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Exercise 1 Show that no interval in R is a union of two disjoint nonempty open sets.

Solution Let I ⊆ R be an interval such that I = A ∪ B where A and B are disjoint, nonempty open
sets. Pick a ∈ A and b ∈ B, and without loss of generality1 let a < b. We construct the set

S = {x : a ≤ x ≤ b, x ∈ A} = [a, b] ∩A.

Note that S ⊆ R is bound above and below, and a ∈ S, so S has a supremum, say γ = supS. We have
the restriction a ≤ γ ≤ b. Since a, b ∈ I, every element in between them must be in I since it is an
interval. Thus, γ ∈ I. This means that γ must be in exactly one of A and B.

Suppose γ ∈ A. This means that γ 6= b, so b− γ > 0. Also, from the openness of A, we find r > 0 such
that (γ − r, γ + r) ⊆ A. Setting ε = min(r, b− γ), we see that γ′ = γ + ε/2 ∈ A, and a ≤ γ < γ′ < b, so
γ′ ∈ S. This is a contradicts the fact that γ = supS.

Similarly, suppose γ ∈ B. This means that γ 6= a, so γ − a > 0. Also, from the openness of B, we
find r > 0 such that (γ − r, γ + r) ⊆ B. Setting ε = min(r, γ − a), we see that γ′ = γ − ε/2 ∈ B, and
a < γ′ < γ ≤ b, so γ′ ∈ S. This means that there are no elements of A between γ′ and γ, which means
that γ′ is also an upper bound of S. This again contradicts the fact that γ = supS is the lowest upper
bound.

Thus, we conclude that γ /∈ A and γ /∈ B, so γ /∈ A ∪ B = I, which is absurd. Thus, it is impossible to
choose such A and B, and this proves the desired statement.

Exercise 2 Given n ∈ N, construct a bounded set Sn ∈ R which has exactly n limit points.

Solution Let Am = {m+ 1
n : n > 1, n ∈ N}. Clearly, Am is bound by m and m+ 1. We claim that

Sn =

n⋃
m=1

Am

has exactly n limit points.

Suppose x ∈ {1, . . . , n}. Then, for any neighbourhood (x − ε, x + ε), we find k ∈ N such that kε > 1
using the Archimedean principle. Thus, x− ε < x+ 1

k < x+ ε, so this neighbourhood of x contains the
point x+ 1

k ∈ Ax ⊆ Sn, which means that x is a limit point of Sn.

Suppose x ∈ Sn \ {1, . . . , n}. We find m,n ∈ N, n > 1 such that x = m+ 1/n. Now,∣∣∣∣ 1n − 1

n+ 1

∣∣∣∣ = 1

n(n+ 1)
<

1

n(n− 1)
=

∣∣∣∣ 1

n− 1
+

1

n

∣∣∣∣ .
Thus, setting ε = 1

n − 1
n+1 , we see that (x− ε, x+ ε)∩Sn = {x}, which means that x is not a limit point

of Sn.

Suppose x /∈ Sn. Note that the largest element of Sn is n+ 1
2 , so if x > n+ 1

2 , we set ε = (x− n− 1
2 )/2.

Every element of Sn is greater than 1, so if x < 1, set ε = (1 − x)/2. In both cases, we find that
(x − ε, x + ε) ∩ Sn = ∅. Otherwise, note that x cannot be an integer, since the only integers between 1
and n + 1

2 are already in Sn. Thus, we find m ∈ N such that m < x < m + 1, i.e. m = bxc. Note that
1If a > b, just swap the roles of A and B. Note that a 6= b since A and B share no common elements.
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m ∈ {1, . . . n}. If x ≥ m + 1
2 , set ε = (m + 1 − x)/3, and note that (x − ε, x + ε) ∩ Sn = ∅. Otherwise,

m < x < m + 1
2 , so set ε = (x − m)/2. Any points of Sn in the interval (x − ε, x + ε) must be of

the form m + 1
k , where m + 1

k > x − ε = (x + m)/2, so 1/k > (x − m)/2, so k < 2/(x − m). Thus,
there are finitely many such k, so (x−ε, x+ε)∩Sn is finite, which means that x is not a limit point of Sn.

This covers all possible cases of x ∈ R, so we have proved that Sn has exactly n limit points.

Exercise 3 Let (M,d) be a metric space and A,B be two subsets of M . Show that cl(A ∩ B) ⊆
cl(A) ∩ cl(B). Is it always true that cl(A ∩B) = cl(A) ∩ cl(B)?

Solution Given A,B ⊆ M , let x ∈ cl(A ∩ B). Thus, every neighbourhood of x contains at least one
point of A ∩ B. This point is in both A and B. This means that every neighbourhood of x contains
a point in A, so x is a closure point of A. Similarly, every neighbourhood of x contains a point in B,
so x is a closure point of B. Thus, x ∈ cl(A) and x ∈ cl(B), so x ∈ cl(A) ∩ cl(B). This proves that
cl(A ∩B) ⊆ cl(A) ∩ cl(B).

It is not always true that cl(A ∩ B) = cl(A) ∩ cl(B). For example, let A = (0, 1) and B = (1, 2) be
subsets of R with the usual topology. Then cl(A) = [0, 1], cl(B) = [1, 2] and cl(A∩B) = cl(∅) = ∅, while
cl(A) ∩ cl(B) = {1}.

Exercise 4 Let (M,d) be a metric space and A,B be two subsets of M . Show that cl(A ∪ B) =
cl(A) ∪ cl(B).

Solution First, let x ∈ cl(A). Then, x is a closure point of A, so every neighbourhood of x contains
some point in A, which is also a point in A∪B. Thus, x is a closure point of A∪B, so cl(A) ⊆ cl(A∪B).
A similar argument with B shows that cl(B) ⊆ cl(A ∪B). Thus, cl(A) ∪ cl(B) ⊆ cl(A ∪B).

Now, let x ∈ cl(A ∪B). Let (A ∪B)′ denote the set of limit points of A ∪B. We thus have cl(A ∪B) =
A ∪ B ∪ (A ∪ B)′. If x ∈ A ∪ B, then we are done, since in that case, x is in one of A or B, which are
included in their closures, so either x ∈ cl(A) or x ∈ cl(B).
Otherwise, x ∈ (A∪B)′, i.e. x is a limit point of A∪B. In this case, every neighbourhood of x contains
infinitely many elements of A∪B. Consider the neighbourhoods Nεn(x) of size εn = 1/n > 0. In each of
these neighbourhoods, we find a point yn ∈ A ∪ B. Suppose that x /∈ cl(A). This means that for some
k ∈ N, the εk neighbourhood of x contains no points in A. Thus, yk ∈ B. However, since Nεn+1

⊆ Nεn

for all n ∈ N, this forces yk+1 ∈ B. By induction, all yn≥k ∈ B, so x ∈ cl(B). This follows because
every neighbourhood larger than εk contains yk, and for all smaller ε neighbourhoods, there exists n ∈ N
such that 1/k = εk ≥ ε > 1/n, so Nε ⊇ Nεn which contains yn ∈ B, since n ≥ k. Thus, in all cases,
x ∈ cl(A) ∪ cl(B), so cl(A ∪B) ⊆ cl(A) ∪ cl(B).

Hence, both inclusions prove that cl(A ∪B) = cl(A) ∪ cl(B).
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