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Exercise 1 Using only the definition of an ordered field, show that if x, y ∈ R with x > y > 0, then
√
x >

√
y.

Solution Note that
√
x > 0 and √

y > 0, since if either were equal to 0, then one of x and y would
be zero. Also,

√
x 6= √

y since if it were, then x =
√
x
√
x =

√
y
√
y = y. Suppose that

√
x <

√
y. Then,√

y −
√
x > 0 and √

y +
√
x > 0, so

(
√
y −

√
x)(

√
y +

√
x) = y − x > 0,

which is a contradiction. Thus, we must have
√
x >

√
y.

Exercise 2 Show that Q is neither open nor closed in the Euclidean space R.

Solution We know that between two reals, there exists a rational real as well as an irrational real1.
Thus, if p ∈ Q were an interior point of Q, there would exist r > 0 such that Br(q) ⊆ Q. This is im-
possible since there exists an irrational number x /∈ Q between p and p+r. Thus, p /∈ Q◦, so Q is not open.

Again, if Q were closed, then S = R \Q must be open. If x ∈ S were an interior point of S, then there
would exist r > 0 such that Br(x) ⊆ S. This is also impossible, since there exists a rational number
y /∈ S between x and x+ r. Thus, p /∈ S◦, so S is not open, hence Q is not closed.

Exercise 3 Find the closure of the set

S =

{
1

n2
: n ∈ N

}
,

in the Euclidean space R.

Solution We claim that S = S ∪ {0}. Since all points in S are trivially closure points of S, we first
show that 0 is a ilmit point of S. This follows since for every r > 0, we can find n ∈ N such that nr > 1
using the Archimedean property. Since, n2 ≥ n, we have 0 < 1/n2 < r, so 1/n2 ∈ S ∩Br(0).

We now show that there are no limit points of S apart from 0. Suppose x /∈ S ∪ {0} is a limit point of
S. This means that every neighbourhood of x contains infinitely many points of S. If x < 0, then note
that B−x(x) ∩ S = ∅. Otherwise, if x > 0, set r = x/2. If Br(x) contained infinitely many points of S,
then there would be infinitely many natural numbers n such that x − r < 1/n2 < x + r, i.e. inifintely
many n such that n2 < 2/x, which is absurd. Hence, x is not a limit point of S.

Exercise 4 Construct an example where an infinite union of compact subsets of the Euclidean space
R is a bounded open set S. Is S compact?

1This is true because given x, y ∈ R, x < y, we can choose rationals p, q such that x < p < y and x < p < q < y, using
the density of the rationals in the reals. We also pick a rational s such that p−

√
2 < s < q −

√
2, and it is easily verified

that s+
√
2 is irrational.
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Solution Compact subsets of R are precisely the closed and bounded sets, by the Heine-Borel theorem.
Thus, consider

O =

∞⋃
n=1

Cn, Cn =

[
−1 +

1

n
, 1− 1

n

]
.

Note that each Cn is a closed interval contained within the open ball (−1, 1), hence is compact. We
claim that O = (−1, 1). This is true because for any x ∈ O, we find n such that x ∈ Cn, so
−1 + 1/n ≤ x ≤ 1 + 1/n. Thus, −1 < x < 1, i.e. x ∈ (−1, 1). Again, for any x ∈ (−1, 1), we find
m,n ∈ N such that m(x+1) > 1, and n(1−x) > 1, so −1+1/m < x < 1− 1/n. Setting k = max(m,n),
we see that x ∈ Ck, hence x ∈ O. Additionally, O is bounded and open, as it is simply the open ball B1(0).

It follows from the Heine-Borel theorem that the set O is not compact, since it is not closed. Note that
1 /∈ O is a limit point of O, since for any r > 0, we see that 1−r/2 ∈ O∩Br(1) if r < 4 and 0 ∈ O∩Br(1)
if r ≥ 4.

