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Exercise 1 Show that no interval in R is a union of two disjoint nonempty open sets.

Solution Let I C R be an interval such that I = AU B where A and B are disjoint, nonempty open
sets. Pick a € A and b € B, and without loss of generality! let a < b. We construct the set

S={r:a<xz<baxecA}=labNA.

Note that S C R is bound above and below, and a € S, so S has a supremum, say v = sup S. We have
the restriction a < v < b. Since a,b € I, every element in between them must be in I since it is an
interval. Thus, v € I. This means that v must be in exactly one of A and B.

Suppose v € A. This means that «v # b, so b — v > 0. Also, from the openness of A, we find r > 0 such
that (v —r,v+r) C A. Setting € = min(r,b —7), we see that v/ =y +¢/2 € A, and a <~y <+ < b, so
~" € S. This is a contradicts the fact that v = sup S.

Similarly, suppose v € B. This means that v # a, so v —a > 0. Also, from the openness of B, we
find » > 0 such that (y —r,v 4+ r) C B. Setting ¢ = min(r,v — a), we see that 7/ = v — ¢/2 € B, and
a<v <v<b,s0v €S. This means that there are no elements of A between 7' and ~, which means
that 4/ is also an upper bound of S. This again contradicts the fact that v = sup S is the lowest upper
bound.

Thus, we conclude that v ¢ A and v ¢ B, so v ¢ AU B = I, which is absurd. Thus, it is impossible to
choose such A and B, and this proves the desired statement.

Exercise 2 Given n € N; construct a bounded set S;, € R which has exactly n limit points.

Solution Let A, = {m+ % :n > 1,n € N}. Clearly, A,, is bound by m and m + 1. We claim that

m=1

has exactly n limit points.

Suppose z € {1,...,n}. Then, for any neighbourhood (x — ¢,z + ¢€), we find k € N such that ke > 1
using the Archimedean principle. Thus, z — e < z + % < x + €, so this neighbourhood of x contains the
point x + % € A, C S,, which means that x is a limit point of S,.

Suppose x € S, \ {1,...,n}. We find m,n € N, n > 1 such that x = m + 1/n. Now,

1 1 1 1

1 1
= <
n n+1‘ nn+1) n(n-—1)

n—1+n'

— —L- we see that (x — e,z +¢€) NS, = {z}, which means that z is not a limit point

Thus, setting € = % g

of S,.

Suppose z ¢ S,,. Note that the largest element of S,, is n + %, soifx >n+ %, we set e = (. —n — %)/2
Every element of S, is greater than 1, so if x < 1, set ¢ = (1 — z)/2. In both cases, we find that
(x — €6,z +€) NS, = 0. Otherwise, note that x cannot be an integer, since the only integers between 1
and n + 3 are already in S,. Thus, we find m € N such that m < z < m+ 1, i.e. m = |z]. Note that

f a > b, just swap the roles of A and B. Note that a # b since A and B share no common elements.



me{l,...n}. If x> m+ 3, set e = (m+ 1 — z)/3, and note that (z — €,z + €) N S, = 0. Otherwise,
m <z < m+ %, soset e = (z—m)/2. Any points of S, in the interval (z — €,z + €) must be of
the form m + ¢, where m + 1 > z — € = (x + m)/2, so 1/k > (z —m)/2, so k < 2/(x — m). Thus,

there are finitely many such k, so (x —e¢, z+¢€)N S, is finite, which means that x is not a limit point of S,,.

This covers all possible cases of x € R, so we have proved that S, has exactly n limit points.

Exercise 3 Let (M,d) be a metric space and A, B be two subsets of M. Show that cl(A N B) C
cl(A) Nel(B). Is it always true that cl(AN B) = cl(A) Ncl(B)?

Solution Given A, B C M, let € cl(A N B). Thus, every neighbourhood of x contains at least one
point of A N B. This point is in both A and B. This means that every neighbourhood of x contains
a point in A, so z is a closure point of A. Similarly, every neighbourhood of x contains a point in B,
so x is a closure point of B. Thus, z € cl(4) and x € cl(B), so x € cl(4) Ncl(B). This proves that
cl(AnB) Ccl(4)Nncl(B).

It is not always true that cl(A N B) = cl(A) Ncl(B). For example, let A = (0,1) and B = (1,2) be
subsets of R with the usual topology. Then cl(4) = [0,1], cl(B) = [1,2] and cl(AN B) = cl(§) = 0, while
cl(A) nel(B) = {1}.

Exercise 4 Let (M,d) be a metric space and A, B be two subsets of M. Show that cl(AU B) =
cl(A) Ucl(B).

Solution First, let 2 € cl(A). Then, x is a closure point of A, so every neighbourhood of = contains
some point in A, which is also a point in AUB. Thus, z is a closure point of AUB, so cl(A) C cl(AUB).
A similar argument with B shows that cl(B) C cl(AU B). Thus, cl(4) Ucl(B) C cl(AU B).

Now, let x € cl(AU B). Let (AU B)’ denote the set of limit points of AU B. We thus have cl(AU B) =
AUBU(AUB). If z € AU B, then we are done, since in that case, x is in one of A or B, which are
included in their closures, so either x € cl(A) or x € cl(B).

Otherwise, z € (AU B)’, i.e. x is a limit point of AU B. In this case, every neighbourhood of x contains
infinitely many elements of AU B. Consider the neighbourhoods N, (z) of size €, = 1/n > 0. In each of
these neighbourhoods, we find a point y,, € AU B. Suppose that = ¢ cl(A). This means that for some
k € N, the €; neighbourhood of = contains no points in A. Thus, y, € B. However, since N, C N,
for all n € N, this forces yx+1 € B. By induction, all y,>; € B, so x € cl(B). This follows because
every neighbourhood larger than € contains yi, and for all smaller € neighbourhoods, there exists n € N
such that 1/k = €, > € > 1/n, so N. O N, which contains y, € B, since n > k. Thus, in all cases,
x € cl(A)Ucl(B), so cl(AU B) C cl(A) Ucl(B).

Hence, both inclusions prove that cl(AU B) = cl(A4) U cl(B).



