2 + b^2.$$

Note that a, b, c are non-negative reals. Thus, the following set of inequalities are bidirectionally equivalent.

$$d(x,z) \leq d(x,y) + d(y,z)$$

$$\frac{c}{1+c} \leq \frac{a}{1+a} + \frac{b}{1+b}$$

$$c(1+a)(1+b) \leq a(1+b)(1+c) + b(1+a)(1+c)$$

$$c+ac+bc+abc \leq a+ab+ac+abc+b+ab+bc+abc$$

$$c \leq a+b+2ab+abc$$

The last inequality is true since $(a + b)^2 = a^2 + b^2 + 2ab \ge a^2 + b^2$, so

$$c \leq \sqrt{a^2 + b^2} \leq a + b \leq a + b + 2ab + abc$$

This proves the desired inequality.

²This is justified, since $\sqrt{\|x\|} \ge 0$.

(ii) We claim that the set $\mathbb{R}^n \subset (\mathbb{R}^n, d)$ is closed, bounded, and not compact. The fact that \mathbb{R}^n is closed follows from the fact that its complement \emptyset is open. The fact that it is bounded follows from the fact that $\mathbb{R}^n \subseteq B_1(0)$. This is true since for any $x \in \mathbb{R}^n$, $||x|| \ge 0$, so

$$d(x,0) = \frac{\sqrt{\|x\|}}{1 + \sqrt{\|x\|}} = 1 - \frac{1}{1 + \sqrt{\|x\|}} < 1.$$

Note that if ||x|| < ||y||, then $\sqrt{||x||} < \sqrt{||y||}$, so $1/(1 + \sqrt{||x||}) > 1/(1 + \sqrt{||y||})$, hence d(x, 0) < d(y, 0).

Let us use the notation $n' = (n, 0, 0, ..., 0) \in \mathbb{R}^n$. To show that \mathbb{R}^n is not compact, consider the open cover

$$\mathcal{O} = \bigcup_{n=1}^{\infty} \mathcal{O}_n, \qquad \mathcal{O}_n = B_{d(n',0)}(0).$$

Note that in the this is indeed an open cover of \mathbb{R}^n , since for any $x \in \mathbb{R}^n$, we can find a positive integer k such that ||x|| < ||k'|| = k using the Archimedean property. This means that d(x,0) < d(k',0), so $x \in \mathcal{O}_k(0)$. On the other hand, if \mathcal{O} had a finite subcover, note that $\mathcal{O}_n(0) \subset \mathcal{O}_{n+1}(0)$, so our subcover is simply $\mathcal{O}_k(0)$ for some $k \geq 1$. However, we see that ||k'| + 1'|| > ||k'||, so d(k'+1',0) > d(k',0) and $k'+1' \notin \mathcal{O}_k(0)$ which is a contradiction. Hence, \mathbb{R}^n is not compact for any $n \in \mathbb{N}$.

(iii) The Heine-Borel theorem applies only to Euclidean spaces \mathbb{R}^n , with the Euclidean metric. Since our example in (ii) works in a different metric d, there is no violation of the Heine-Borel theorem.