Exercise 5
(i) Show that the map d : Rn × Rn → R defined by

d(x, y) =

√
‖x− y‖

1 +
√
‖x− y‖

,

is a metric, where ‖‖ denotes the Euclidean norm on Rn.

(ii) Let d be the above metric. Show that not all closed and bounded subsets of (Rn, d) are compact.

(iii) Does the above phenomenon provide a counterexample to the Heine-Borel theorem?

Solution
(i) The fact that d is symmetric, i.e. d(x, y) = d(y, x), follows trivially from the fact that the Euclidean

norm ‖‖ is symmetric.

d(x, y) =

√
‖x− y‖

1 +
√
‖x− y‖

=

√
‖y − x‖

1 +
√

‖y − x‖
= d(y, x).

The non-negativity of the Euclidean norm guarantees that ‖x − y‖ ≥ 0, so
√

‖x− y‖ ≥ 0 and
1 +

√
‖x− y‖ > 0. This makes d(x, y) well defined and non-negative for all x, y ∈ Rn. Moreover,

if d(x, y) = 0, the denominator is positive so the numerator
√
‖x− y‖ must be zero. This forces

‖x− y‖ = 0, whence x = y. Again, if x = y, then ‖x− y‖ = 0 so d(x, y) = 0.

We must now show that d obeys the triangle inequality. Set2 a2 = ‖x−y‖, b2 = ‖y−z‖, c2 = ‖x−z‖.
Thus, from the properties of the Euclidean norm,

c2 ≤ a2 + b2.

Note that a, b, c are non-negative reals. Thus, the following set of inequalities are bidirectionally
equivalent.

d(x, z) ≤ d(x, y) + d(y, z)

c

1 + c
≤ a

1 + a
+

b

1 + b

c(1 + a)(1 + b) ≤ a(1 + b)(1 + c) + b(1 + a)(1 + c)

c+ ac+ bc+ abc ≤ a+ ab+ ac+ abc+ b+ ab+ bc+ abc

c ≤ a+ b+ 2ab+ abc

The last inequality is true since (a+ b)2 = a2 + b2 + 2ab ≥ a2 + b2, so

c ≤
√
a2 + b2 ≤ a+ b ≤ a+ b+ 2ab+ abc.

This proves the desired inequality.
2This is justified, since

√
‖x‖ ≥ 0.
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(ii) We claim that the set Rn ⊂ (Rn, d) is closed, bounded, and not compact. The fact that Rn is
closed follows from the fact that its complement ∅ is open. The fact that it is bounded follows from
the fact that Rn ⊆ B1(0). This is true since for any x ∈ Rn, ‖x‖ ≥ 0, so

d(x, 0) =

√
‖x‖

1 +
√
‖x‖

= 1− 1

1 +
√

‖x‖
< 1.

Note that if ‖x‖ < ‖y‖, then
√
‖x‖ <

√
‖y‖, so 1/(1 +

√
‖x‖) > 1/(1 +

√
‖y‖), hence d(x, 0) <

d(y, 0).

Let us use the notation n′ = (n, 0, 0, . . . , 0) ∈ Rn. To show that Rn is not compact, consider the
open cover

O =

∞⋃
n=1

On, On = Bd(n′,0)(0).

Note that in the this is indeed an open cover of Rn, since for any x ∈ Rn, we can find a positive
integer k such that ‖x‖ < ‖k′‖ = k using the Archimedean property. This means that d(x, 0) <
d(k′, 0), so x ∈ Ok(0). On the other hand, if O had a finite subcover, note that On(0) ⊂ On+1(0),
so our subcover is simply Ok(0) for some k ≥ 1. However, we see that ‖k′ + 1′‖ > ‖k′‖, so
d(k′ + 1′, 0) > d(k′, 0) and k′ + 1′ /∈ Ok(0) which is a contradiction. Hence, Rn is not compact for
any n ∈ N.

(iii) The Heine-Borel theorem applies only to Euclidean spaces Rn, with the Euclidean metric. Since
our example in (ii) works in a different metric d, there is no violation of the Heine-Borel theorem.
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